Introduction to C++

We will spend the remainder of the class exploring aspects of C++. As before, the ray tracer will be
used to illustrate the use of language.

The most significant extensions to C are:

« much stronger type checking. Missing casts that produce warnings in C produce errors in C++

« the introduction of true O-O classes

« aformal inheritance mechanism in which derived classes can specialize parent classes

- formal support for polymorphic behavior in which a derived class may override a base class
method simply by providing a method of the same name.

- support for function overloading in which there may be different implementations with a single
function name.

« an operator overloading mechanism that is analogous to function overloading

- the ability to pass parameters by reference in addition to the standard pass by value.

- yet another input/output library that may be used in addtion to standard and low level I/O

The class is a generalization of the C structure and can contain:

e Function prototypes or full implementations
e Accessibility controls (friend, public, private, protected)
e Structured and primitive data declarations

An object oriented list structure

This approach is the C++ version of the external list structure we developed in C. It provides a
reasonably simple mechanism for us to consider various aspects of C++.

Advantages include:
The link_t objects remain invisible to the outside world.
Facilitating the use multiple lists of different kinds of entities. For example, with this techique it
is easy to create a list of lights, materials, or visible without modifying the object structure or the
list structure.

Disadvantages include:

How to safely process the list when a new function is called by a function already in the middle of
processing the list.

ist_t { link_t{ link_t { link_t {
ink_t *first; p [link_t *next; link_t *next; | > link_t *next;
ink_t *last; void *entity; — void *entity; void *entity;
ink_t *current; IR s
}

fobject_t{ object_t{ fobject_t{

} } }

Example linked list classes

The link and list classes are correctly declared below: Note that the default constructor is explicitly
provided and that it is overloaded.

A C++ class extension to the C structure.

e The class definitions should go in a file called list.h.
e The actual implementations of the functions should go in a filed called list.cpp

Recall that it was necessary to use fypedef to create a name call object_t that was equivalent to struct
object_type. In C++ the class declaration implicitly creates the user defined type link_t shown below.

Each class has a special function called the constructor. Its name is the same as the name of the class and
it is automatically invoked each time a new instance of the class is created. Constructors are never
allowed to return a value. A class can provide multiple constructors. The one actually invoked is the
one that matches the parameters supplied when the instance is created. Other function prototypes
included in the class definition are called ““class methods”.

e Public elements of a class may be accessed by any entity that holds a pointer to the class instance.
e Private element may only be accessed by class methods.

Each class also has a destructor. This function is invoked when an instance of the class is deleted.

class link_t

{
publi c:
l'ink_t(void); /'l constructor
link _t(void *); /'l constructor
~link_t(void); /| destructor
voi d set_next(link_t *);
link t *get_next(void);
voi d *get _entity(void);
private:
link t *next;
voi d *entity;
b

The list ¢ class.

We will build a list class that has the same functionality as our C list module. Class methods are
typically invoked via pointers to the instance of the class : (e.g., list->reset()). For this reason, some
programmers tend to discard the redundant part of the method name when transitioning from C and use
simply reset instead of list_reset which would then have to be invoked as list->list_reset().

We will use both approaches.

class list_t

{
public:
[ist _t(void); /'l constructor
list t(const list t &; /'l copy constructor
~list_t(void); /'l destructor
voi d add(void *entity); /1 add entity to end of |ist
voi d reset (void); /'l set current to start of I|ist
voi d *get _entity(void); /1l get current entity in list
i nt not _end(void);
voi d next |ink(void);
private:
link t *first;
link t *last;
link_t *current;
b

link t class methods

The link_t and list_t class methods will reside in list.cpp.

This link_t constructor is passed a pointer to the entity which this new link will own. Its mission is to
set the next pointer to NULL and the entity pointer to the new entity being added to the list. Notice that
it is not necessary to malloc the new /ink_z. That is done "automagically" within the new mechanism.

The :: operator is called the scope operator. 1t is used to declare that the /ink_t() constructor function
belongs to the link_t class. It is always necessary to use the scope operator when:

e prototypes are used in the class declaration and
e the function body is defined outside the class declaration.

NOTE WELL Class methods are always invoked in the context of an instance of the class.

