Basic elements of 3-D coordinate systems and linear algebra

Coordinatate systems are used to assign numeric values to locations with respect to a particular frame of
reference commonly referred to as the origin. The number of dimensions in the coordinate system is
equal to the number of perpendicular (orthgonal) axes and is also the number values needed to specify a
location with respect to the origin.

One dimension: the line

Two dimensions: the plane y

O @5,2)

+X
(0,(0)

Three dimensions: the universe as we perceive it
(A right handed coordinate system is shown.. In a left handed system the direction of the positive z axis is
reversed.)

Ty

-Z

“45,2,-3)

(0 , 0) +X

+z

Points in 3-D space

The location of a point P in 3-D Euclidean space is given by a triple (Pv Py P:)

The x, y, and z coordinates specify the distance you must travel in directions parallel to the the x, y, and z

axes starting from the origin (0, 0, 0) to arrive at the point (Px Py P:)
Vectors in 3-D space
A vector in 3-D space is sometimes called a directed distance because it represents both

e adirection and

e a magnitude or distance

In this context, the triple (p,, Py P-) can also be considered to represent

 the direction from the origin (0, 0, 0) to (p., p,, p.) and

« its length Sqri (p XZ + py2 + pz2) is the Euclidean (straight line) distance from the origin to (p,,
Py P2

Points and vectors

Two points in 3-D space implicitly determine a vector pointing from one to the other. Given two points
P and Q in 3-D Euclidean space, the vector

R=P-Q=(px'qx,py'quz'%)

represents the direction from Q to P. Its length, as defined above is the distance, between P and Q.
Note that the direction is a signed quantity. The direction from P to Q is the negative of the direction
from Q to P. However, the distance from P to Q is always the same as the distance from Q to P.

Example: Let V=(8,6,5)and P=(3, 2, 0).

Then the vector direction from Vto P is : (3 -8, 2-6, 0- 5) = (—5, -4, —5)
The vector direction from P to V'is (5,4,5)
The distance between V and P is: sqrt(25 + 16 + 25) = sqrt(66) = 8.12.

The geometric interpretation of vector arithmetic

Here we work with 2 dimensional vectors to simplify the visual interpretation, but in 3-d the principles
are the same.

P = (5, 1) => +5 in the x direction and then +1 in the y direction
=> +2 in the x direction and +4 in the y direction.

R=P+Q=(7,))

P=R+(-Q=R-Q

Useful operations on vectors:

We define the sum of two vectors P and Q as the componentwise sums:

R=P+Q=(p.+q, py+q, p.+q.)
(3,4,5)+(1,2,6)=(4,6,11)

The difference of two vectors is computed as the componentwise differences:

R=P-Q=(p:-qv Py-4qy P:-9q2)
(3,4,5)- (1,2,6)=(2,2,-1)

We also define multiplication (or scaling) of a vector by a scalar number a

S = aP = (ap,, ap,, ap.)
3*%(1,2,3)=(3,6,9)

The length of a vector P is a scalar whose value is denoted:

1Pl =sqri(ps . p) s ps)
(3,4, 5) Il =sqrt(9 + 16 + 25) = sqrt(50)

A unit vector is a vector whose length is 1. Therefore an arbitrary vector P may be converted to a unit
vector by scaling it by 1/ (its own length). Here U is a unit vector in the same direction as P.

U=(I1/1lPIl)P

The inner product or dot product of two vectors P and Q is a scalar number. 1t is computed by taking
the sum of the componentwise products of the two vectors.

X:PdOIQ: (pqu + Py qy, +szz)
(2,3,4)dot(3,2,1)=6+6+4=16

Thus || P || = sqrt(P dot P)

If U and V are unit vectors and g is the angle beween them then:

cos (q) =UdotV =VdotU

Representing vectors in C

There are at least two easy ways to represent a vector:
Array based representation:

We can use the typedef facilty to create a user defined type called vec_z. An instance of vec_t is
three element double precision array:

t ypedef double vec t[3];

An instance of vec_t is three element double precision array and can be created as shown.
vec t vec;

It is understood that
vec[0] is the x-component (coordinate)
vec[1] is the y-component

vec|[2] is the z-component

To make this association explicit we use the #define facility

#define X O
#define Y 1
#define Z 2

We can then create an instance of the vector (11, 2, -4) as shown:

vec_t v;

viX] = 11;
v[Y]
viZ] = -4,

1
N

Structure based representation

We can also define a structured type in which the elements are explicitly named

t ypedef struct vec_type
{

doubl e x;

doubl e v;

doubl e z;
} vec_t;
vec t vec;

In this representation, it is explicit that

vec.x is the x-component
vec.y is the y-component
vec.z is the z-component

Religious wars have been fought over which is “correct”. We will refuse to engage in the war, but we

will use the array based approach in this course.

Because elements of both the structure and the array are guaranteed to be packed into adjacent memory
elements its possible to cheat and use either array or structure notation.

vect v ={1.0, 2.0, 3.0};
doubl e *w = (doubl e *) &v;

printf("%f %f %f\n", v.Xx, v.y, Vv.2);
printf("%f %f %f\n", wWO], W1], W2]); ;

1. 000000 2. 000000 3.000000
1. 000000 2. 000000 3.000000

A library for 3-D vector operations

Since the above operations will be commonly required in the raytracer, you will build a library of
functions which we will call vector.h to perform them. Here are the function prototypes that must be
employed. Because the functions are called many times we will use the in/ine mechanism of gcc to
improve performance. The static qualifier is used to avoid duplicate definition errors at link time when
functions are included in .4 files.

/* Scale a 3d vector */

static inline void vec_scal e(

doubl e fact, /* Scale factor */
vec_t vl /* lnput vector */
vec t v2); /* Qutput vector */

/* Return length of a 3d vector */

static inline double vec_Ilen(
vec_t vl); /* Vector whose length is desired */

/* Conpute the difference of two vectors */

/[* v3 =v2 - vl */
static inline void vec_diff(

vec_t vl /* subtrahend */
vec_ t v2, /* m nuend */
vec t v3); /* result */

/* Conmpute the sumof two vectors */
/* ve = v2 + vl;

static inline void vec_sun

vec t vl /* addend */
vec t v2, /* addend */
vec_t v3); /* result */

/* Return the inner product of two input vectors */
static inline double vec_dot (

vec_t vl /* lnput vector 1 */

vec_t v2); /[* Input vector 2 */

/* Copy one vector to another */

static inline void vec_copy(

vec_t vl /* input vector */

vec t v2); /* output vector */

/* Construct a unit vector in direction of input */
static inline void vec_unit/(

vec t vl /* 1 nput vector */

vec_ t v2); /* output unit vec */

/* Read in values of vector fromfile */

static inline void vec_read(

FILE *in,

vec_t vl);

/* Print values of vector to file */

static inline void vec_print(

FILE *out, /* output file */
char *| abel, /* | abel string */
vec_t vl); /* vector to print */

10

Warning regarding aliased parameters

When parameters are passed using pointers a potentially destructive phenomenon known as aliasing may
occur. Here the caller of vec_unit() is requesting that a vector be converted to a unit vector in place.

vec_unit(vl, vl);

Now suppose the implementation of vec_unit() is as follows:

static inline void vec_unit|(
vec_t vin,
vec_t vout)

{
vout[X] = vin[X] / vec_len(vin);
vout[Y] = vin[Y] / vec_len(vin);
vout[Z] = vin[Z] / vec_len(vin);
}

This looks correct and (assuming vec_len()) is working properly it will work correctly as long as the
parameters vin and vout point to different vectors. However, if they point to the same vector incorrect
computation will result. If vin and vout point to the same vector the assignment.

vout[X] = vin[X] / vec_len(vin);
also changes vin[X] Therefore, in the subsequent steps of the computation

vout [Y]
vout [Z]

vin[Y] / vec_len(vin);
vin[Z] |/ vec_len(vin);

vec_len() will generally (but not always) return a different value than in the preceding step. For the
computation to work correctly, vec_len() must always return the original length of the input vector.

11

A correct version of vec_unit()

The function can be written correctly (and more efficiently) as.
static inline void vec_unit(
vec_t vin,
vec_t vout)

doubl e scale = 1.0 / vec_len(vin);
vec_scal e(scale, vin, vout);

ALL vector functions must work correctly with aliased parameters.

12

A sample test driver for vector.h

#1 ncl ude <mat h. h>

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <nmenory. h>

#i ncl ude "vector.h"

vec_t vl = {3.0, 4.0, 5.0};
vec_t v2 = {4.0, -1.0, 2.0};
int main()
{

vec t v3;

doubl e v;

vec_print(stdout, "v1i", vl);
vec_print(stdout, "v2", v2);

vec _diff(vl, v2, v3);
vec_print(stdout, "v2 - vl =", v3);

v = vec_dot(vl, v2);
printf("vl dot v2 is 9%8.3lIf \n", v);

v = vec_len(vl);
printf("Length of vl is 98.3If \n", v);

vec_scale(l / v, vl1, v3);
vec_print(stdout, "vl scaled by its 1/ length:",

vec_unit(vl, vl);
vec_print(stdout, "unit vector in vl direction:"

return(0);

}

acad/ cs102/ 1 abs10/1 abl ==> a. out

vl 3. 000 4. 000 5. 000

v2 4,000 -1.000 2. 000

v2 - vl = 1.000 -5.000 -3.000

vl dot v2 is 18. 000

Length of vl is 7.071

vl scaled by its 1/ length: 0.424 0.566 0. 707
unit vector in vl direction: 0. 424 0. 566 0. 707

13

v3);

vl1);

Representing rgb data

In the raytracer we will work with three types of rgb data:

reflective materials
emissive lights
pixels

We will use rgb data for all three, but will use different models for the interaction of lights with
materials than for the pixmap itself.

As in CPSC 101, for the pixmap data used in the .ppm file, we use an unsigned character representation

where 0 means black and 255 means maximal brightness.

We will store components of pixel values in arrays of size 3 and use the following #define values to
access individual elements:

#define RO
#define G 1
#define B 2

t ypedef unsigned char irgb_t[3];

For representing lights, reflective materials and their interactions we use:

t ypedef double drgb t[3];

In this representation 0.0 means black and 1.0 means maximal brightness. It is possible to produce
values > 1.0 and as in CPSC 101 these must be clamped to lie within the range [0, 255.999] before
converting to irgb_t.

The irgb_t will be used only in the final pixmap...

14

Ray tracing introduction

The objective of a ray tracing program is to render a photo-realistic image of a virtual scene in 3
dimensional space. There are two major components in the process:

The virtual camera

1 - The viewpoint This is the location in 3-d space at which the viewer of the scene is located

2 - The screen This defines a virtual window through which the viewer observes the scene. The
window can be viewed as a discrete 2-D pixel array (pixmap) . The raytracing
procedure computes the color of each pixel. When all pixels have been computed,
the pixmap is written out as a .ppm file

The scene to be viewed
3 - materials One or more material definitions may be associated with each object. The material
definition describes how the object interacts with a light. Among other things the

material definition defines the color of the object.

4 - light sources Lights themselves are not visible, but they do illuminate objects and may be
subject to shadowing. Lights may be white or colored.

5 —visible objects Reflective objects that are illuminated by the light sources

| li ght i ght
I obj
Vi ewpt | obj
I obj
I obj
SCreen
Camera Scene

15

World and window coordinate systems

Two coordinate systems will be involved and it will be necessary to map between them:

1 - Window coordinates the coordinates of individual pixels in the virtual window. These are two
dimensional (X, y) interger numbers For example, if a 400 col x 300 row
image 1s being created the window x coordinates range from 0 to 399 and
the window y coordinates range from O to 299. In the raytracing algorithm
a ray will be fired through each pixel in the window. The color of the pixel
will be determined by the color of the object(s) the ray hits.

2 - World coordinates the “natural” coordinates of the scene measured in feet/meters etc.
Since world coordinates describe the entire scene these coordinates are
three dimensional (x, y, z) floating point numbers.

For the sake of simplicity we will assume that

the screen lies in the z = 0.0 plane

the lower left corner of the window has world coordinates (0.0, 0.0, 0.0)
the lower left corner of the window has window (pixel) coordinates (0, 0)
the location of the viewpoint has a positive z coordinate

all objects have negative z coordinates.

lights may be located in either positive or negative z space.

16

Translating from pixel to world coordinates

Problem: Suppose the window is 640 pixels wide x 480 pixels high, and that the dimension of the
window in world coordinates is 8 feet wide by 6 feet high. Find the world coordinates of the pixel at
column 100 row 40.

Possible Solution: Compute the fraction or percentage of the complete x size that must be traversed to
reach column 100. This value is 100/640 = 10 / 64 meaning column 100 is 10/64 of the way across the
window. The x world coordinate of this location is therefore 10 / 64 of the total world distance across
the window or (10/64)*8 = 10/8 = 1.25. Similarly the world y coordinate is (40/480) *6=(1/12) *6
=0.5.

A general formula for the procedure is thus:

world_x = world_size_x *win_x / (win_size_x)

Thus the desired world coordinate is (1.25, 0.5, 0.0). (Recall the screen lies in the z = O plane.
Therefore the z world coordinate of every point in the window is 0.0).

WARNING: Pixel dimensions are stored as integers. You must ensure that the divisions shown above
are done in floating point.

17

An alternative “world view”’

If the above approach is used, then the pixel with x coordinate O clearly maps to world coordinate O as it
apparently should. But if we are constructing a 640 pixel image, the maximum pixel coordinate is thus
639. And thus the corresponding world coordinate is:

8 * 639 /640 = 7.988 instead of 8.
We can fix that by changing

world_x = world_size_x *win_x / (win_size_x - 1)
In this way pixel coordinate 0 maps to world coordinate 0 and pixel coordinate 639 maps to world
coordinate 8. But then “nice” pixel coordinates such as 40 and 100 now map to really ugly numbers

slightly larger than 1.25 and 0.5! Furthermore the image has no “center” pixel that maps to world
coordinate (4.0, 3.0, 0.0)!

We can get back our “nice” numbers and our center pixel by using the above strategy but always making
the image size 1 more than a “nice size” (e.g. 801 x 601). Since the computer doesn't really care
whether a number is ugly or nice, we will use this formulation.

world_x = world_size_x * win_x / (win_size_x - 1)

world_y = world_size_y *win_y / (win_size_y - 1)

18

Computing the direction of a ray

Problem: Suppose the viewpoint is at location (4, 3, 6) in world coordinates. Compute a unit length
vector from the viewpoint through the pixel at column 100 row 40.

