vec_unit and cross product
Wednesday, August 25, 2010
9:00 AM
Vec_unit (Vec_t vI, vec_t VL)
Comments state:
Compute VL (output), a unit vector in dir. Cuhat we'le writing to of VI
"a unit vector" $\equiv \frac{V}{\|v\|}, \begin{aligned} & \text { a vector } \\ & \text { scaled (mu }\end{aligned}$ scaled (muA.by)
 by $1 /$ length (v)
$V=(7,2)$ is a point, a location, wit) coordinates $(7,2)$
if ot take if light, $\|v\|=\sqrt{7^{2}+2^{2}}$

$$
=\sqrt{53}
$$

st scale V by $/\|v\|, \frac{v}{\|v\|}=\left(\frac{7}{\sqrt{53}}, \frac{2}{\sqrt{53}}\right)$
$\frac{V}{11}$ s li sunni be a unit vector, v has
$\|\bar{v}\|$ gharwe ma unir veview, v.... been normalized

$$
=\sqrt{\frac{53}{\sqrt{3}}}=9=1
$$

so Herie thir "duality": vecter con ween position or divection
bavk to vec-unit:
1/L: a unit vettor in div. of VI

VL: a unit vettor in (dir. of VI)

ver-unit:
m in the director f vi juot wems to copy to V_{2}
a) find $V I$ leyth
b) scall V hy $\frac{1}{\text { legtan }}$
c) copy cesult to V^{2}

Be coryul dkent al iased paravetiers
ver-unit (vert vin, vee_t vont) ξ

$$
\begin{aligned}
& \operatorname{vout}[0]=\operatorname{vin}[0] / \operatorname{ver}-\operatorname{len}(\operatorname{vin}) \\
& \operatorname{sint}[1]=\operatorname{vin}[1] / \operatorname{vic}-\operatorname{len}(\operatorname{vin})
\end{aligned}
$$

$$
\operatorname{vost}(2]=\operatorname{vir}[27 / \operatorname{vec}-\operatorname{len}(\operatorname{vir})
$$

probien exists in interded use of rec-unit:

$$
\text { ver_unit }(v), \text { vi) }
$$

proffer way:

$$
\begin{aligned}
& \text { vec_unlt (} \mathrm{vL}_{1}, \mathrm{VL}_{2} \text {) } \\
& \{ \\
& \text { dainle len }=v e e-\operatorname{len}(v \mid) ; \\
& v L[0]=v 1(0) / \mathrm{len} ; \\
& V_{L}(D)=v(1) / 1 \mathrm{~ms} ; \\
& v^{2}(2)=v(2) /(x y ; \\
& \text { \} }
\end{aligned}
$$

see Wentall's notar wn ther if not clear.
void vec_unit (ven-t v1, veert v2)
$\{$

$$
\text { vec_scale }(1.0 / \operatorname{vec}-\operatorname{len}(v \mid), V L, v L) ;
$$

\}
woid vec-scale (dohle S, ver.t v_{1}, ver, v^{2}) $\{$ int i;

$$
\begin{aligned}
& \text { int } i ; \\
& \operatorname{for}(\delta=0 ; i<3, i+t) \quad v 2[i]=\delta x \text { v| }[i] ;
\end{aligned}
$$

Rememher, interdeal ve is:

$$
\operatorname{vec}-\operatorname{unit}(v), v 1)
$$

\Rightarrow normalize $v /$; after a canl to vee-viit, $v 1$ will be of unlt $^{\prime}$ leyth, a divectron secto
cross product
Wednesday, August 25, 2010
9:25 AM
void vee_cross (vec-tv1, vea-tv2, va_t v3)
$\}$

$$
\begin{aligned}
& 1 * \\
& v_{3}[0]=v_{1}[1] \notin v_{2}[2]-v_{1}[2] * v_{2}[1] ; \\
& v_{3}[1]=v_{1}[2] \not v_{2}[0]-v_{1}[0]+v^{2}[2] ; \\
& v_{3}[2]=v_{1}[0] \nless v_{2}(1]-v_{1}[1] * v_{2}[0] ;
\end{aligned}
$$

女/
int i;

$$
\begin{aligned}
& \text { vect wi } \\
& \operatorname{for}(i=0 ; i<3 ; i+t) \\
& w(i]= v_{1}[(3+i+1) \% 3] \times v^{2}\left[(3+i-1) \psi_{0} 3\right]- \\
& v_{1}\left[(3+i-1) \psi_{0} 3\right] * v^{2}\left[(3+i+1) q_{3} 3\right] i
\end{aligned}
$$

vee-copy (w, v3);
3

$$
c=a \times b
$$

What does it meen? What is a crowlpol?

$$
\begin{array}{r}
C_{x}=\left(\begin{array}{l}
a_{y} \\
a_{y} \\
a_{z}
\end{array}\right) \times\left(\begin{array}{c}
b_{x} \\
b_{y} \\
b_{7}
\end{array}\right) \\
\therefore \\
\cdots=b_{n 1}
\end{array}
$$

$$
\begin{aligned}
& c_{y}=\left(\begin{array}{l}
a_{x} \\
a_{y} \\
a_{7}
\end{array}\right)^{2-} \times\left(\begin{array}{l}
b_{x} \\
b_{y} \\
b_{7}
\end{array}\right) \\
& c_{z}=\left(\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right) \times\left(\begin{array}{l}
b_{y} \\
b_{y} \\
b_{z}
\end{array}\right)
\end{aligned}
$$

So?

\vec{c} is \perp perpendicular to both \vec{a}, \vec{b}
orthoyoul"
Why do we neal Hor? giver a $\vec{n} \underbrace{\text { plane }}_{a}$,

CPS 102 Page 7

defeat by 4 vertices $A B, C, D$,
we want to k av the plane's orientation (or tilt), poser by the plane's normal

$$
\begin{aligned}
\vec{u} & =\stackrel{\rightharpoonup}{b} \times \vec{a} \\
& =\frac{(B-A)}{\|B-A\|} \times \frac{(D-A)}{\|D-A\|}
\end{aligned}
$$