Therefore, data elements of the class must be DIRECTLY accessed as shown below.

link _t::link_t(void *newentity)
{

next = NULL;

entity = newentity;
}

Programmers transitioning from C often experience an intense need to write the above code incorrectly
as shown below. Try to avoid this temptation. It will NEVER work.

link t::link _t(void *newentity)
{
[1 nk->next = NULL;
[ink->entity = newentity;
}

The set_next() method is a typical “set” function that is used to tell the /ink_t to manipulate its own next
pointer. It is called by the add method of the list_t class when an item that is not the first item is added
to the list. It should set the next attribute of the link_t to new_next;

void link t::set_next(link_t *new next)

{

/* set the next elenent of this Iink to new next */
}

The get_next() method is a typical “get” function that is used as a way to tell the link_t to cough up the
value of its own next pointer.

link t * link t::get_next()
{
/

* return the next pointer of this link */
}

The get_entity() method is analogous. It would also work to simply make all of the next and entity
elements public. Then any holder of a reference to the /ink_t could simply manipulate them directly...
but it would be a violation of OO dogma to do so.

void * link t::get_entity()
{

/* return the entity pointer of this link */

}

list_t class methods

The list_t class overrides the default constructor with its own constructor with no parameters:

list t::list _t()
5

* Set first, last, and current pointers to NULL */
}

Adding a new entity to the list

The add() method creates a new link_t and passes its constructor a pointer to the entity. The new
operator shown below will create a new instance of the link_t. Since a void * parameter is passed, the
correct constructor will be called.

void list_t::add(void *entity)
{

/* Create a new link passing it the entity pointer */

link t *link;
link = new link t(entity);

/* Now add the link to the list using generally the */
/* same approach as the C version */

Resetting the current pointer to the first element of the list

The reset method sets the current pointer to the first element in the list and returns a pointer to the first
entity in the list.

void * list _t::reset(void)

{

/* Set the current link pointer to the first pointer. */

Retrieving the entity associated with the current list element.

The get_entity() method returns the entity pointer associated with the current link.
void t * list_t::get_entity(void)
{

assert(current != NULL);

/* Use the get _entity nethod of the link t */

Testing to see if the current pointer is at the end.

This function works just like it did in the C version.

int list_t::not_end(void)

{

/* 1f the current point is NULL return(0), otherw se */
/* return(l) */

Advancing the current pointer

Use the get_next method of the link_t class to update current.

void list _t::next_|ink(void)

{
assert(current !'= NULL);
current = current->get_next();
}
Deleting the list

The delete operator can be used to free class instances created with new. However, the instances of the
link_t class are not automatically deleted. Therefore, it is necessary to create a list_t destructor that
processes all the links deleting them one at a time.

list_t::~list_t()
{

current = first;

link _t *kill;

fprintf(stderr, "in list destructor \n");
/* For each link in the set kill to current, update current */
/* and del ete kill */
}

Creating a list

This code from listmain.c illustrates how to use constructors to create new instances of a class e_¢, create
a new list and add elements to a list. The call to scanf{) works only because e_name and e_id have the
public protection attribute.

class e_t
{
public:
char e_nanme[NAVE_LEN] ; /1l entity name
int e_id; /1 entity id code
1
int main()
{
list t *elist;
et *el oc;
char name[NAVE_LEN] ;
i nt count;

/* Create new |list */
elist = new list _t;

/* Read input file consisting of nanmes and id codes

adding entities to list .. This would not work

if e_nane and e_id were private */
while (scanf ("% %", nane, &count) == 2)

{

el oc = new e _t;

strcpy(el oc->e_nane, nane);
el oc->e_id = count;
elist->add((void *)el oc);

10

Processing a list

The processing proceed much like it did in C but with calls that previously looked like

list_function_name now looking like elist->function_name

/* Now play it back */

elist->reset();
while (elist->not_end())

{
eloc = (e_t *)elist->get_entity();
printf("% % \n", eloc->e _nane, eloc->e_id);
el ist->next _I|ink();

}

11

Deleting a list

Deleting a list of generic entities is somewhat more painful that it was in C. In C, the free() function can
be used to release any dynamic memory regardless of structure type. In C++ the delete operator is used
to free classes created with new. However, the delete operator must be aware of the fype of class it is
deleting.