Solution: We saw above that the world coordinates of the pixel are (approximately): (1.25, 0.5, 0). From

page three we know that two points in 3-D space implicitly determine a vector pointing from one to the
other. Given two points P and Q in 3-D Euclidean space, the vector

R=P-0Q=(p:-qoDy- 9y P:-—q:)

represents the direction from Q to P. Therefore the vector from the viewpoint fo the point on the

window is (point — viewpoint) or:

(1.25, 0.5, 0)- (4,3,6) =
(125-4,05-3,0-6)= (-2.75, -2.50, -6.00)

The length of this vector is 7.06 and so a unit length vector in this direction is:
(-0.39, -0.35, -0.85)

If you have computed the direction correctly the z component of the vector will always be negative.
A good plan is therefore to include the line:

assert(direction[Z] < 0);

The assert facility will abort your program if the condition is FALSE and will print the module and line
number where the problem happened.

You might be tempted to also do:
assert(vec_len(direction)) == 1.0);

but because floating point arithmetic is imprecise that would not be a good idea.

19

The raytracing algorithm
The complete algorithm for the first version of the raytracer is summarized below:
Phase 1: Initialization

load the model description containing camera, material, object, and light definitions

print the camera, material, object and light descriptions to the stderr

Phase 2: The raytracing procedure for building the pixmap

for each pixel in the window
{
initialize the color of the pixel to (0.0, 0.0, 0.0)
compute the direction in 3-d space of a ray from the viewpoint through the pixel
identify the first (closest) object hit by the ray
make a copy of the ambient color of the material associated with the object
scale the copy of the ambient color by 1.0/ distance(from_viewpt, to_ hitpt)
add the scaled value to the color of the pixel.
convert the d_rgb pixel to i_rgb and store it in the pixmap.

Phase 3: Writing out the pixmap as a .ppm file

write .ppm header to stdout

write the image to stdout

20

Example input file and image

canera caml

{
pi xel dim 640 480

worlddim 8 6
viewpoint 4 3 6
}

mat eri al green

{
}

mat eri al yell ow

{

anbient 0 50

diffuse 4 40
anmbient 5 40
specular 1 11

}

pl ane | eftwal |

{
material green
normal 3 0 1
point 00O

}

pl ane ri ghtwal |

{
material yell ow
normal -3 0 1
poi nt 8 00

}

mat eri al gray

{
ambient 2 2 2

}

pl ane fl oor

{
mat eri al gray
normal 0 10
point 0 -0.2 0

}

camera, material, and plane are caml, green, and leftwall are

entity type identifiers (analogous instance names analogous to

to int, char, float). Only defined | |variable names in C. Any name
type names are legal in this may be used here.

context.

Reflectivity (i.e. color) of objects
is specified as floating point
values. Values must be chosen in

an ad hack manner.

Our lighting model assumes 3
types of reflectivity: ambient,
diffuse, and specular. Initially

only ambient will be implemented.

Plane definitions must contain the three attributes
shown. Materials must be defined before they are
referenced. The value of point is the (X, y,z)
coordinates of any point on the plane. The value of
normal is a vector perpendicular to the plane in the

direction of the viewpoint.

21

The output image

The output produced by the input file on the previous page is shown below. Visible image corruption
near the green-gray boundary courtesy of JPEG compression.

The color gradient (which is what provides the “three-D” effect) is achieved by dividing the base ambient
reflectivity of the object (0 5 0) by the distance from the view point to the location at which the ray hits
the object. Pixels near the green — yellow boundary are more distant from the view point than those near
the edges of the images.

22

We can push the point of intersection of the planes even farther into negative z-space by reducing the z
component of the normal from 1 to 0.1. When we do this, the floor triangle becomes larger, and the
intersection of the two plains becomes indistinct.

pl ane | eftwall

{
mat eri al green
normal 3 0 0.1
point 00O

}

pl ane rightwal |

{
mat eri al yell ow
normal -3 0 0.1
poi nt 8 00

}

23

List management functions
The raytracer needs a generic list manager capable of managing lists of structures representing:

e materials
e lights
e visible objects

The characteristics of the lists used by the raytracer include the following:

1 - Newly created structures are always added to the end of the appropriate list

2 - Individual structures are never deleted from the list

3 - Lists are always processed sequentially from beginning to end

4 - We desire a single generic mechanism that can manage lists of the three different structure

types.

struct list_type .
- struct link_type
{ (>
link_t *first; —
link_t *last; —

struct link_type
{

link_t *next;

link_t *next;

_ void *entity; void *entity;
link_t *current; — T b
1
\ 4
entity on entity on
list list

24

List data structures
The link_t structure

The typedef facility can be used to create an identifier for a user defined type. The following example
creates a new type name, [ink_t, which is 100% equivalent to struct link_type

t ypedef struct link type
{

struct link type *next; /* next link in the |ist */
voi d *entity; /* the entity(object _t, light_t) */
/* that this |ink owns */

} link_t;

e There is a single instance of the link_t structure for each element in each list.
e Note we must use "official" name struct link_type when declaring next because /ink_t is not
known to be a type definition until 3 lines later!
e As shown in the figure on the previous page each link contains two pointers;
e One is to the next link_t in the list.
e The other points to the actual entity being managed by the list

e The entity pointer is declared to be of type void *,
e A void * pointer is a pointer to something of unknown or generic type.
e In the raytracer, depending on the list being processed, the entity might be an object_t , a
material_t or a light_t
e void * pointers can be freely assigned to other pointers
e void * pointers can never be directly used to access the memory to which they point
because the size and type of the location is unknown.

Example:
material _t nat;
material t *ml oc
voi d *vl oc

&mat ;
&mat ;

Now vloc and mloc both point to the same instance of a material_t, but only mloc can be use to access
the elements of the material_t structure.

2.2,
1.0 <--- Wn't work. Gves conpile error

m oc- >anbi ent [RED]
vl oc- >anbi ent [RED]

25

The list_t structure

There is a single instance of the list_t structure for each list.

t ypedef struct list _type

{
link t *first; /* pointer to first link in list */
i nk_t *last; [/* pointer to last link in list */
link_t *current; /* current link in |ist */
} list_t;

e There is a single instance of the list_t structure for each list.
e We will use three lists in the ray tracer: one for materials, one for visible objects, and one for
lights.

26

Implementation

We will take an object oriented approach in building our list manager.
An object consists of a collection of:

e related data items and

e functions or methods that can be used external "users" to manipulate the data iterms

e external "users" are not allowed to read or write the "private" data items associated with the
object.

In C++ (or Java) an object is defined via a class definition.
e The link_t structure becomes a link_t class.
e It keeps the same data items (next and entity) but is augmented by methods that are used to
manipulate them .

e The list_t structure would be defined in a separate class defnition.

In C an object is represented by a structure that contains the related data items and a collection of
functions that manipulate them. External users of the "object" should not directly reference the data
items.

For now, our list management module (to be constructed in lab) will include the following function:

27

The /ist_init() function used to create a new list. In a true O-O language, each class has a constructor
method that is automatically invoked when a new instance of the class is created. The list_init() function
serves this role here:.

Its mission is to:

1 - malloc() a new list_t structure.
2 - set the first, and current and last elements of the structure to NULL.
3 - return a pointer to the lisz_t to the caller.

list t *list_init(
voi d)

{

28

The list_add() function must add the element pointed to by new to the list structure pointed to by lisz. Its
mission is to:

1 - malloc() a new instance of link_t,

2 - add it to the end of the list,

3 - ensure the next pointer of the new link is NULL and

4 - ensure the next pointer of the link_t that used to be at the end of the list points to the new
link_t

6 - Set the current pointer to the new link_t

Two cases must be distinguished:

1 - the list is empty (list-> first == NULL)
2 - the list is not empty (list-> first /= NULL)

void |ist_add(
| ist t *|ist,
voi d *new)

{
}

The list_reset() function should set the current pointer to the first pointer. If the list is empty this will
cause the current pointer to be set to NULL.

int |ist _reset(
list t *list)
{

}

29

The list_not_end() function should return 1 if the current pointer is not null and return 0 if the curent
pointer is NULL. Thus, list_not_end() should return(0) when either the list is empty or when the
current pointer is advanced beyond the last link in the list.

int list_not_end(
list t *list)
{

}

The list_get_entity() function should return the address of the entity pointed to by the link to which the
current pointer points. The list_not_end() function should be called BEFORE list_get_entity() is
invoked to make sure the current pointer points to a valid link! The call to assert() will abort the
program if list_get_entity() is invoked in an improper state.

void *list_get _entity(
list t *list)
{

assert(list->current !'= NULL);

The list_next_link() function should advance the current pointer so that it points to the next link in the
list. If the current pointer is presently pointing at the last link in the list, then this call will and should set
the current pointer to NULL. The list_next_link() function should never be called when the current
pointer is already NULL. Proper use of list_not_end() will ensure that this doesn't occur.

void *list_next _Iink(
list_t *list)
{

assert(list->current !'= NULL);

30

Deleting a list
The list_del() function. This function should process the entire list. For each link in the list, it should

1 - invoke the free() function to free the item the link owns and then
2 - it should free the link_t.

Care must be taken not to reference a link_t after it has been freed. When all links and items are free the
list header itself should be freed.

void |ist _del(

list t *ist)
{

}

31

Processing a list

This code segment shows

e how to define an arbitrary structure that might be managed by the list
e how to ask list init to create a new list.
e how to process the list from first to last

typedef struct entity_type
{

char e_nane[16];
int e_id;
}oe_t;

e t *eloc;
list t *elist;

elist = list_init();

/* Load the list */
load_ny list(elist);

/* Now traverse the list printing attibutes of the el enents */
list_reset(elist); /'l set current to first el enent

while (list_not_end(elist))

{
eloc = (e_t *)list_get _entity(elist);
printf("% %l \n", eloc->e _nane, eloc->e_id);
list_next_link(elist);

}

32

Ray tracer data structures: the ray.h header file

A common technique in building large programs is to consolidate all required header files into a single
header file that can be conveniently included by all source modules. The file ray.h will contain most of
the important data structures of the ray tracer and will also include the header files needed by all of the
modules comprising the system.

/* ray.h */

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <mat h. h>

#i ncl ude <string. h>
#i ncl ude <nenory. h>
#i ncl ude <assert. h>

#define NAME LEN 16 /* max length of entity nanes */

#def i ne OBJ_COCKI E 12345678
#defi ne MAT_COOKI E 32456123
#define LGI_COOKI E 30492344
#defi ne CAM COCKI E 49495923

#defi ne MAX BOUNCES 8 /[* Maximum # of ray reflections */
#defi ne AA SAMPLES 1 /* Used for antialiasing */

/* Local include files containing vector, pixel, and list */
/* definitions and functions */

#i ncl ude "vector.h"

#i ncl ude "pi xel . h"
#include "list.h"

33

/* The canera object */

typedef struct canera_type

{
I nt cooki e;
char name[NAMVE_LEN] ;
I nt pi xel _din2]; /* Projection screen size in pix */
doubl e worl d_dinf 2]; /* Screen size in world coords */
vec_t view_ point; /* Viewpt Loc in world coords */
irgb_t *pixnmap; /* Build inmage here */

} canera_t;

typedef struct nodel type
{

canmera_t *cam

l[ist t *nats;

list t *objs;

list t *lgts;
} nodel t;

/* The generic visible object */

t ypedef struct object_type

{

} object _t;

typedef struct plane_type

{

} plane_t;

/* Function prototypes --- nust conme |ast because they */
/* depend on object t canera_t, etc. */

#i ncl ude "rayhdrs. h"

34

An alternative approach
/* ray.h */

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <mat h. h>

#i ncl ude <string. h>
#i ncl ude <nenory. h>
#i ncl ude <assert. h>

#define NAME_LEN 16 /* max len of entity/attr nanes */

#define OBJ_COXXI E 12345678 [/* quasi-random cooki e val ues */
#define MAT_COXKI E 32456123 /* used to verify that struct */

#define LGT_COOKI E 30492344 /* pointers are what they */
#defi ne CAM COCKI E 49495923 /* pretend to be! */
#i ncl ude "vector.h" /* vec_t and vector functions */
#i ncl ude "pi xel . h"

#include "list.h"

#i ncl ude "canera. h"
#i ncl ude "nodel . h"
#i ncl ude "object.h"
#i ncl ude "pl ane. h"
#i ncl ude "sphere. h"

/[* Still have to cone last !l */

#i ncl ude "canmhdrs. h" /* prototypes for internodule calls */
#i nclude "listhdrs. h" /* prototypes for internodule calls */
#i ncl ude "obj hdrs. h" /* prototypes for internodule calls */

Neither way is “right” or “wrong”. Factors that influence the choice would be the size of the team
working on the program and the personal preference of the programmer.

I use the approach shown on the previous page because it makes it easy to look at all of my data
structures all at one time, but you are free to do it any way you wish.

The one approach I DO NOT recommend is including a giant list of header files in every source module.
That just makes for unnecessary work when you need to change the list.

35

Data structures - the big picture
The data structures shown below will all be defined in ray.h

WARNING: Some elements of the definitions have been have been abbreviated and or assume the use of
the typedef construct. See the examples on other pages for these details.

struct model_type / struct camera_type

{ {
camera_t *cam,/ int pixel_dim[2];
list_t *objects double world_dim[2];
list_t *lights; vec_t view_point;
list t *materials; }s

" e

s{ztruct fisttype j struct link_type struct link_type
{ {
) e |
h.nk_t *ﬁrSt’ link_t *next; link_t *next;
fink{ last void *entity; void *entity;
link_t *current; I y
|5 |
struct object_type struct object_type
{ {
void *priv; void *priv;
I \ }s \
struct plane_type struct sphere_t
{ {
vec_t normal; vec_t center,
vec_t point; double radius;
void *priv; void *priv;
15 15

36

The model_t data structure

This structure is a container used to reduce the number of parameters that must be passed through the

raytracing system. A function having a pointer to the model_t structure can access all of the components

of the virtual system.

t ypedef struct nodel type

{
canera_t *cam /]
| ist t *mat s; /1l
| ist t *obj s; /1
list_t *| gts; /1
} nodel t;

The
The
The
The

camera structure

head of the material |ist
head of the visible obj Iist
head of the light |ist

As described previously, in code we may use either

struct nodel type *nodel;

or
nodel _t *nodel ;

interchangably.

