Vector dot product, length Monday, August 23, 2010
dot product \equiv a scalar value

$$
\text { given } 2 \text { vector } \vec{a}, \vec{b}, \underbrace{\left.\frac{\vec{a}}{}\right) \cdot \vec{b}}_{|\vec{a}|}=\cos (\theta)
$$

$\frac{\vec{a}}{\|\vec{a}\|}$ is the venter \vec{a} scaled (multpiedtsy)
1/leuyth,
where length $=\|\vec{a}\|=$
a normalized vector

$$
\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}
$$

$\Rightarrow \frac{\vec{a}}{\|\vec{a}\|}$ is now of unit leys

$$
\left(\frac{\text { least }}{\frac{\vec{a}}{\|\vec{a}\|} \text { 's lest is } 1}\right)
$$

$$
\begin{aligned}
\|R\| & =\sqrt{49+25} \\
& =\sqrt{24}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{14}{-2} \\
& a=\sqrt{x^{-x}} \\
& \frac{1}{7} \\
& =\sqrt{74} \\
& \|S\|=1 \text { nornalized } \\
& \text { vertar. } \\
& S=\frac{R}{\|R\|} \\
& =\left(\frac{7}{\sqrt{x+1}}, \frac{5}{\sqrt{x 11}}\right) \\
& a=\left(\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right) \cdot\left(\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right)=b \\
& \left(\ldots, x+b_{x}\right)+\left(a_{y} \times b_{y}\right)+\left(a_{z} \times b_{z}\right)
\end{aligned}
$$

What is a.a?

$$
\begin{gathered}
a_{x} * a_{y}+a_{y} \not x a_{y}+a_{2} \times a_{2} \\
\operatorname{sqrt}(a \cdot a)=\text { leyth of } a
\end{gathered}
$$