Therefore it is necessary to process the list deleting the entites before deleting the the list itself.

/* Now free all |list control structures and the */
/* e t structures as well. */

elist->reset();
while (elist->not_end())

{
eloc = (e_t *)elist->get_entity();
del et e el oc;
elist->next _link();

}

/* Now delete the list and |link structures */

del ete elist;
printf("done\n");

12

Another example class definition

A class definition creates a type name that can be used in a standalone fashion (like a fypedef) but the

explicit typedef is no longer required. These should replace the comparable structure definitions in

ray.h.

cl ass canera_t

Example of class

{ constructors and
publ i c: function overloading,
canmera_t();
canera_t (FILE *in);
void canera _getdir(int x, int y, vec_t dir);
void canera_store pixel(int x,int y, drgb_t pix);
i nt camer a_get xdi m(voi d) ;
i nt canmer a_get ydi m(voi d) ; Public functions may be
void canera_getvi ewdt(vec_t view; called by any entity holding a
voi d canmera_print (FILE *out); pointer to a camera_t
void canera wite_ inmge(FlLE *out);
voi d caner a_get pi xsi ze(doubl e *x, double *y);
private:
i nt cooki e;
char name[NAVE_LEN ;
I nt pi xel _dinf2]; /* Projection screen size in pix */
doubl e worl d_dinf2]; /* Screen size in world coords */
vec_t view point; /* Viewpt Loc in world coords */
irgb_t *pixmap; /* Build imge here */
b

Private functions or data
items are not accessible
to any entity holding a

pointer to a camera_t

Function prototypes that appear within a class definition are called class
methods and are always invoked within the context of an instance of the
class. They have unqualified access to the data structures in the class.
That is, a class method will never refer to cam->cookie. It will simply do

cooki e = CAM COXI E;

with the understanding that the particular cookie is the one that belongs to this instance of the class.

13

Creating an instance of a new class:

In the C language version of the ray tracer a new camera structure was created with a call to
camera_init(). The camera_init() function then proceeded to malloc() a camera_t() structure and then

initialize it.
canera_init(stdin, nodel, 0);

Pointers to classes are declared just as pointers to structures are. However, dynamic creation of a new
class uses the new operator. In the C++ version of the code we will clean things up a bit and not pass

the model or attrmax parameters.
canera_t *cam
/* Load and print canera data */

cam = new canera_t(stdin);
assert(cam!= NULL);

The new operator may be viewed as somewhat similar to malloc() but it creates an instance of the class

before invoking the initializer code (which is referred to as the constructor).

14

Alternative ways to create an instance of a class

It is also possible to simply declare an instance of new class and invoke its constructor:

canmera_t canera(stdin);

or
canera_t canera;

The parameters (or lack thereof) determine which constructor is invoked. The default constructor which
would be invoked in the second case doesn't actually do anything.

If parameters are supplied that don't match any prototype in the class definition, the C++ compiler
responds with an appropriate nastygram. This is a very common type of error. You need to be able to
recognize and correct it on your own.

canera_t can(stdin, nodel);
cat main.err
main.c: In function "int main(int, char**)':

mai n.c:14: error: no matching function for call to
“canera_t::canera t(_IOFILE*& nodel t*&)'

15

Constructors

1. Are automatically called whenever an instance of the class is created

2. Must never have a return type --- not even void.

3. May be overloaded.. The function actually invoked is the one whose formal parameters “best”
match the actual arguments. Thus when new camera_t(stdin) is invoked this constructor is

called.
Although it is possible to implement
function bodies inside class definitions,
carer ?._t cocanmera_t(unless the functions are trivially short it
fl LE *in) leads to a big mess. The scope
char buf[256]: operator :: is saying this function
i nt mask; belongs to the camera_t class.
assert (fscanf(in, "%", nane) == 1);
fscanf(in, "%", buf); As previously noted, class data
assert (buf[0] =="{"); members cannot by accessed using
cooki e = CAM COXXI E; the cam-> prefix. The major part
of a C to C++ conversion is
canera_parse[0].loc = &pixel _dim eliminating these pointer based
canera_parse[1].loc = &worl d_dim references.