37

The camera object

A structure of the following type can be used to hold the view point and coordinate mapping data that
defines the projection onto the virtual window:

#define NAME LEN 16
#defi ne CAM COKI E 23987237

t ypedef struct canera_type

{
i nt cooki e;
char nanme[NAVE_LEN] ;
i nt pi xel _dinf?2]; /* Projection screen size in pix */
doubl e worl d_dinf 2]; /* Screen size in world coords */
vec_t view point; /* Viewt Loc in world coords */
irgb_t *pixmap; /* Build inmage here */

} canmera_t;

The CAM_COOKIE value is a completely arbitrary quasi-random identifier that can be used in

conjunction with the assert() mechanism to detect:

e defective camera_t * pointers
e camera_t structures that have been corrupted via other pointer errors.

When a camera structure is created the cookie should be initialized
e cam->cookie = CAM_COOKIE

When a function is passed an alleged pointer to a camera_t it should be verified
e assert(cam->cookie == CAM_COOKIE),

If the value of the expression passed to assert() is false() the program is aborted and a message issued
which provides the module name and line number at which the error was detected.

38

Camera functions (methods)

camera_init() -

The camera_init() function is responsible for

(1) allocating a camera_t structure with malloc() and initializing the cookie element.

(2) reading in the camera definition data into the camera_t structure and verifying that all
attributes have been read.

(3) allocating the pixmap structure that will hold the irgb_t pixels that comprise the image
(4) saving the address of the camera_t structure in the model_t structure;

voi d canera_init(
FILE *in,

nodel t *nodel,
int attrnmax)

{

i nt attri bcount:
/* Allocate canera structure and store cooki e code */
/* Read attributes into canera data structure */
attribcount = canera_|load attributes(in, can);
assert(attri bcount == 3);

/* Allocate a pixmap to hold the ppmimge data */

/* Save canera pointer in nodel structure */

39

camera_load_attributes -

The camera_load_attributes() function is responsible for reading in the values of camera attributes from

the input file in. It must consume the items shown in red from the camera definition. The word camera

will have already been read from the file. It must return the number of attributes (in addtion to the
camera name that it read.

camera canil

{
pi xel dim 640 480
worlddim 8 6
viewpoint 4 3 6

}

int camera_| oad_attri butes(
FILE *in,
canmera_t *cam

{

char attrib_nane[16];

int count = O; /'l nunber of itens read

int attrcount = 0O; /1 total nunber of attributes
/* First read canmera nane string into cam >nane */

count = fscanf(in, "9%", cam >nane),;
assert(count == 1);

/* Now consume "{" */
count = fscanf(in, "%", attrib_nane);

assert (count == 1);
assert(attrib_name[0] == "'{");

40

Now consume the attributes and their values..

/* Read first attribute nane... */

count = fscanf(in, "%", attrib_nane);
assert(count == 1);

/* "} means end of the canera definition */

while (attrib_nanme[0] !'="}")

{
if (strcnp(attrib_nane, "pixeldinm) == 0)

count = fscanf(in, "%l %",

&cam >pi xel _dinf X], &cam >pixel _dinfY]);
assert(count == 2);
attrcount += 1,

}

fill in code for reading worlddim and viewpoint here

el se

{

fprintf(stderr, "Bad canera attribute: % \n", attrib_nane);
exit(1l);
}

/* Read next attribute nanme */
fscanf(in, "9%", attrib_nane);

}

return(attrcount);

41

camera_print()

The camera_print() function is responsible for printing the camera attributes.

void canmera_print(
canera_t *cam
FILE *out)

{
assert (cam >cooki e == CAM COXI E)

}

Given input that looks like:

canmera caml

{
pi xel dim 800 600
wor | ddi m 8 6
viewpoint 4 3 3

}

Your output should look like:

canmer a caml

pi xel di m 800 600

wor | ddi m 8.0 6.0

Vi ewpoi nt 4.0 3.0 3.0

42

camera_getdir() -

The camera_getdir() function is responsible for computing a unit length vector pointing from the
viewpoint to the (X, y) pixel coordinates passed in as parameters. This is done in three steps:

(1) convert pixel coordinates to world screen coordinates
(2) compute vector from viewpoint to world screen coordinate
(3) convert vector to unit length vector.

voi d camera_getdir(
canera_t *cam

i nt X, /* pixel coordinates */
i nt Y,
vec t uvec) /* Unit vector to be filled in */
{
assert (cam >cooki e == CAM_COXI E)
}

43

camera_store_pixel() -

The camera_store_pixel() function is responsible for converting a pixel from drgb_t to irgb_t and storing
it in the pixmap associated with the camera.

This is done in four steps:

(1) multiply the elements of the drgb_t pixel by 255.0 and add 0.5 for rounding

(2) if any element is < 0.0, set it to 0.0. if any element is > 255 set it to 255. This computation must all
be done in floating point.

(3) compute the address of the irgb_t pixel. Remember that .ppm images have upper left origin, but the
ray tracer has a lower left origin. Therefore, the (row, col) position in the pixmap corresponding to
pixel coordinates (y, x) is (cam->pixel_dim[1] - y - 1, X).. See the camtest.c program for an example of
how to convert (x, y) coordinates to an irgb_t * pointer that can be used to access the pixmap.

(4) store the scaled and clamped values of the drgb_t pixel in the pixmap.

voi d canera_store_pixel (

canera_t *cam
i nt X,

i nt Y,
drgb_t pi X)

{

assert (cam >cooki e == CAM COXI E) ;

camera_write_image()

This function should use fprintf() to write the .ppm header and then use a single call to fwrite to write the
entire pixmap.

void canmera_ wite_ i mge(
canera_t *cam
FI LE *out)

{

44

Testing the camera module

In building a large program such as a ray tracing system such as a ray tracing system it would be the
height of insantity to write the complete program, link it together and then test it. It would have
thousands of errors and their interactions would be so complex that it would take forever to find them all.

Hence it is common and necessary practice to write modules whose whole mission in life is to perform
standalone testing of components.

/* camtest.c */
#i ncl ude "ray. h"

int main()
{
nodel _t nodel ;
nodel _t *nmod = &nodel ;
canera_t *cam
char entity[16];
vec_t uvec;
irgb_t *ipi x;
drgb_t dpi x;

i nt r ow,
i nt col ;
i nt x = 20;
i nt y = 50;

/* Consunme word canmera fromthe nodel description */
fscanf(stdin, "%", entity);
/* Create new canmera object */
canera_init(stdin, &mdel, 0);
cam = nod- >cam
assert (cam >cooki e == CAM COXI E) ;

/* Make entire pixmap a dark gray col or */

menset (cam >pi xmap, 0x40, sizeof (irgb t) *
cam >pi xel _dinf0] * cam >pixel _dinf1]);

/* Print canera attibutes */

camera_print(cam stderr);

45

/*

/*

/*
/*

/*

/*

Verify getdir works */

canera_getdir(cam 0, 0, uvec);
vec_print(stderr, "unit_vector: ", uvec),;

canera_getdir(cam 300, 450, uvec);
vec_print(stderr, "unit_vector: ", uvec);

Store drgb_t equivalent to (64, 0, 0) */

dpi X[Rl = 0. 25;
dpix[Gg = -0.3;
dpi x[B] = 1.2;

camera_store_pixel (cam x, y, dpiXx);

Retrieve it directly and verify its correct --- Note that this */

code can be used as a nodel for witing canmera_store_pixe

row = cam>pixel _dinf1l] - vy - 1,
col = x;
i pix = cam>pixmap + row * cam >pi xel _dinf{0] + col

fprintf(stderr, "ipix is % % % \n",
(*ipix)[R],
(*ipix)[G,
(*ipix)[B]);

Put visible bright green dot in the mddle of the picture */

dpi x[Rl = 0.0
dpix[g = 1.3
dpi x[B] = 0.0

camera_store_pi xel (cam cam >pixel _dinf0] / 2,
cam >pi xel _dinf1l] / 2, dpiXx);

Wite out the inmage */
camera_write_inage(cam stdout);

return(0);

46

*/

The material object

Each visible object must be associated with at least one material_type which defines the way the surface

of the object interacts with light in the scene. At the simplest level, the material definition can be
thought of as specifying the color of the object in drgb_t (r, g, b) units.

typedef struct material type

{

i nt cooki e; /* material _t cookie */
char name[NAME_ LEN]; /* light _blue for exanple */
drgb_t anbient; /* Reflectivity for materials */

drgb_t diffuse;
drgb_t specul ar;
} material t;

There are three components to the light interaction model:

e ambient — specificies how the object reflects light that is present in the scene but is not emanating

from any particular light source. This is how we will initially illuminate our scenes. The visible

color of a pixel will be the ambient reflectivity divided by the distance from the viewpoint to the

location in 3 D space where the ray hits the object.

e diffuse — specifies how the object reflects light that does emanate from specific light sources.
This will have no effect until we implement light sources. As with ambient lighting, diffuse

lighting simulates the physical process by which a photon is absorbed by the material and a new

photon having energy (color) dependent upon the atomic structure of the material is emitted.

e specular — specifies the degree to which the object acts like a mirror (incoming light is precisely

reflected (instead of being diffused) with the angle of incidence being equal to the angle of
reflection).

It is possible to create models that are physically unrealizable. We can define an object that reflects

ambient light as red and diffuse light as green! But no physical object exists that operates in such a way.

47

Material functions (methods)

material_init() -

The material_init() function is responsible for

(1) allocating a material_t structure with malloc() and initializing the cookie element. Unlike the
camera, material attributes are all optional. So the memset() function should be used to initialize

the entire structure to 0 before initializing the cookie.

(2) reading in the material attributes into the material_t structure.

(3) adding the address of the material_t structure to the mats list of the model_t structure;

[**]
/* Create a new material description */

void material _init(

FI LE *in,

nodel t *nodel ,

I nt at t r max) /'l 1gnore
{

material _t *mat;

/* malloc() a material t structure, use nenset() to */

/* initialize it to 0 and store the MAT _COXI E */
/* Load attributes as in canera.c

/[* Unli ke the canera the nunber of attri butes

/* optional. Attributes should be initialized to 0.0

material _|oad _attributes(in, mat);

/* Ask list _add to add the material entity to the end

[* of the mats list in the nodel structure.

48

*/
*/
*/

material_getbyname() -

This function must search the list of materials looking for a material for which mat->name matches the
color specified in the name parameter:

[**]
/* Try to locate a material by nane */

material _t *material _getbynanmg(
nodel t *nodel,
char *namne) /'l requested material nane (e.g. yellow)

{

material _t *mat;

for each mat in the model->mats list

{
assert (mat - >cooki e == MAT_COXI E) ;
if (mat->name matches name) // use strcmp here
return(mat)
}
return(NULL);

49

material_list_print() -

The material_list_print() function processes the entire material list. It should call material_item_print()
to print each item.

[**]
/* Produce a formatted dunp of the material list */
void material list _print(
nodel t *nodel,
FI LE *out)
{
for each mat in the model->mats list
{
assert(mat->cookie == MAT_COOKIE);
material_print(mat, out);
}
}
material_print()

The material_print() function should print a formatted version version of the material structure. The
format should be consistent with that produced by camera_print().

static inline void material print(
material t *mat,

FI LE *out)

{

50

The material_getters()

These functions simply copy reflectivity of the material_t structure that is passed in to the dest drgb_t
parameter. You can accomplish this with a single call to the pix_copy() function (found in pixel.h).

Since the caller of this function must already have a pointer to the material_t structure, it may seem like
useless overhead to call material_getambient() instead of just referencing mat->ambient[R] directly.

Nevertheless, there are two good reasons for doing this:

(1) In a true O-O language an external user of the material class will not be permitted to directly
access its private data attributes. That is, trying to directly reference mat->ambient[R] will cause
a compile time error!

(2) These functions also provide the basis for what is called polymorphic behavior.
Polymorphism allows us to provide a "default” behavior that can be replaced with a specialized
behavior as required. These are the functions that provide the default behavior.

voi d material _getanbi ent (

material t *mat,

drgb_t dest) /[* fill in anmbient reflectivity here */
{

}

void material _getdiffuse(

material _t *mat,

drgb_t dest) /* diffuse here */
{

}

void material getspecul ar(

material _t *mat,

drgb_t dest) /| * specul ar here */
{

}

51

Testing the material module

As with the camera module, we will build a test driver to test our material functions in isolation.
/* mattest.c */

#i ncl ude "ray. h"

int main()

{
nodel _t nod;
nodel _t *nmodel = &nod,
material _t *mat;
char entity[16];
drgb_t dpi x;
i nt count ;

/* Create a material |ist */
nodel ->mats = list_init();

/* 1Input should consist only of nmaterial definitions */
count = fscanf(stdin, "%", entity);
/* but there can be any nunber of material defs in the file */

whil e (count == 1)
{

/* create material t structure and read attributes */
material _init(stdin, nodel, 0);

/* this test is designed to ensure that list_add */
/* pointed current to the material just |oaded */

mat = (material _t *)list_get_entity(nodel ->mats);
assert (mat - >cooki e == MAT_COXI E)

fprintf(stderr, "loaded % \n", mat->nane);

count = fscanf(stdin, "%", entity);

52

/*

/*

/*

/*

Have read themall in .. nowtry to print them*/
material |ist_print(nodel, stderr);

See if we can find the first in the list */

mat = material _get bynane(nodel, "blue");
assert (mat - >cooki e == MAT_COXKI E)

fprintf(stderr, "found % \n", mat->nane);

mat eri al _getanb(mat, dpix);
vec _print(stderr, "anbient is: ", dpiXx);

See if we can find the [ast one */
mat = material _get bynane(nodel, "yellow');
assert (mat - >cooki e == MAT_COXI E)
fprintf(stderr, "found % \n", mat->nane);

mat eri al _getanb(mat, dpix);

vec _print(stderr, "anbient is: ", dpiXx);

See what happens if we try to find a non-existent el enent
mat = material _get bynane(nodel, "chartreuse");

assert(mat == NULL);

return(0);

53

*/

The generic object structure

Even though C is technically not an Object Oriented language it is possible to employ mechanisms that
emulate both the inheritence and polymorphism found in true Object Oriented languages.

