rendering equation (and light_t object) Wednesday, October 27, 2010
$8: 52$ AM

Last time: sphere ${ }^{8.52 \mathrm{Mm}}$ Today; cunpritis

position
emissivity $r g b$
 normal at intassector

$$
\text { spahn. } \cdot
$$

light
sphere .c

- rect
- drgb-t
(or rgb_t<doulde>
(aver)
- emissivity is the light color, eff. 111 is anita

Rendering eqration:
(at surfane point, caludate intensity I)
R is the ray dítance diffse
(Whest yen alrewly hare)
in call: color $=\underbrace{\text { di } \rightarrow \text { yetankient () }}$ /randist;
W) supare norual
L : divection to light (grousubive point) (nomalyed)
(sirface property yy OVjent, bacidy the seface colol)
here $I_{a} \approx\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$
white lyMt
(ahit of a halk)

- His is carbal tru Phong
ilvomination model - honicaly an intuatte what Openbl of phasied lipht whes for trusport $\overbrace{(10 \mathrm{cal})}^{\text {divedt shum. }}$
ran praver, hy colalating,
vay selfetions, produes glohal illuirnater tuect GL domit do

- Model derijuthor:
- stant with diyfuse scottering: Mipht arriving at sugare scattered yseally in all divectors (matte sugace)
- perfent diflise replecter: reftent's lipht according to Lambert's Law:

inlerity all direstos

(fally ill sminten) (wo Pryecter)

$$
\text { if }(0 \leqslant N \cdot l \leqslant 1)
$$

surfare visible by light
ate
sufare hidles
(only gets awhient contich.)

- Cawhection liphtuis wodd (model 1)

$$
I=\operatorname{Il}_{l} k_{d}(N \cdot L)
$$

with urbient tem lodis live tors;

$$
I=I_{n} k_{a}+\sum_{l} I_{l} k_{d}(M L)
$$

Noxt selirenent: scale hy distace to ligt

Noxt refirenent : scale hy diface to "110" in code:

$$
\begin{aligned}
& L=\operatorname{light} \rightarrow \text { get portion }()-\text { lont }- \text { nit } \\
& r=L \cdot \operatorname{len}() ; \text { " get disto gut } \\
& L=L \cdot n o m() ; / 1 \text { norudy } L
\end{aligned}
$$

attenvateal lypt modd (moled 2)

$$
I=I_{a} k_{a}+\sum_{\Lambda} \frac{I_{L}}{r^{\prime}}\left(k_{d}(V \cdot L)\right)
$$

Openbe uses roulthy werder here $\left(r+k_{1}+k_{2}\right)(?)$

- stull diffuse (mathe sufars)
- alding in ghirj conponent:
- modes the "pesfeat repletor" (miror)

shoend ang see peppent
kelesher if $\beta=0$, looking dover an B
- for non-pergent veflectors, intersity of reflested light fadl all sharply ar β incienas
- Jaellof 11 approxinated by

$$
\text { so } \begin{aligned}
A & =N \cos \theta+N \cos \theta-L \\
& =2 N \cos \theta-L \\
& =2 N(N \cdot L)-L
\end{aligned}
$$

- for real materiale, amont of incident lipht specularly reflectel depends or bath migle of inccelence θ cull wardength

$$
I_{S}=I_{L} \omega(\lambda, \theta) \cos ^{n} \beta
$$

this refives a ray per warelegth for all wevelegth yov'l leve to modle

phong

- cuother cusicte:

$$
I=I_{a} k_{a}+\sum_{l} \frac{I_{c}}{r}\left(k d(v \cdot c)+k_{l}(R \cdot v)^{n}\right)
$$

Blinn

$$
\begin{array}{r}
I=I_{a} k_{a}+\sum_{l}^{l} \frac{I_{L}}{r}\left(k_{d}(N \cdot C)+k,(N-H)^{n}\right) \\
H=\frac{L+V}{\|L+V\|} \text { bivertor of } L \leqslant V
\end{array}
$$