canera_parse[2].loc = &vi ew poi nt;

mask = parser(in, canera_parse, NUMATTRS, 0);
assert (nmask == 7);

/* Allocate a pixmap to hold the ppminage data */

pixmap = (irgb_t *)malloc(sizeof (irgb t) * pixel _dinf0] *
pi xel _dinfl]);

16

Getter and setter functions

One objective of the O-O approach is to encapsulate data within instances of classes and thus protect
against the uncontrolled access that is possible in standard C. Because of this, it is common for a class to
export a collection of getters and setters that allow other classes access to required data but in a
controlled way. For example the image_create() mechanism needs the pixel_dimension to determine
how many times it should iterate on x and y.

The implementation of class methods must employ the structure:

return-type cl ass_type::function_nane(paraneters)

/ */ A/A/Pn‘wue data items are not accessible to any

Int camera_t::camera_getydi n{ entity holding a pointer to a cam_t, but the

voi d

{) cam_getydim() function is public. An entity
return(pixel _dinf1]); that needs to invoke it must hold a valid

} pointer to a cam_t, as shown below.

A C++ program can contain a mix of C++ class methods and traditional C procedures. In fact the
main() procedure will always be a traditional C procedure. A C++ religious warrior may assert that a
real C++ programmer will never use any other traditional C procedures!

static inline void make_row
nodel t *nodel,
i nt y)
L
i nt X;
i nt xdi m
canera_t *cam = nodel - >cam

xdi m = cam >caner a_get xdi m() ;

for (x =0; x < xdim x++)

{

17

A C++ setter function

As before the elements belonging to the class are not qualified with a cam->

voi d canera_t::canera_store_pixel (

i nt X,

i nt Y,
drgb t pi X)
{

i nt mapr ow,
irgb_t *mapl oc;

mapr ow
mapl oc

pixel _dinfl] - vy - 1;
pi xmap + maprow * pixel _dinf0] + x;

scal e_and_cl anp(pi x);

(*mapl oc) [0]
(*mapl oc) [1]
(*mapl oc) [2]

(unsi gned char) pi x[0] ;
(unsi gned char) pi x[1] ;
(unsi gned char) pi x[2] ;

18

Variables shown in red are
class member variables
that used to be accessed

via cam->

Implementing an ad hoc parser

The ad hoc parsers we used in the C code are readily ported to C++ as well. If you choose to use this
approach you must add the class method to the class definition in ray.h.

int camera_t::canera_load attri butes(
FILE *in)
{

char attrib_nane[16];

int count = O;

int attrcount = O;

/* Now consune attributes */

count = O;

fscanf(in, "9%", attrib_nane);
while (attrib_name[O] !'="}")
{

if (strcnp(attrib_nanme, "pixeldim) == 0)

count = fscanf(in, "%l %",

&pi xel _dinf X], &pixel _dinfY]);
assert(count == 2);
attrcount += 1;

}
else if
{
etc....
}

}

return(attrcount);

19

An upside down class

Although it is common for data elements to be private and functions be public, it is sometimes useful to
turn the model upside down in a hybrid C/C++ program. Here, the internal procedures do not need to
support external reference (pointer) holders. It would be feasible to provide a bunch of getters that
would return the pointer to the cam and the lists, but a reasonable person might conclude it is not
necessary.

In general it is a good idea to make everything private that doesn't need to be public.

cl ass nodel _t

{

publ i c:
nodel _t(FILE *);
voi d print(FILE *);
canera_t *cam
list_t *mat s;
list_t *obj s;
list t *| gts;
private:

inline void nodel |oad entity(FILE *, char *);
inline void nodel | oad(FILE *);

20

The model_t constructor

As before note that (1) there is no need to malloc() the model structure, (2) references to class member

data elements (mats, Igts, objs) are unqualfied and (3) so are references to class methods
(model_load())

[**]
/[* Init nodel data */

nodel _t::nmodel t(

FILE *in)
{

mats = new list t;
assert(mats != NULL);

lgts = new list_t;
assert(lgts !'= NULL);

objs = new list _t;
assert(objs !'= NULL);

nodel | oad(in);

21

The model_load() method

This function consumes a single entity name (material, plane, sphere, etc) and then invokes yet another
class method to perform the actual loading. Note that even though, this is a C++ method, in a
model.cpp module its perfectly legal to use standard C library functions such as fscanf{), strcmp(), etc.