Inheritance -

The object_t structure serves as the generic “base class” from which specicalizations such as planes or
spheres are derived. As such, it carries only the attributes that are common to the all derived objects.

Specializations inherit the attrbutes of the classes from which derived. Specialized attributes of a plane
are carried by a plane_t structure. Specialized attributes of a sphere are carried by a sphere_t structure.
The priv pointer of the object_t provides a link to the plane_t or sphere_t and is thus declared as void *.

Polymorphism -

Polymorphic behavior , in which the base object_t class provides a default behavior that can be
overriden by specializations of the object, is achieved by the use of function pointers embedded in the
object_t (or its subordinate specialization.) These can be initialized to point to functions that provide a
default behavior but may be overridden as needed when an esoteric object such as a tiled plane must
substitute its own “method”.

54

Example of inheritence

An inheritance hierarchy is based upon the principle of increased specialization. In its "purest" form,
inheritance can be represented by a proper tree as shown below.

e The base class carries attributes that are common to all classes and

e virtual functions that may or may not be overridden.

e Attributes that are specific to a particular entity plane/normal or sphere/radius are not defined in
the base class
The derived class inherits the attributes of classes above it in the class hierarcy
The specialization can continue over multiple levels
The amount of "new stuff" required in the implmentation of the derived class can range from
trivial (ellipsoid_t, pfplane_t) to moderate (plane_t, sphere_t) to fairly complex (texplane_t)

| object_t
| sphere_t | plane_t | cylinder_t |
y y
| pplane_t | fplane_t

| ellipsoid_t | | texplane_t |

55

The generic object structure

typedef struct object type

{
i nt cooki e;
char obj _type[NAME_LEN]; /* entity type plane, sphere,.. */
char obj nanme[NAME LEN]; /* entity instance nanme, floor */

/* Function pointers that can be overridden to provide pol ynorphic */
/ * behavi or. . * |

voi d (*printer)(struct object _type *, FILE *);

double (*hits)(struct object type *, vec_t, vec_t);
voi d (*anmbient) (struct material _type *, drgb t);
voi d (*diffuse) (struct material _type *, drgb t);
voi d (*specul ar) (struct material _type *, drgb t);

/* Pointer to associated material structure */
material t *mat;

/* Data associated with last hit point */

vec_ t last_hit; /* Last hit point */

vec_t last_normal; /* Normal at last hit point */

voi d *priv; /* Private type-dependent data */
} object t;

56

Declaration of derived object types

The specific characteristics of derived object types must be carried by structures that are specific to the
object type being described. The priv pointer of the base class object_t is used to connect the generic
instance to the esoteric instance. This connection is automatic and invisible in a true OO language but is
manual and visible in C.

Notice that the process of refinement or specialization can continue over multiple levels. The priv
pointer of the plane structure may point to an fplane (bounded rectangular plane) refinement. Or a
tplane (tiled plane) refinement.

/[* This structure carries the attributes */
/* of an infinite (unbounded) plane */

t ypedef struct plane type

{
vec t nor mal ; /| * vector perpendicular to plane */
vec_t poi nt ; /* any point on the plane */
doubl e ndotq; /* dot product of normal and point */
voi d *priv; /* Data for specialized types */
} plane_t;

/| * Sphere */

t ypedef struct sphere_type

{
vec _t center;
doubl e radi us;
vec_t scal e; /* for ellipsoids */
voi d *priv;
} sphere_t;

57

Pointers to functions

Pointer variables may hold the address of a function and be used to invoke the function indirectly:
#i ncl ude <stdi o. h>

i nt adder (
int a,

i nt b)

{

}

int main()

{

return(a + b);

int (*ptrf)(int, int); // declare pointer to function
I nt sum

ptrf = adder; /1l point it to adder (note no &)
/'l is needed (but it doesn't hurt))

sum= (*ptrf) (3, 4); /'l invoke it (*prtf) parens req'd!
printf("sum= % \n", sum;
return(0);

}

==> a. out
sum = 7

58

Function pointers as do-it-yourself polymorphism

Recall the the object_t structure contains function pointers:

typedef struct object _type

{
i nt cooki e;
char obj _type[NAME_LEN]; /* entity type plane, sphere,.. */
char obj _name[NAME_LEN]; /* entity instance nane, floor */

/* Function pointers that can be overridden to provide pol ynorphic */
/* behavior. . */

voi d (*printer)(struct object type *, FILE *);

double (*hits)(struct object _type *, vec t, vec_t
voi d (*anmbient) (struct material _type *, drgb_t
voi d (*diffuse) (struct nmaterial type *, drgb_t
voi d (*specul ar)(struct material _type *, drgb_t

These pointers must be set in object_init() to provide the default behavior. The elements on the right
side of the equal sign:

e must be the names of functions having
e parameters that match the arguments in the above prototypes

obj ->printer = object print; // These nust be functions

obj ->hits = object _no_hit; // ... with matching parns
obj - >anbi ent = material get anbient;
et c.

The plane_init function must override these default settings providing its own functions that implement
carry the characteristic behavior of the plane. In this way we can emulate polymorphic behavior in the C
language.

obj->printer = plane_print;
obj ->hits pl ane_hits;

59

Implementing polymorphic functions

The mission of a hits function is to determine if a ray fired from location base in unit direction dir hits
object obj.

Needless to say a completely different strategy is required to determine if a ray intersects and plane and if
it intersects a sphere.

Therefore each visible object must provide its own hit testing function and override the default function
(which always returns miss).

All of the hits functions have the same parameters as the prototype in the struct object_type:

double (*hits)(struct object _type *, vec_t, vec_t);

doubl e obj ect _no_hit(
obj ect _t *obj , /* Candi dat e obj ect */
vec t *base, /* Start point of ray */
vec t *dir) /* MJUST be unit vector */
{

return(-1.0); /'l negative di stance neans m ss.
}
doubl e pl ane_hit s(
obj ect _t *obj , / * Candi dat e obj ect */
vec t *base, /* Start point of ray */
vec t *dir) /* MJUST be unit vector */
{
}
doubl e sphere_hits(
obj ect _t *obj , / * Candi dat e obj ect */
vec_t *base, /* Start point of ray */
vec t *dir) /* MJUST be unit vector */
{
}

60

Invoking a polymorphics function

When a function pointer is contained in a structure, and an enity holds a pointer to the structure, the
polymorphic function is called in the following way.

The actual arguments passed to the function must be the same in number and type as declared in the
function pointer and in the actual implementation of the function .

di st = obj->hits(obj, ray_base, ray dir);

Note that the caller of the polymorphic function does not know what actual function is being invoked.

61

The object.c module

This module contains functions used in initializing and printing the generic object.
object_init() -

This function performs operations analogous to camera_init() and material_init(). An object definition
is shown below. The token "sphere" will be consumed prior to object_init being called. The
object_init() function is responsible for consuming the data shown in red. The remainder of the attributes
will be consumed by sphere_init().

sphere center

mat eri al st eel bl ue

center 4.0 1.0 -6.0
radi us 5.0

voi d_t object init(

FI LE *in,

nodel _t *nodel)

{

obj ect _t *obj ;
material _t *mat;
char buf[NAVE _LEN] ;
I nt count;

/* Create a new object structure and zero it */

obj = mall oc(sizeof (object_t));
assert(obj != NULL);

menset (obj, O, sizeof(object_t));
obj - >cooki e = OBJ_COXI E;

62

/*
/*

/*

/*

/*

/*
/*
/*

Read the descriptive nane of the object */
|l eft _wall, center _sphere, etc. */

count = fscanf(in, "%", obj->o0bj nane);
assert(count == 1);

Consune the delimter { */

count = fscanf(in, "%", buf);
assert (buf[0] == "{");

The first attribute nust be material */
count = fscanf(in, "%", buf);
assert(count == 1);

assert(strcnp(buf, "material") == 0);

Now get the nanme of the material (blue, green, etc) */

count = fscanf(in, "9%", buf);
assert(count == 1);

If the material is defined, save a pointer to the */
mat structure in the object structure. Failure to */
find the material is a fatal error. */

mat = material _get bynane(nodel, buf);
assert(mat != NULL);

obj ->mat = mat;

63

/* Initialize default handlers */

obj ->printer

obj->hits

obj - >anbi ent

obj - >di f fuse
obj - >specul ar

/* Finally add the

| i st_add(nodel - >objs, (void *)obj);

obj ect _print;
object _no_hit;
mat eri al _get anb;
material _getdiff;
mat eri al _get spec;

object to the I|ist

64

*/

object_no_hit() -

This function just returns the code that ray missed the object. As such it should always be overriden. It
is provided to provide warning and avoid segfaults in case a developer of a new object type fails to
establish a hits function.

doubl e obj ect _no_hit(

obj ect _t *obj , /* Candi dat e obj ect */
vec t *base, /* Start point of ray */
vec t *dir) /* MJST be unit vector */
{

fprintf(stderr, "Cbject % failed to provide hit func \n",
obj - >obj ect _nane) ;

return(-1.0); /'l negative di stance nmeans m ss.

object_print() -

The object_print() function should print the object_type and object_name along with the word "material"
and the name of the material. The format should be consistent with other printers.

sphere center <---- printed by object print
mat eri al st eel bl ue

center 4.0 1.0 -6.0 <- printed by sphere print
radi us 5.0

doubl e obj ect _print(

obj ect _t *obj ,

FI LE *out)

{

}

65

object_list_print() -

The object_list_print() function processes the entire object list. It should call the polymorphic function
obj->printer() to print each object.

NOTE: object_list_print should call the polymorphic printer
obj->printer and NOT CALL object_print() directly

[**]
/* Produce a formatted dunp of the material |ist */

voi d object _list_print(
nodel t *nodel,
FI LE *out)

{

for each obj in the model->o0bjs list

{
assert(obj->cookie == OBJ_COOKIE)
invoke polymorphic printer method

}
}

66

The plane.c module

The infinite plane is the simplest type of visible object. It is useful in building "floors", "ceilings", and

"walls".

e The location of any point on the plane.

A plane in 3-D spaces is defined by:

e A vector (called the normal) that is perpindicular to the plane

t ypedef struct plane_type

{

vec t nor nal ;
vec t poi nt ;

doubl e ndotq;

voi d *priv;

pl ane_t;

/*
/*
/*
/*

67

read from nodel description */
read from nodel description */
nor mal dot poi nt */

Data for specialized types */

plane_init()

The plane_init() function has several responsibilities that are described below.

In a true object oriented language, the plane_type will be a specialization of the object_type and when a
new instance of plane_type is created the constructors for BOTH the plane and object classes will be

AUTOMATICALLY invoked in top down order. When simulating inheritance with C we must

e explictly invoke the constructors or each element in the hierarchy and
e link the structures that represent them together.

In C++ this will implicitly require that generic attributes appear first in the model definition and so we
will implement our pseudo-constructors in a compatible way.

Processed by
object_init

pl ane | ef

Processed by {)
model_init mat eri al green

nor mal 100 2¢—— Processed by
point 00O0¢— plane_init

68

plane_init() -

The plane_init() function works in a way analogous to camera_init() and material_init(). One difference
is that it must interact with object_init().

void plane_init(
FI LE *in,
nodel t *nodel,
i nt attrnmax) /1 maxi mum nunber of attributes
{
pl ane_t *pl n;
obj ect t *obj;
I nt count ;

/* Call the object _init()function to create the object t */
/* and process the "material" attribute */

/* Use list_get _entity() to nake obj point to the newly */

/* created object t structure.Your [|ist _add() function */
/* must set current to the last elenent in the list for */
/* this to work correctly. */

/* malloc a plane_t structure and set the priv pointer */
/* in the object t structure to point to the plane_t */

69

/*
/*

/*

/*

/*

/*

/*

Store the word "plane"” in the object _type field of */
the object t structure. Use the strcpy() function */

Ask plane | oad attributes to |oad the attributes */
Attributes are normal and poi nt */

count = plane_|oad attributes(in, pln);

assert(count == 2);

Set obj->hits to plane_hits() function and */
obj->printer to plane_print() */

pre- conput e ndot g */

70

plane_load_attributes -

This function works just like your other attribute loaders. It must return the number of attributes
loaded,

I nt plane_l|oad _attributes(

FI LE *in,
pl ane_t *pl n)
{

----- | i ke canera_ | oad attributes -----

plane->print

Each object specific printer is responsible for first calling its parent's print function.
voi d plane_print(

obj ect t *obj,

FI LE *out)

{

pl ane_t *pln;
/* Print generic attributes */

obj ect _print(obj, out);

/* Recover pln pointer fromobject t and print */

/* point and normal in usual fornmat */

}

Output should look like

pl ane floor <- printed by object _print()

mat eri al gray

nor mal 0.0 1.0 0.0 <- printed by plane_print()
poi nt 0.0 -0.1 0.0

71

Hit functions

Given the viewpoint, ray direction and a pointer to an object_t the mission of a it function is to
determine if the ray hits the object. If it does, the hif point and the normal vector at the hit point should
be stored in the object_t, and the distance to the hit point returned to :the caller. The function should

N

return -1.0 on a miss. e N

K Screen

@ Viewpoint V

Given V, D and an object structure O the mission of a hit function is to determine if a ray based at V
traveling in direction D hits O.

All points on the ray may be expressed as a function of a single parameter ¢ where ¢ is the distance along
the ray from the viewpoint. Every point P on the ray may thus be expressed as:

V+tD for - <t<oo for somet

If P is a point on the ray the following relations hold:

Distance to point: t=I11P-VI
Location of point: P=V+1tD

72

General Quadric Surfaces

These surfaces are so named because the variables x, y, and z take on at most the power of two. The
general equation for the quadric is given below:

AX +BY’ + CZ + Dxy + Exz + Fyz + Gx + Hy + Iz =J
We will start with two of the simpler ones:

The sphere:
xz n yz " ZZ —

and its relative the ellipsoid:

AX +BY + CZ =7

The plane:
Gx+Hy+1z=J

for the plane

e the plane normal N is (G, H, I) and
e Jis chosen so that the plane passes through the specified point Q.

Quadric surfaces are “nice” in a raytracing environment because the intersection of a ray with the surface
may always be found by solving, at worst, a quadratic equation.

73

Determining if a ray hits a plane

This basic strategy will be used in all hits functions:
0 - Assume that V represents the start of the ray and [D is a unit vector in its direction
1 - Derive an equation for an arbitrary point P on the surface of the object.
2 - Recall that all points on the ray are expressed as V + 1D
3 - Substitute V' + £D for P in the equation derived in (1).
4 - Attempt to solve the equation for 7.
5 - If a solution #;, can be found, then H = V + ¢, D.

A plane in three dimensional space is defined by two parameters

A normal vector N = (nx, n,, nz)
A point Q =(d» 4y 4) through which the plane passes.
A point P = (py, Py, P:) is on the plane if and only if:

N dot (P - Q) = 0 because, if the two points P, (lie in the plane, then the vector from one to the
other (P - Q) also lies in the plane and thus it is necessarily perpendicular to the plane's normal.

We can rearrange this expression to get:

Ndot P -Ndot Q =0
N dot P = N dot QO (1)

Note that in this equation N and Q are known attributes of the plane and P is the unknown. Recall that the
the location of any points on a ray based at V with direction D is given by:

V+tD

Therefore we may replace the P in equation (1) by V + ¢D and get:

Ndot (V + tD) = N dot Q (2)

74

Some algebraic simplification yields allow us to solve this for ¢

N dot (V + tD) = N dot Q (2)
N dot V + N dot tD = N dot Q

N dottD = Ndot Q - NdotV

t(Ndot D) =(NdotQ -NdotV)

th=(NdotQ -NdotV)/(NdotD) (3)

The location of the hitpoint that should be stored in the object_t is thus:
H=V+ 4D

The normal at the hitpoint which must also be saved in the object_t is just N

75

Unlike other quadric surfaces, there is only a single point at which a ray intercepts a plane. Therfore
unlike equations we will see later, this one is not quadratic. There are some special cases we must
consider:

(1) (N dot D) = O In this case the direction of the ray is perpendicular to the normal to the plane.
This means the ray is parallel to the plane. Either the ray lies in the plane or misses the plane entirely.
We will always consider this case a miss and return -1. Attempting to divide by O will cause your
program to either fault and die or return a meaningless value.

2 1< O In this case the hit lies behind the viewpoint rather than in the direction of the screen. This

should also be considered a miss and -/ should be returned.

(3) The hit lies on the view point side of the screen.

H = (hy, hy, h;) if h, > O the hit is on the wrong side

and -1 should be returned.

76

Testing the object, material and plane modules

At this point, it is useful to extend our material tester to include loading and testing a plane object. Each
time we add a new component to the project we want to ensure that we haven't broken any existining
component. This process is called regression testing.

We will use the following input. The first plane is sometimes a called a "back wall". All of its points
have a z-coordinate of -7 and its normal points directly outward in the +z direction. The second plane is
called a "floor" but a normal floor would have a normal of 0 1 0. This "floor" is "tilted" down toward
the viewer. Elements of the floor with y coordinates > 0.0 will be hidden behind the backwall.

A side view of the situation is shown below.

_ Screen
material green
{
ambient 0 5 0 R
_ Viewpoint o
mat eri al brown o
{)
ambient 3 3 0
}
pl ane wal |
{
mat eri al green
normal 0 0 1
point 00 -7
}
pl ane fl oor
{
mat eri al brown
normal 0 1 1
point 0O -7
}

77

/*

pl ntest.c */

#i ncl ude "ray. h"

int main()
{
nodel _t nod;
nodel _t *nodel = &nod;
material _t *mat;
obj ect _t *obj 1;
obj ect _t *obj 2;
char entity[16];
I nt count;
/* Create lists */
nodel ->mats = list_init();
nodel ->o0bjs = list_init();
/* Load the two material definitions */
count = fscanf(stdin, "%", entity);
material _init(stdin, nodel, 0);
mat = (material _t *)list_get_entity(nodel ->mats);
assert (mat - >cooki e == MAT_COXI E)
fprintf(stderr, "loaded % \n", mat->nane);
count = fscanf(stdin, "%", entity);
material _init(stdin, nodel, 0);
mat = (material _t *)list_get_entity(nodel ->mats);
assert (mat - >cooki e == MAT_COXI E)
fprintf(stderr, "loaded % \n", mat->nane);
/[* Verify that worked */

material _|ist_print(nodel, stderr);

78

/* Now | oad the two object definitions */

count = fscanf(stdin, "%", entity);

pl ane_init(stdin, nodel, 0);

obj1l = (object_t *)list_get_entity(nodel->0bjs);
assert (obj 1- >cooki e == OBJ_COXKI E)
fprintf(stderr, "loaded % \n", obj1->o0bj _nane);

object |ist_print(nodel, stderr);

count = fscanf(stdin, "%", entity);

pl ane_init(stdin, nodel, 0);

obj2 = (object_t *)list _get _entity(nodel ->0bjs);

assert (obj 2- >cooki e == OBJ_COXI E)

fprintf(stderr, "loaded % \n", obj2->o0bj nane);
/* Verify that worked */

object list_print(nodel, stderr);

79

/*

/*

/*
/*

Now test the hits functions */

vec t view = {4.0, 3.0, 5.0};
vec_t dir ={0.0, 0.0, -1.0};
doubl e dist = 0.0;

vec_t unit;

vec_unit(dir, unit);
nmenset (obj 1->hits, 0, sizeof(vec_ t));
di st = obj1->hits(objl, view, unit);

fprintf(stderr, "dist to plane 1 98.3lIf \n", dist);
vec_print(stderr, "hit point", objl->last_hit);

vec_unit(dir, unit);
menset (obj 2->hits, 0, sizeof(vec_t));
di st = obj2->hits(obj2, view, unit);

fprintf(stderr, "dist to plane 2 98.3lf \n", dist);
vec_print(stderr, "hit point", obj2->last_hit);

Make sure we dont get a hit in +z space */

dir[Y] =-2.1,

vec_unit(dir, unit);
menset (obj 2->hits, 0, sizeof(vec_t));
di st = obj2->hits(obj 2, view, unit);

fprintf(stderr, "positive z test \n");
fprintf(stderr, "dist to plane 2 98.3If \n", dist);
vec_print(stderr, "hit point", obj2->last_hit);

Make sure we don't get a hit on a mss... Shoot */
strai ght down at backwal | */
dir[Z] = 0;

vec_unit(dir, unit);
nmenset (obj 1->hits, 0, sizeof(vec_ t));
di st = obj1->hits(objl, view, unit);

fprintf(stderr, "vertical ray test \n");
fprintf(stderr, "dist to plane 1 98.3If \n", dist);
vec_print(stderr, "hit point", objl->last_hit);

return(0);

80

Program output

| oaded green
| oaded brown
mat eri al

anbi ent

di ffuse
specul ar

mat eri al
anbi ent

di f fuse
specul ar

| oaded wal |

pl ane

mat eri al

nor mal

poi nt

| oaded fl oor

pl ane
mat eri al
nor ma
poi nt

pl ane
mat eri al
nor ma
poi nt

fl oor
br own
0.0
0.0

dist to plane 1

hit point

4. 000

dist to plane 2

hit point

4. 000

positive z test
dist to plane 2

hit point
vertical ray

4. 000

t est

dist to plane 1

hit point

4. 000

o o

1.0
0.0

12. 000
3. 000

15. 000
3. 000

-1. 000
-7.161

-1. 000
3. 000

-7.000

-10. 000

0. 161

-7.000

81

The sphere.c module

A sphere in 3-D space is defined by:

e The location of its center, a vec_t.
e The radius of the sphere which is a scalar (double) value, r.

t ypedef struct sphere_ type

{

vec_t center;

doubl e radi us;

vec t scal e; /1 (1, 1, 1) for spheres
} sphere_t;

sphere_init()

The sphere_init() function performs the same functions as plane_init.

spEiLE/QLgbakf//////////
Processed by {

model_init mat eri al green

Cen_t er 1 1 -2 4—— Pprocessed by
radius 0.4 <4 sphere_init

Processed by
object_init

}
voi d sphere_init/(
FI LE *in,
nodel t *nodel,
I nt at t r max) /1 maxi mum nunber of attributes
{

sphere_t *sph;
object t *obj;
I nt count ;

82

sphere_load_attributes -

This function works just like your other attribute loaders. It must return the number of attributes
loaded,

I nt sphere_| oad_attributes(

FI LE *in,

sphere_t *sph)

f---- | i ke plane | oad attributes -----
}

sphere_print

Each object specific printer is responsible for first calling its parent's print function.

voi d sphere _print(
obj ect t *obj,

FI LE *out)

{ | |

---- like plane_print

}

Output should look like

sphere bi gbal | <- printed by object_print()
mat eri al green

center 1.0 1.0 -2.0 <- printed by plane_print()
radi us 0.4

83

Determining if a ray hits a sphere.
sphere_hits() -

The sphere_hits() function determine if a ray hits a sphere and if so fills in the coordinates of the
hitpoint and the normal in the object_t structure.

doubl e sphere_hits(
object t *obj,

vec t base, /* ray base */
vec_t dir) /* unit direction vector */
{
}

Assume the following:
V = viewpoint or start of the ray
D = a unit vector in the direction the ray is traveling
C = center of the sphere

I = radius of the sphere.

The arithmetic is much simpler if the center of the sphere is at the origin. So we start by moving it there!
To do so we must make a compensating adjustment to the base of the ray.

C'=C-C=(0,0,0) = new center of sphere
V'=V - C = new base of ray

D does not change

84

A point P on the sphere whose center is (0, 0, 0) necessarily satisfies the following equation:

plipepl =7 (1)

All points on the ray may be expressed in the form

P=V'+tD=W,+td, v,+1td, v, +td) (2)
where t is the Euclidean distance from V'to P

Thus we need to find a value of # which yields a point that satisfies the two equations. To do that we take
the (x, y, z) coordinates from equation (2) and plug them into equation (1). We will show that this leads
to a quadratic equation in ¢ which can be solved via the quadratic formula.

vy+td) +(v,+td) +(v.+td) =7

85

Expanding this expression

Vet td) +(vy+1td) +(v,+1d) =
by squaring the three binomials yields:

(v"f +2tv. d o+ d>) + (v, + 20 d, + £d)]) +
‘ e 2vidord’) =7

Next we collect the terms as/s/(/)ciatqd/vvi/til common powers of [
" 'y
(v + v Hv) 4 2t (v d, +v,d, +v'.d,)+
t(d +d +d’) =r

Now we reorder terms as decreasmg powers of t and note that all three of the parenthesized tri-nomials
represent dot products. i

A/
(Ddot D) +2(V'dotD)t+V'dotV'- r’ =0

We now make the notational changes:

\ 4
a =D dotD >
b=2(V'dotD)

c=V'dotV'- rZK
to obtain the following equation
att +bt+c =0
whose solution is the standard form of the quadratic formula:

th= -b+/-sqrt b’ - 4ac)

86

Recall that quadratic equations may have 0, 1, or 2 real roots depending upon whether the discrimant:
(b’ - 4ac)

is negative, zero, or positive. These three cases have the following physical implications:
negative => ray doesn't hit the sphere
zero => ray is tangent to the sphere hitting it at one point
(we will consider this a miss).
positive => ray does hit the sphere and would pass through its interior
(this is the only case we consider a hit).
Furthermore, the two values of ¢ are the distances from the base of the ray to the points(s) of contact with
the sphere. We always seek the smaller of the two values since we seek to find the “entry wound” not

the “exit wound”.

Therefore, the hits_sphere() function should return

t,= -b-sqrt(b’ - 4ac)

if the discriminant is positive and

t]1 - -]

otherwise.

87

Determining the coordinates of the hit point on a sphere.

The (x, y, z) coordinates are computed as follows.
H=V+tD

where 1, is the smaller root of the quadratic equation on the previous page.
Important items to note are:
The actual base of the ray V and not the translated base V' must be used

The vector D must be a unit vector in the direction of the ray.

Determining the surface normal at the hit point.

The normal at any point P on the surface of a sphere is a vector from the center to the point. Thus
N = P - C (note that N will be a unit vector <==>r=1)

Therefore a unit normal may be constructed as follows:

N.=(H-C)/II (H-C) Il

88

The main function
A properly designed and constructed program is necessarily modular in nature. Modularity is somewhat
automatically enforced in O-O languages, but new C programmers often evert to an ugly pack- it- all-

into- one-main- function approach.

To discourage this in the raytracing program, deductions will be made for:

1- Functions that are too long (greater than 30 lines)

2- Nesting of code greater than 2 deep (NO nested loops)
3- Exception to 2: Its OK to have an if inside a loop.

4 - Lines that are too long (greater than 72 characters)

&9

The main() function

Here is the main function for the final version of the ray tracer.
/[* main.c */

#i ncl ude "ray. h"

I nt mai n(

I nt argc,

char *argv[])

{

nodel t *nodel ;
/* Load and dunp the nodel */

nodel = nodel _init(stdin);
nodel _print(nodel, stderr);

/* Raytrace the inage */
| mage_cr eat e(nodel) ;

return(0);

90

Loading the model description
For the scene specification

material, object, and light data may be intermixed

the camera definition may appear anywhere

materials must be defined before being referenced in an object definition

groups of attributes must appear in the top-down order in which the init function is called.
attributes processed within a specific init function may appear in any order.

missing attributes must be set to zero.

canmera caml

{
pi xel dim 640 480
worlddim 8 6
viewpoint 4 3 6
}

material green

diffuse 0 10
anbient 0 50

}

pl ane | eftwal l

{
material green
normal 3 0 0.2
point 00O

}

pl ane ri ghtwal |

{
mat eri al green
poi nt 8 00
normal -3 0 0.2

}

91

The model_init() function

This function be contained in the source module model.c. 1t controls the loading of camera, material,
object, and light definitions. When it completes, the cam pointer must point to a complete camera_t
structure and material, object and light definitions specified in the input file will have been read, and for
each material, object or light definition in the file a new structure of type material_t, object_t, or light_t
must reside on the appropriate list. (If the input file contains the definition of three planes, three
object_t's must be on the objs list.)

t ypedef struct nodel type

{
canera_t *cam /1l The canmera structure
| ist t *mat s; /'l The head of the material |ist
list _t *obj s; /'l The head of the visible obj Iist
list _t *| gts; /1 The head of the light Iist

} nodel t;

92

Implementing the model_init_function()

Specifically it must: malloc() the model_t structure and set it to zero, call list_init() three times to set up
the material, object, and light lists, call an internal model_load_enitites() function to load the model data,
and then return the address of the model_t structure.