I personally find the C++ iostream facilty somewhat baroque, but again expect abuse from C++ religious
zealots if you employ standard C I/O operations.

/* Load nodel data */

inline void nodel t::nodel | oad(
FI LE *in)

{
char entity[16];

int count;
menset (entity, O, sizeof(entity));

count = fscanf(in, "%", entity);

/* Here entity should be one of "material", */
/[* "light", "plane" */
while (count == 1)
{
nodel | oad _entity(in, entity);
count = fscanf(in, "%", entity);
}

22

Creating new entities

Each invocation of model_load_entity() creates a new instance of a material, plane, sphere, etc.

In the C language version this is readily done using a table of function pointers. In the C++ version a

switch or if/else if /else if mechanism must be used. The problem is that there is no way (that I know of)

to pass a variable value to the new operator.

new plane t(in, this, 0);

If we could replace plane_t by a variable which could take on the value plane_t or sphere_t or material_t

then it would be straightforward to put a table driven approach back in place.

inline void nodel _t::nodel | oad_entity(
FI LE *in,
char *entity)

{

if (strcnp(entity, "canera") == 0)
cam = new canera_t(in);

else if (strcnp(entity, "material™)
new material _t(in, this, 0);

else if (strcnp(entity, "plane") ==
new plane_t(in, this, 0);

el se

fprintf(stderr,
exit(1);

23

"bad entity % \n",

Recall that the initializers for materials
and planes needed a pointer to the
model_t structure in order to access
the lists. When such a scenario arises
the predifined this variable can be
used.

0)

entity);

Revisiting the model_t constructor.

In the code shown below we demonstrate that

the this pointer can be used to provide qualified access to class data members.
the this pointer can be copied to other pointers to provide a more C like representation

Both of these techniques are likely to evoke derision from "real" C++ programmers.
nodel _t:: nodel _t(

FILE *in)

{

nodel t *nodel = this;

this->mats = new list _t;
assert(mats !'= NULL);

nodel ->l gts = new list _t;
assert(lgts !'= NULL);

objs = new>list t;
assert(objs !'= NULL);

nodel | oad(i n);

24

The material_t class

The module material.c is a hybrid module involving both standard C procedures and C++ class

methods. The class methods are for the most part typical getters providing access to private values.

class material t

{
publ i c:
material t(){};
material _t(FILE *in, nodel t *nodel, int attrnmax);
voi d mat eri al _getanb(drgb _t dest);
void material _getdiff(drgb_t dest); Standard C procedures such
voi d mat eri al _get spec(doubl e *spec); as material_getbyname() can
void material _getshine(double *shiny);
void material _gettrans(double *trans); not be declared here
char *material getnane();
voi d material _print(FILE *out);
private:
i nt cooki e;:
char nanme[NAVE_LEN] ;
drgb_t anbient; /* Reflectivity for materials */
drgb_ t diffuse;
doubl e specul ar;
doubl e shi ni ness;
doubl e transparency;
}

25

Standard C functions in material.cpp

The standard C functions are those in which the entire list of materials must be processed. Since a class
method is always invoked within the context of a single instance of the class (i.e. a single material) it is
not possible to make such functions members of the class. These prototypes can not appear inside the
class definition and should remain in rayhdrs.h .