[**]
/[* Init nodel data */

nodel t *nodel _init(

FILE *in)

{
nodel t *nodel = malloc(sizeof (nodel t));
assert (nodel !'= NULL);

menset (nodel , 0, sizeof (nodel t));
/* Create and initialize material structure list */

nodel ->mats = list _init();
assert(nodel ->mats ! = NULL);

Step one is to create the lists. This step READS NO INPUT DATA.

/|* Create and initialize visible object structure list */

/* Create and initialize light structure list */

Step two is to read and store the model data.

/* read in the canera, materials, objects, |lights */

nmodel _| oad_entities(in, nodel);
return(nodel);

93

The model_load_entities() function

The model loader operates in a way similar to the attribute loaders that you have already written.

canera canil

{
pi xel dim 640 480
worlddim 8 6
viewpoint 4 3 6

}

material green

{
diffuse 0 1 0
ambient 0 50

}

pl ane | eftwall

{
normal 3 0 0.2
point 00O
mat eri al green

}

pl ane ri ghtwal |

{
mat eri al green
poi nt 8 00
normal -3 0 0.2

}

94

The model_load_entities() function

static void nodel |oad entities(

FI LE *in,
nodel _t *nodel)
{

char entitynane[NAME_LEN] ;
int count;

nmenset (entitynane, 0, sizeof(entitynane));

/* Here entityname should be one of "material”
/* "light", "plane", "canera", etc

count = fscanf(in, "9%", entitynane);

while (count == 1)
{

}

process one entity and read next entity name

95

*/
*/

The model_print function

This function just drives the process of producing a nicely formatted version of the contents of the
material list, the object list, and the light list. The entity-type specific functions shown are responsible
for the details.

[**]
/* dunp nodel data */

voi d nodel print(
nodel t *nodel,
FI LE *out)

{

Invoke specific print routines

96

Avoiding parsing the input file altogether

In building programs it's often useful to employ temporary skeletal modules that facilitate the building
and testing of other components but are ultimately thrown away at the end of the project. For example,
if this were a team project it would be desirable for the ray tracing team to press on in parallel with the
parsing team's activities instead of having to wait on a functional parser.

We can view this exerise as transforming or model specification language to C! In fact the C version
looks quite similar to the target language.

/* nodel stat.c */

/* This nodul e provides a statically defined nodel that can */
/* be used to test the raytracing system */

#i ncl ude "ray. h"

material t matl =

{
cooki e: MAT_COXI E
nane: "green",
anbient: {0, 5, O},
b
material _t mat2 =
{
cooki e: MAT COXI E,
nane: "yellow',
anbient: {6, 5, 0},
}s
material t mat3 =
{
cooki e: MAT_COXI E,
name: "“gray",
anbient: {4, 4, 4},
1

97

Now we define the plane structures. Again the definitions are quite consistent with the target language.

pl ane_t planel =

{
normal : {3, 0, 1},
point: {0, 0, 0},
b
pl ane_t plane2 =
{
normal : {-3, 0, 1},
point: {8, 0, 0},
b
pl ane_t pl ane3 =
{
nornmal : {0, 1, O},
point: {0, 0, 0},
}

98

The object structure definitions combine elements of the original input language, but more reflect the
actions of the program.

object _t objectl =

{
cooki e: OBJ_COXI E,
obj nane: "leftwall",
hits: pl ane_hits,
priv: (void *) &pl anel,
mat : &mat 1,

¥

object _t object2 =

{
cooki e: OBJ_COXI E,
obj nanme: "rightwall",
hits: pl ane_hits,
priv: (void *) &pl ane2,
mat : &mat 2,

¥

object t object3 =

{
cooki e: OBJ_COXI E
obj _name: "floor",
hits: pl ane_hits,
priv: (void *) &pl ane3,
mat : &mat 3,

¥

99

Linking the model together.

The last (and ugliest) piece of the puzzle is to handcraft the object list and put it in the model structure.
Note that the material list is not necessary because there is on material dumper and no material find

needed.
link t linkl =
{
next: NULL,
entity: (void *)&object?2,
1
link t link2 =
{
next: & inkl,
entity: (void *)&objectl,
}s
link t 1ink3 =
{
next: & ink2,
entity: (void *)&object3,
1
list t listl =
{
first: & ink3,
| ast: &l ink1,
current: & inkl,
1
nodel t nodel =
{
objs: &istl,
1
nodel t *nodel _init(
FILE *in)
{
r et ur n(&model) ;
1

100

Creating an image

We continue to strive to build simple easy to grasp components! Obviously, this could be done by
massively nesting loops and building functions 100+ lines long. Even some faculty and professional
programmers will do it this way.

But if you do it my way you avoid the possibility that one day you will be recreated as a VooDoo doll by
those charged with trying to understand and maintain what you wrote!!

[**]
/* This function is the driver for the raytraci ng procedure */

voi d i mage_creat e(
nodel t *nodel)

L
I nt Y;
canera_t *cam = nodel - >cam
/* Fire ray(s) through each pixel in the w ndow */

for (y = 0; y < cam>pixel _dinfl]; y++)

make_r ow nodel , vy);
}

/* Ask canera wite inmage to ppminage */

canmera_wite_ i mage(nodel ->cam stdout);

101

Processing a row of pixels

The most common way to mess this up is to forget which element of the pixel_dim array represents the
horizontal size and which represents the vertical size.

static inline void make_row(
nodel t *nodel
I nt Yy)
-
i nt X;
canera_t *cam = nodel - >cam

for (x = 0; x < cam>pixel _dinf0]; x++)

{
}

make pi xel (nodel , x, y);

102

Building a pixel

This function is called for each pixel in the image. Eventually we will try to minimze the “‘jaggies” by
building a loop in here in which we randomize the ray direction and average the computed pixel values.

static inline void nmake_pi xel (
nodel t *nodel
i nt X,
i nt y)
{
vec_t raydir;
drgb t d pix = {0.0, 0.0, 0.0};
canera_t *cam = nodel - >cam
i nt I

/* This function was witten previously */

canera getdir(cam x, y, raydir);
#i f def DBG PI X

fprintf(stderr, "\nPI X %ld %id - ", vy, X);
#endi f
/* The ray _trace function determnes the pixel color in */
/* d rgb units.. The last two paraneters are used ONLY */
/* in the case of specul ar (bouncing) rays which we are */
/* not doing yet. */

ray_trace(nodel, cam >vi ew _point,
raydir, d _pix, 0.0, NULL);

/* This function nust convert the pixel value fromdrgb t */
/* [0.0, 1.0] toirgb t (O, 255) and to store it in the */
/* “upside down” |ocation in the pixmap */

canmera_store_pixel (cam x, y, d_pix);

return;

103

The ray_trace() function

[**]
/* This function traces a single ray and returns the */
/* conposite intensity of the light it encounters */

void ray_trace(
nodel t *nodel,

vec t base, /* location of viewer or previous hit */
vec _t dir, /* unit vector in direction of object */
drgb_t dpi X, /* pixel return | ocation */
doubl e total dist, /* distance ray has traveled so far */
object t *last _hit) /* nmost recently hit object */
{

obj ect _t *cl osest;
double m ndist;
drgb_t thisray = {0.0, 0.0, 0.0},

Ask find_closest_object() to set the closest pointer
If it returns an object pointer

{
#i fdef DBG H T

fprintf(stderr, "%12s HT:. (%. 1l f, %. 11 f, 9%.1If)",
cl osest - >0bj nane,
cl osest->last_hit[X],
cl osest->last_hit[Y],
closest->last _hit[Z]);
#endi f

use the objects polymorphic closest->ambient() function copy the object's ambient
reflectivity to “thisray”

/

scale the values of “thisray” by 1 / distance to the closest object

add the value of “thisray” to pix
#i f def DBG_DRGB
fprintf(stderr, "% 12s DRGB: (%. 21 f, 9.2If, 9%.2If)",
cl osest ->obj nane, dpix[R], dpix[G, dpix[B]);

#endi f
}

104

Debugging output

The raytracer is sufficiently complicated that debugging output may be required for problem resolution.
The C-compiler preprocessor cpp permits us to conditionally compile or not compile statements into a
program. If we include the line:

#defi ne DBG_DRGB

in the source code then this statement will be compiled and produce debugging output. But if we
comment it out the debug output will not be produced.

#i f def DBG DRGB
fprintf(stderr, "% 12s DRGB: (9%. 2l f, 9%.2If, 9%.21f)",
cl osest - >0bj nane, pix->r, pix->g, pix->b);

#endi f

Instead of having to comment in/out the definition, the C compiler allows you to define a symbol on the
command line:

gcc -c -g -DDBG DRGB raytrace. c

105

A makefile for a multi-module program:

The Unix make program is a handy utility that can be used to build things ranging from programs to
documents. Elements of significance include:

targets labels that appear in column 1 and are followed by a the character “:” . The make
command can take a target as an operand as in make ray.

dependencies are files that are enumerated following the name of the target. If any dependency is newer
than the target, the target will be rebuilt.

rules are specified in lines following the target and specify the procedure for building the target.
Rules must start with a fab character. In the example below the tab has been expanded as

spaces but you may not enter spaces.

The following makefile can be used build the executable ray tracer named ray (assuming that it requires
only the .o files enumerated in the command).

a.out: mainl.o nodel.o canera.o list.o material.o plane.o \
obj ect.o sphere.o \
vector.h ray. h rayfuns. h rayhdrs. h
gcc -vall -g *.o -Im

.C.0: $<

-gcc -c -Wall -c -g $< 2> $(@.o0=.err)
cat $*.err

The target .c.o: is called a suffix rule. It is telling make to use the commands that follow whenever it
needs to make a .o file from a .c file.

There are a number of predefined macro based names:

$@-- the current target's full nane

$? -- alist of the target's changed dependenci es

$< -- simlar to $? but identifies a single file dependency and is
used only in suffix rules

$* -- the target file' s name without a suffix

Another handy macro based facility permits one to change prefixes on the fly. The macro
$(@. o0=.err) says use the target name but change the .o to .err.

The same result effect may be obtained using $*.err as is done in the subsequent cat command.

106

Using user written macros in makefiles

The makefile on the previous page is actually broken! All of the .c files depend on ray.h and should be
recompiled if ray.h changes, but this will not happen! We could fix this by typing in a collection of
other dependencies but the macro facility simplifies that.

Make macros are similar in spirit to Unix environment variables. In fact environment variables can be
accessed in make files via macro calls. However, it is typically the case that the macros are defined
within the makefile. Here is a makefile that is used to build a complete raytracer. A macro is defined
by using the syntax MACRO-NAME = macro value. Many people use the convention of making names
all capital but that is not required.

All of the .o files necessary to build in are defined using the macro name RAYOBJS. The \ character at
the end of all but the last line is the standard Unix contuation character. The # character at the start of a
line turns the line into a comment.

A macro is invoked using the syntax S(MACRO-NAME). The result of the invocation is that the string
$(MACRO-NAME) is replaced by the current value of the macro.

RAYOBJS = mainl.o nodel.o canera.o list.o material.o plane.o \
obj ect. o sphere.o

RAYHDRS = vector.h ray. h rayfuns. h rayhdrs. h

a.out: $(RAYOBJIS)
gcc -Wall -g *.o0 -Im

$(RAYCBIS) : $(RAYHDRS) nukefil e
.C.0: $<

-gcc -¢c -Wall -c -g $< 2> $(@.o0=.err)
cat $*.err

107

Definining debug control symbols in the makefile

Use the CFLAGS macro to enable precisely those debug aids that you need:

CFLAGS = -DDBG Pl X - DDBG HI T

ray: $(RAYOBJS)
gcc -Wall -o ray -g $(RAYOBIS) -Im

$(RAYOBJS): $(1 NCLUDE) nakefile

.C.0: $<
-gcc -c -Wall $(CFLAGS) -c -g $< 2> $(@.o0=.err)
cat $*.err

This code is in the make_pixel() function:

#i fdef DBG _PI X
fprintf(stderr, "\nPI X %ld %id - ", vy, X);
#endi f

This code is in the ray_trace() function.

#ifdef DBGHT
fprintf(stderr, "%12s HT: (%. 1l f, %. 11 f, 9%.1If)",
cl osest - >0bj nane,
cl osest->hitloc.x, closest->hitloc.y,
cl osest->hitloc. z);
#endi f

108

Because of how the \n characters are used in the format string they work together to produce this useful

output.

PIX 21 16 - leftwall (1.3, 1.4, -4.0)
PIX 22 16 - leftwall (1.5, 1.3, -4.4)
PIX 23 16 - leftwall (1.6, 1.2, -4.8)
PIX 24 16 - leftwall (1.8, 1.0, -5.3)
PIX 25 16 - leftwall (2.0, 0.8, -5.9)
PIX 26 16 - leftwall (2.2, 0.6, -6.5)
PIX 27 16 - leftwall (2.4, 0.4, -7.2)
PIX 28 16 - leftwall (2.7, 0.2, -8.0)
PIX 29 16 - floor (3.0, 0.0, -8.5)
PIX 30 16 - floor (3.4, 0.0, -8.5)
PIX 31 16 - floor (3.8, 0.0, -8.5)
PIX 32 16 - floor (4.2, 0.0, -8.5)
PIX 33 16 - floor (4.6, 0.0, -8.5)
PIX 34 16 - floor (5.0, 0.0, -8.5)
PIX 35 16 - rightwall (5.3, 0.2, -8.0)
PIX 36 16 - rightwall (5.6, 0.4, -7.2)
PIX 37 16 - rightwall (5.8, 0.6, -6.5)
PIX 38 16 - rightwall (6.0, 0.8, -5.9)
PIX 39 16 - rightwall (6.2, 1.0, -5.3)
PIX 40 16 - rightwall (6.4, 1.2, -4.8)

109

Polymorphism - I1:

We have already discussed how the hits and printer functions provide polymorphic bahavior in the
object "class". Each specialization (plane, sphere) must provide its own characteristic functions because
the default functions perform no useful function. Their only use is to prevent an instant segfault when
the object is to be tested for a ray intersection.

In other cases most specializations may want to use the default function. For example, the default
ambient function simply calls material_getamb(). Recall that in the ambient only raytracer the last steps
of the operation are:

add mindist to total_dist
set intensity to the ambient reflectivity of closest object
divide intensity by total_dist

The first inclination is to implement the small amount of code in step 2 in the obvious way:

this_pix[R] = closest->mat->ambient[R];

this_pix[G] = closest->mat->ambient[G];

this_pix[B] = closest->mat->ambient[B];
or

pix_copy(closest->mat->ambient, this_pix);

However that approach would make it not easy to override the default behavior. Thus a better approach
is to replace the three lines above by:

closest->ambient(closest->mat, this_pix);

During the object_init() object constructor sets the ambient() function pointer to the
“material_getamb()” function which contains the three lines of code we just replaced.

While this adds a slight bit of run time overhead, it also provides us with an easy hook with which we

may override the material_getamb() with a custom routine. We will see an example of this with the tiled
plane object.

110

Tiled planes

The tiled plane object is commonly found in ray tracing models.

We will use it to demonstrated how the inheritance heirarchy of specialization can be extended. In Object
Oriented terminology the object_t structure is called a base class. The base class is at the top or root of a
class hierarchy. The plane_t and sphere_t are specializations of the object_t and are called derived

classes. The tiled plane tplane_t and the procedural plane pplane_t are further specializations of the
plane_t.

object_t
plane_t sphere_t
tplane_t pplane_t

111

The tiled_plane model object description

The tiled plane requires two attributes beyond those of the regular plane.

The dimensions specify the size of the tiling in world coordinates
The altmaterial specifies the color of the alternate tiles.

tiled_plane floor Processed by

{ 4/ object_init
material white
nor mal 010 Processed by
poi nt 00O « plane_init
dimension 2.0 3.0
altmaterial green

Processed by
tplane_init

A specialization always requires that some aspect of the behavior of the parent class be modified. If no
modifications at all were required, we could just use the base class.

A specialization never requires that that a/l aspects of the parent's behavior be overridden. In that case it
would be appropriate to create a new class.

When a new tiled_plane is created three structures must be allocated and linked together:

object_t The object_init() function is called by plane_init(). It
i mallocs the object_t.
lane t The plane_init() function is called by tplane_init(). It
P - mallocs the plane_t and sets the priv pointer in the object_t
tplane_t The tplane_init() function is called by the model loader. It

mallocs the tplane)t and sets the priv pointer in the plane_t.

112

The tplane_t structure and the tplane_init() function.

The structure is shown below and it must be filled in by #plane_init() from the input data

/* Tiled plane... descendant of plane */

t ypedef struct tplane type

{
char mat name[NAVE_LEN] ;
mat eri al _t *background; / * background col or */
doubl e dimension[2]; [/* dinension of tiles */
} tplane_t;

The dimension parameter specifies the (X, z) dimensions of a single tile in world coordinates. The
altmaterial is the name of the material used in alternate tiles. The #plane_init() function must ask
material_search() to lookup the corresponding material_t.

tiled plane floor

{
material white
nor mal 010 Processed by
poi nt 000 ' plane_init
di nension 2.0 3.0
) Processed by
} altmaterial green tplane_init

113

The tplane_init() function
object _t *tplane_init(
FI LE *in,

nodel t *nodel)

The function is called from the model loaders. Its missions are to:

e invoke plane_init(in, model, 2) to create the plane_t and object_t structures

The 2 is passed to plane_init() to tell it not to process more than two attributes. You will need to
fix plane_load_attributes() to make it honor this limit.

recover a pointer from to the object structure from the model->objs list

recover a pointer to the plane structure from the priv pointer of the object

malloc a tplane_t and set the priv pointer in the plane_t structure

parse the attributed data

set the ambient pointer in the object_t to point to the tplane_ambient() function

set the printer pointer in the object_t to point to tplane_print

set obj_type field in the object_t to "tiled plane".

The tplane_init() function need not override the hits function provided plane_init().
The tplane_print() function

static void tp_print(
FI LE *out,
obj ect _t *obj)

e invoke the plane_print() function
e print the #plane attributes

114

The tplane_ambient() function

This is the function that actually gives the tplane its characteristic behavior.

voi d tpl ane_anbi ent (
obj ect _t *obj,
drgb_t val ue)

{
I nt foreground = tplane_foreground(obj);
if (foreground)
material_getamb(obj, obj->mat, value);
else
copy ambient reflectivity from background material
}

115

The tplane_foreground() function

I nt tplane_foreground(
obj ect _t *obj)
{
Compute x_ndx = tile index of the hitpoint in the x direction

Compute 7_ndx = tile index of the hitpoint in the z direction

if ((x_ndx + z_ndx) is an even number)
return(1);

else
return(0);

A tile index is an int It is computed by adding 10,000 to the x (or z) coordinate of the hitpoint and
dividing by the x (or z) dimension of the tile.

116

Procedural surfaces

Procedural surfaces are those in which an object's reflectivity properties are modulated as a function of
the location of the hit point on the surface of the object.

There are literally an infinite number of ways to do this. In the next few pages we propose a framework
for incorporating procedurally shaded surfaces into raytraced images.

117

Implementation of procedural shaders

Construction of such shaders is facilitated by the use of both inheritance and polymorphism within a C
language framework. The procedurally shaded plane is an lightweight refinement of the plane_t.

typedef struct pplane_type

{
i nt shader ;
} pplane_t;

The distinction between a standard plane and a procedurally shaded plane is made at object initialization
time by the pplane_init() function when it establishes a single function pointer (for ambient only images)
that provides the polymorphic behavior.

That function pointer is taken from a table of pointers to programmer provided functions are contained in
the module pplane.c and perform the procedural shading. These procedural shading functions are passed
pointers to the object_t structure and to the dgrb_t intensity vector whose (r,g, b) components are filled in
procedurally. Here is an example in which there are three possible shaders.

static void (*ppl ane_shaders[]) (object_t *obj,
material t *mat, drgb_t *value) =
{

ppl ane0_anbi ent,
ppl anel_anbi ent,
ppl ane2_anbi ent,

b
#defi ne NUM SHADERS si zeof (ppl ane_shaders)/si zeof (void *)

Note that:
1. The number of elements in the array is not explicitly specified.
2. The value NUM_SHADERS can be computed by dividing the size of the table by the size
of a single pointer.

118

The index of the shader to be used is supplied in the model description as shown below.

ppl ane fl oor

{
material gray
nor mal 010
poi nt 00 -8
shader 0

}

ppl ane backwal |

{
material gray
nor mal 001
poi nt 4 3 -8
shader 1

}

119

The pplane_init() function

As shown below the pplane_init() function simply invokes the plane_init() function to construct the
object and then overrides the default getamb() function, replacing it with the shader function whose
index is provided in the model description files.

[**]
object _t *pplane_init(
FI LE *in,

nodel t *nodel,
int attrmax)

{ ppl ane_t *ppl n;
pl ane_t *pln; The mysterious attrmax
obj ect _t *obj; parameter finally gets to do
int mask: something!

pl ane_init(in, nodel, ij//

/ * Recover object pointer fromobject list */

/ * Recover plane pointer from object pointer */

/* malloc a pplane structure and link plane structure to it */
count = pplane_load attributes(in, ppln);

assert(count = 1);

strcpy(obj->objtype, "pplane");
obj - >anbi ent = ppl ane_shader s[ppl n->shader] ;
obj ->printer = pplane_print;

120

Tiled shading

To produce a tiled “floor” the modulation must be a function of the x and z coordinates because the y
coordinate does not vary on the floor. For a “backwall” it would be necessary to modulate x and y, and

for a “sidewall” it would be y and z.

\ég; SCF plt aD ggj_:anb(The factor of 2 controls the width of the
drgb_t “xval u e) tiles. The larger the factor the smaller
{ the tile. The value of 1000 is known as

I nt I X; Westall's hack for preventing an ugly

i nt i Z; double wide strip at the origin.

I X 2 * obj->hitloc.x + 1000;

iz =2 * obj->hitloc.z + 1000;
pi x_copy(&obj - >mat - >anbi ent, val ue);

if ((iz +ix) &1) /] test for odd or even sum

{

val ue->r = 0.0; /1 make pixel cyan
}
el se
{
val ue->b = 0. 0; /'l make pixel yellow
}

121

Continuously modulated shading

The image shown below is produced by a procedural shader that continously modulates the ambient
reflectivity.

The modulation function is shown below. A vector V in the direction from the point defining the plane
location to the hitpoint is computed first. Then the angle that the vector makes with the positive X axis is
computed. Finally the red, green and blue components are modulated using the function

1 + cos(w t + f) where the angular frequency w is 2 for all three colors, and phase angles f are

0, 2p /3, and 4p / 3 respectively. Different effects may be obtained by using different frequencies and
phase angles for each color, and it is also possible to combine continuous modulation with striping or
tiling.

vec_di ff (&p->poi nt, &obj->hitloc, &vec);

vl = (vec.x / sqgrt(vec.x * vec.x + vec.y * vec.y));
t1l = acos(vl);
if (vec.y < 0)
tlr =2* MPI - t1;
val ue->r = 6 (1 + cos(2 * tl1));
value->g = 6 (1 +cos(2 *tl+ 2 * MPI /| 3));
value->b = 6 * (1 + cos(2 * t1+ 4 * MPI /| 3));

122

The cross product of two vectors

Given two linearly independent (not parallel) vectors:

V = (VX) vy) VZ)

W= (w, wy,, w,)

The cross product sometimes called outer product is a vector which is orthogonal (perpendicular to) both
of the original vectors.

VXW=(VvyW, -V, Wy, V,Wx-VyW,, VyxWy-Vy W)

(1, 1, 1) x (0, -1, 0) = (1, 0, -1)
Notes:
The vector (0, -1, 0) is the negative y axis. Therefore, any vector that is perpendicular to it must lie in
the y = 0 plane. The projection of the vector (1, 1, 1) onto the y = 0 plane is the vector (1, 0 1). The

vector (1, 0, -1) is then perpendicular to this vector and lies in the y=0 plane.

In a right-handed coordinate system

XxY=Z
YxZ=X
ZxX=Y

Right thumb (x-axis) x forefinger (y - axis) = middle finger (z -axis).

123

The vec_cross() function

You will add the following function to your vector.h collection.

[**]
/* Conpute the outer product of two input vectors */

static inline void vec_cross(

vec t vl /* Left input vector */
vec_t v2, /* Right input vector */
vec_t v3) /* Qut put vector */
{
}

124

Projection

Assume that V and N are unit vectors. The projection, O, of Von N is

shown in red. Itis a vector in the same direction as N but having length
cos(theta). Therefore

O=(Ndot V)N

Now assume that N is a\ﬁo\rmal to a plane shown as a yellow line. The projection, P, of V onto the plane

is shown in magenta and is given by V + G where G is the vector shown in green.
Since G and Q have have the same length but point in opposite directions, G = - Q

Therefore the projection of a vector V onto.a plane with normal N is given by:

4
P=V+G=V-Q =V-(NdotV)N

vec_diff(vec_scale(vec_dot(N, V), N), V, P);

In building your new linear algebra routines it is desirable to build upon existing ones where possible but
extreme levels of nesting of function calls as shown here can complicate debugging.

[**]
/* project a vector onto a plane */

static inline void vec_project(

vec_t n, /* pl ane nor mal */
vec_t v, /* 1nput vector */
vec_t w) /* projected vector */

125

Reflection

Basic physics says: The angle of incidence (the angle the incoming ray makes with the normal at the
hitpoint) is equal to the angle of reflection

vec_reflect(

vec_t unitin, /* unit vector in incomng direction of the ray */
vec_ t wunitnorm /* outward surface nornmal */
vec_t unitout);/* unit vector in outgoing direction ray */

N cos (theta) = N
N (N dot U)

Let
U = -unitin

N = unitnorm

Then

U+ V=2Ncos(T) where T is the angle between U and N
cos(T) = U dot N

SO
U+ V=2N(UdotN)

and
V=2N(UdotN)-U

126

Matrices
Matrix operations are useful in transforming three-dimensional coordinate systems in ways that make it
easier to determine if and where an object is hit by a ray. There are alternative approaches to creating a

3 X 3 matrix.

Probably the most obvious is:

double matrix[3][3];

we will use the following version of that:

t ypedef double ntx t[3][3];

nmx t matri x;

By convention the first subscript refers to the row and that second the column number.
To set the the element in the 3 column of the middle row to fifteen do,

matri x[1][2] = 15.0;

Since each row of a matrix is a vector, we can use our vector functions to operate on rows of a matrix.
To add the first two rows of a matrix:

vec_t sum
vec_sum(matrix[0], matrix[1l], sum;

Suppose V and W are vectors and a is a scalar value. A function F that maps three-dimensional space to

three-dimensional space is a linear transformation if and only if
FaV +W)=aF(V)+ W forany choice of a, V, and W

Furthermore, any linear transformation may be represented by multiplication of a vector by a matrix.

127

Multiplication of a matrix times a vector.

The product of a 3 x 3 matrix with a 3-d column vector is a 3-d vector. The multiplication rule is as
follows:

product([i] = the dot product of the ith row of the matrix with the vector.

1.0 1.0 0.0 1.0 1.0

-1.0 1.0 0.0 x 0.0 = -1.0

0.0 0.0 1.0 -2.0 -2.0
The vec_xform() function should multiply a vector by a matrix.
static inline void vec_xforn
m x_t m [* 1 nput matrix */
vec_t vl /* vector to be transforned */
vec_t v2) /* out put vector */

{

vec_t work; /* avoid aliasing problens */

/* Performthe transformusing work for output */

/* Copy work back to v2 */

vec_copy(work, v2);

128

The transpose of a matrix:

The transpose of a three by three matrix is also three by the matrix. Its elements are given by a simple

rule:
transpose[i][j] = original[j][i]
T
1.0 3.0 2.0 1.0 1.0-2.0
1.0 20-20 = 3.0 2.0 0.0
-2.0 0.0 1.0 20-20 1.0
Notes:

The diagonal elements of a matrix and its transpose are identical. Off diagonal elements are
interchanged in a symmetrical way.

The transpose of a matrix is in general not the same as the inverse of a matrix.

static inline void ntx _transpose(

mx_ t i, /[* Input matrix */
nmx t nR) /* Qutput transpose */
{
nx t mwrk; /* Avoid aliasing problens */
mwor k[0] [0] = ml[0][O0];
mwrk[O][1] = nl[1][O0];
mwor k[O] [2] = mL[2][O];
etc....

copy n8 back to n..

129

Rotation matrices

Rotation matrices are used to rotate coordinate systems in 3-space. They have some special properties:

The three rows are mutually orthogonal unit vectors. That is, the dot product of any pair of rows
is 0.

The three columns are also mutually orthogonal unit vectors.

The inverse of a rotation matrix is its transpose.

The 1st row of a rotation matrix is a vector which will be mapped to [1, 0, O] under the rotation.
The 2nd row is a vector will be mapped to [0, 1, 0] and the third row is a vector that will be

mapped to [0, 0, 1].

This example shows that the middle row is mapped to (0, 1, 0)

roo roax roz2		riol	O
rioroe rozo		roa]=	1
r20o ra1 ro2		iz	O

130

Constructing rotation matrices

Suppose V and W are orthogonal unit length vectors. Suppose we want to create a rotation matrix M
that will rotate V into the X-axis and W into the Z-axis.

vec t V,
vec_t W
mxt M

vec_copy(V, MO0]); Il V wll becone the X-axis
vec_copy(W M 2]); Il Ww Il becone the Z-axis

/[* The mddle rowyY = Z x X */

vec_cross(M2], M0O], M1]);

131

Another example

Suppose V and W are not necessarily orthogonal unit length vectors. Suppose we want to create a

rotation matrix M that will rotate W into the Z-axis and force V to lie in the positive Y, Z (X=0)plane.

vect w={1.0, 0.0, 1.0};
vect v ={1.0, 1.0, 1.0};
vec t v3;
vec t v4;
mx t mi;
nmx t ng,

All rows of rotation matrices miust be unit vectors!

vec_unit(v, v);
vec_unit(w, w;

vec_print(stderr, "v ", v);
vec_print(stderr, "w", w;

If we want W to end up on the +Z access and V to lie in the X = 0 plane, then a vector
perpendicular to both W and V must end up pointing along the +X axis. Therefore , the vector
V x W must be what gets mapped to the X axis. It is important to note that the cross product in
not length preserving in general! Therefore we must renormalize the 1st row of the matrix.

vec_cross(v, w, ni[0]);
vec_unit(nl[0], ni[O0]);

Since W is to be mapped to the positive z-axis we just copy it to the bottom row of the matrix.

vec_copy(w, ni[2]);

Since the missing middle row must be orthogonal to the other two rows it may be computed via
the cross product. The order here is important! Zx X =Y but X x Z =-Y!

vec_cross(nml[2], mi[0], mi[1]);

132

The matrix is now complete so we print it out.

vec_print(stderr, "r0 ", ml[O]);

vec _print(stderr, "r1 ", ml[1]);

vec_print(stderr, "r2 ", m[2]);
We now apply the matrix to V and W

vec_xform(nml, v, v3);
vec_xform(nl, w, v4);

and then print the transformed vectors

vec_print(stderr, "v3 ", v3);
vec_print(stderr, "v4 ", v4);

The inverse of a rotation is its transpose.
nt x_transpose(nl, nR);

So if we apply the inverse to v3 and v4, we should get back the original V and W

vec xform(n2, v3, v3);
vec xform(nR, v4, v4);

vec_print(stderr, "v3 ", v3);
vec_print(stderr, "v4 ", v4);

133

Normalized V and W vectors

% 0.577 0.577 0.577
w 0.707 0.000 0.707

The rotation matrix

ro 0.707 0.000 -0.707
rl -0.000 1.000 0.000
r2 0.707 0.000 0.707

Transformed V and W. Note that the transformed V lies in the postive Y-Z plane (its x
coordinate is 0) and the transformed W is the positive Z axis.

v3 0.000 0.577 0.816
v4 0.000 0.000 1.000

After applying the inverse transformation, the vectors are transformed back to their original
values shown at the top of this page.

v3 0. 577 0.577 0.577
v4 0. 707 0.000 0.707

134

Parsing the input file

Parsing is a process in which an input file containing “sentences” written in some language is:

e read in from a file
e tokenized
e analyzed

The semantics of the language determine the actions that are taken during the analysis. Some languages
(e.g. the C programming language) are quite complex and some formal mechanisms are needed to
process them. Our input language is simple enough that informal ad hoc methods suffice.

A token is a “word” in the language. In this input:

camera canil

{
pi xel dim 800 600
worlddim 8 6
viewpoint 4 4 4

}

camera, caml, {, pixeldim, 800, 600, etc are tokens. The individual letters making up the words and the
digits making up the numbers are not. If (and only if) the language is structured rigidly enough that the
position in a sentence in which string values and numeric values can be known in advance, then fscanf{)
can be used as a combination reader/tokenizer.

e Ys tokenis a string of 1 or more characters
e %d tokenis an integer value

e %lf tokenis a double precision value

This will be the case for the raytracer.

135

Model description language

An example sentence in the model description language is:

canmera canil

{
pi xel dim 800 600
worlddim 8 6
viewpoint 4 4 4

}

Each "sentence" in our language begins with an an entity-type identifier.

Our entity-types will include camera, material, light, spotlight, plane, sphere, etc.

The entity-type is followed by user defined and arbitrary entity-name.

entity-types are analogous to data types in C (int, float, double)

entity-names are analogous to variable names in C (max, min, pixel)

The entity-name is followed by a collection of entity-attributes enclosed in { }.

Each entity-attribute consists of an attribute-type specifier followed by attribute-values.

The entity-types and attribute-types are predefined keywords and will always be spelled as
shown.

The attribute-values will always follow the attribute type.

The number of values of a particular attribute will never vary.

The entity-attributes of any entity may appear in any order.

136

Attribute values map to the data structure associated with a particular entity-type in an obvious way:

camera canil

{
pi xel dim 800 600

worlddim 8 6
viewpoint 4 4 6

}

The attribute values map to the camera_t structure in a reasonably obvious way:

typedef struct canera_type

{
i nt cooki e; /[* IDs this as a canera */
char name[NAME_LEN]; /* User sel ected canera nane */
i nt pi xel _dinf2]; /* Projection screen size in pix */
doubl e worl d_dinf2]; /* Screen size in world coords */
vec_t view point; /* Viewpt Loc in world coords */
irgb_t *pixmap; /* Build inmge here */

} canera_t;

Note: There is no direct correspondence between an
attribute name in the model description language and the

variable name used to hold the attribute values.

137

In summary, our model description language looks informally like:
entity-type entity-nane

attribute-type attribute-val ue(s)
attribute-type attribute-val ue(s)

}
entity-type entity-nane

attribute-type attribute-val ue(s)

end-of -file

That is,

e the attribute list of each entity definition is terminated by the } token and
e the complete model definition is rerminated by end-of-file.

Use of the model description in the ray tracer.

e There is a one-to-one correspondence between sentences in the model description language and
instances of structures (or structure hierarchies) in the executing raytracer.

e For each sentence read, a new structure must be dynamically created and attributes of the
structure filled in using the attribute-name / attribute value pairs supplied in the model

description.

e We call the process of digesting the model description and producing the structure instances

parsing.

138

A heirarchical parser

We will use a two level hierarchy for parsing the model description language:

e The top level parser will be responsible for consuming entity-type names

e The entity-type name will identify the type of object (camera, material, light, etc) that must be
constructed.
It will then invoke a constructor for the object to be created.
The constructor will allocation the required structure read the attribute values into it.

139

Constructors and parsing
In object oriented languages, each object type has an associated constructor function that is called each
time a new instance of the object type is created. Therefore, if a raytracing model contains two planes,

the plane constructor will be invoked twice.

Each entity-type will provide a constructor function that will know about the attributes that apply to the

entity will and be responsible for parsing them.

Entity constructors should use the assert() mechanism to abort the program whenever:
e an unknown attribute type is encountered
e the proper number of attribute values cannot be read in

e required attributes are missing

We will constrain, to some degree, the order in which attribute-types may appear.

140

A general attribute parser

After writing parsers for the camera, material, and plane, the typical programmer will find repeatedly
rewriting (almost) the same code tiresome and tedious and will seek a better way. It is not bad that the
ad hoc approach was used initially. The very use of the ad hoc helps the programmer see common
aspects of the problem and develop a more general solution. As usual we try to make our solution data
driven to the extent possible.

To build a general parser we will build upon the capability of the fable_lookup mechanism but replace
the old table of attribute names with new tables that contain not only the attribute name but also
sufficient information to allow the general parser to load the values. Specifically, for each attribute, we
need the following information:

How many values must be loaded (e.g. 2 for pixeldim, 3 for viewpoint)

How many bytes of storage does each value occupy (4 for pixeldim, 8 for viewpoint).
What format string should be used to read a value (%d for pixeldim, %If for viewpoint)
Where should the first value be stored?

Here we make use of the fact that we know adjacent array elements and members of a structure such as a
vec_t are stored in adjacent memory locations. For the vec_t if the location of the x component is
memory address a, and then the y component is at location a+8, and the z at location a+16.

The struct pparm_type

Therefore, each entity will employ a table in which each attribute is represented by a structure of the
following type.

/* the parse paraneter structure */

t ypedef struct pparmtype
{

char *attrnane; [* Attribute nane */

int nunval s; /[* Nunber of attribute val ues */

int valsize; /* Size of attribute in bytes */

char *fnmstr; /* Format string to use */

voi d *| oc; [* Where to store 1st attr val ue */
} pparmt;

141

Building tables of attribute descriptors
The address of where to store

the first attribute value must be

For the camera entity. We build the structure as follows: filled in after the camera_t is
malloc'd.
static pparmt canera_parse[] =
(v
{"pixeldint, 2, sizeof(int), "%l", O},

{"worlddint, 2, sizeof(double), "%f", O},
{"viewpoint", 3, sizeof(double), "%f", 0}

}

#define NUM ATTRS (si zeof (canera_parse) / sizeof (pparmt))

Items to note:
camera_parse is an array of three elements
each element is a structure of type pparm_t
initializers should be enclosed in { }
the location where the first attribute value should be stored will live in the camera_t structure
that is eventually allocated with malloc(). These values can't be set until after the camera_t is
malloc'd.

For the other entitities such as the material entity, the structure is analogous.

static pparmt mat_parse[] =

{
{"anmbient", 3, sizeof(double), "%f", O},
{"diffuse", 3, sizeof(double), "%f", O},

1
#defi ne NUM ATTRS (sizeof (mat _parse) / sizeof (pparmt))

142

The interface to the general attribute parser

This version of camera_init() demonstrates how the use of the general parser can reduce your workload.

void canmera_init(
FILE *in,

nodel _t *nodel
int attrnax)

{

/* mall oc the canera structure */

canera_t *cam = malloc(sizeof(canera_t));
assert(cam!= NULL);
cam >cooki e = CAM COXI E;

/* Read canera nane and { */
fscanf(in, "9%", cam >nane);
fscanf(in, "9%", buf);
assert(buf[0] == "{");
/* Store |ocations where attribute data should be read */
canera_parse[0] .l oc

canmera_parse[1l] .l oc
canera_parse[2].loc

&cam >pi xel _dim
&cam >wor |l d_di m
&cam >vi ew_poi nt;

/* I nvoke the parser */

mask = parser(in, canmera_parse, NUMATTRS, 0);
/* verify required attributes read */

assert (mask == 7);
/* remenber address of canera structure */

nodel - >cam = cam

143

[**]
/* Generalized attribute parser */

/* 1t returns a bit nmask in which each possible attribute
/* is represented by a bit on exit the attributes that
/* have been found will have their bit =1
i nt parser(
FI LE *in,
pparmt *pct, /* parser control table
i nt numattrs, /* nunber of |egal attributes
i nt att r max) /[* Quit after this many attrs if not
{
char attrnanme[NAVE_LEN];
int attrcount = O; /* nunber of attribs |oaded */
int mask = 0O; /* loaded attrib bit mask */
int ndx; /* ndx of this attrib in pct */
/* One trip is made through this loop for every attribute
/* processed... Exit fromthe loop is triggered by '}'
[* or Iif the maxi mum nunber of attributes is set, when
/* the maxi mnum nunber have been processed

fscanf(in, "%", attrname);
while (strlien(attrname) && attrnane[0] !="}")

{

/* Process one attribute */

ndx = parser _load attr(in, pct, numattrs, attrnane);

mask | = 1 << ndx;
attrcount ++;

/* See if its quitting tine -- */

if ((attrmax) && (attrcount == attrnmax))
br eak;

*attrname = O,

fscanf(in, "9%", attrnane);

}

If (attrmax !'= attrcount)
assert(attrnane[0] == "}");
ret ur n(mask) ;

144

*/
*/
*/

*/
*/
0 */

*/
*/
*/
*/

Loading the values of a single attribute

static int parser_load _attr(

FI LE *in,

pparmt *pct, /| * parser control table */

i nt numattrs, /* nunber of legal attributes */

char *attrnane) /[* attribute nane */

{
pparmt *pce; /[* Entry corresp to this attribute */
i nt count = O;
unsi gned char *loc; /* where to store value.. have to */
doubl e *work; /* use unsigned char for pointer */
i nt ndx; /* arithnmetic to work correctly */
i nt I

/* table | ookupp is an updated version of table_| ookup that */
/| * takes parse control table pointer as input. */

ndx = tabl e | ookupp(pct, numattrs, attrnane);
assert(ndx >= 0);

/* Point to the proper entry in the table */
pce = pct + ndx; /'l or pce = &pct[ndx];
/* pce->loc points to where the first value nust go */

| oc = (unsigned char *) pce->| oc;

145

/* Attributes may have different nunbers of attribute val ues */
/* for exanple the viewpoint has three but the pixeldimonly */

/* has 2 values. Each iteration consunmes one val ue */
for (i =0; I < pce->nunvals; 1++)

count += fscanf(in, pce->fntstr, |oc);

/'l work = (double *)Ioc;

[l fprintf(stderr, "% %f \n", pce->attrnane, *work);
| oc += pce->valsize; // point to next spot

}

assert (count == pce->nunval s);
ret urn(ndx) ;

Exercise: Design a generic table_lookup function

146