[**]

/* Produce a formatted print of the material |ist */
void material list _print(

FI LE *out,

list t *list)

/* Try to locate a material by nanme */
material _t *material _get bynang(

list_t *matlist,
char *nane) ;

26

Initializing a new material t

The only difference between the C and C++ version is the the use of unqualified data names:

ambient, diffuse

/***/
/* Create a new nmaterial description */

material _t::material _t(

FI LE *in, Actual argument
nodel _t *nodel, €¢——— here was this
I nt at t r max)
{
char attrname[NAVE_LEN| ;
I nt count;
I nt mask;

/* Create a new material structure and initialize it */
cooki e = MAT _COXI E

/* Read the descriptive nane of the material */
/* (dark _red, |ight _blue, etc. */

count = fscanf(in, "%", nane);
assert(count == 1);

count = fscanf(in, "%", attrnane);
assert(*attrnane == '{');

mat _parse[0] .l oc = &anbi ent;
mat _parse[1] .l oc = &diffuse;
mat _parse[2] .l oc = &specul ar;
mask = parser(in, mat_parse, NUMATTRS, 0);

assert(mask !'= 0);
nodel - >mat s- >add((void *)this);

27

cookie,

Interaction of C and C++ components

The mission of the material_getbyname function is to find an instance of a material_t that has the proper
name. As such it may have to look at all material_t'. Therefore it is not a material_t class method!
Since it is not a class method, it cannot directly access the name attribute which is private.

It asks the class method material_getname() to return the address of the name.

Serious O-O enthusiasts would not approved of the this technique. Returning the address of the private
attribute gives the caller the ability to modify the attribute via the returned pointer!

[**]

/* Try to locate a material by nane */
material _t *material _getbynane(

l[ist t *list,

char *namne)

{

material _t *mat;

list->reset();
while (list->not_end())

{
mat = (material _t *)list->get _entity();
I f (strcnp(nane, mat->naterial _getnanme()) == 0)
return(mat);
list->next _|ink();
}

return(NULL) ;

28

This version of the function attempts to access mat->name directly. Since name is private, it does not
succeed.

[**]
/* Try to locate a material by nanme */

material _t *material _get bynane(
list t *list,
char *nane)

{ . Since this function is not a
material t *nmat; .
- class method it cannot touch

list->reset(); the private mat->name.
while (list->not_end())
{

mat = (material t *)list->get _entity();

if (strcnp(nane, mat->nane) == 0)

return(nmat);

list->next |ink();

}

g++ -c -Vall -DAA SAMPLES=2 -c -g material.cpp 2> material.err
make: [material.o] Error 1 (ignored)

cat material.err

material.cpp: In function ‘material _t* material _find(nodel _t*,
char*)’:

ray. h:124: error: ‘char material _t::name [16]" is private
material.cpp:104: error: within this context

29

The friend qualifier

Because it is very common for in hybrid C/C++ environments for “helper” functions to need access to
private elements of classes. The C++ language provides the friend capability.

By using friend, one class can give to any functions or class the right to access its private elements
directly. Almost any use of this facility is frowned upon by O-O purists. Excessive use is frowned upon
by everyone.

Nevertheless if we include the following friend declaration in material_t the error shown on the previous
page will go away!

class nmaterial t

{

friend material t *material _getbynanme(list t *, char *);

publ i c:
material t(){};
material _t(FILE *in, nodel _t *nodel, int attrnmax);
voi d mat eri al _getanb(drgb_t dest);
voi d material _getdiff(drgb t dest); Standard C procedures such

voi d mat eri al _get spec(doubl e *spec);
void material _getshine(double *shiny);
void material _gettrans(double *trans); not be declared here
char *material getnane();

voi d material _print(FILE *out);

as material_getbyname() can

private:
i nt cooki e;:
char nanme[NAVE_LEN ;
drgb_t anbient; /* Reflectivity for materials */

drgb_t diffuse;
doubl e specul ar;
doubl e shi ni ness;
doubl e transparency;

30

The use of inheritence

A C++ class hierarchy is based upon the principle of increased specialization.

« The base class carries attributes that are common to all classes and virtual functions that may or
may not be overridden.

+ Attributes that are esoteric to a particular entity plane/normal or sphere/radius are not defined in
the base class

- The derived class inherits the attributes of classes above it in the class hierarcy
- The specialization can continue over multiple levels

+ The amount of "new stuff" required in the implmentation of the derived class can range from
trivial (ellipsoid_t, pfplane_t) to moderate (plane_t, sphere_t) to fairly complex (texplane_t)

| object_t
| sphere_t | plane_t | cylinder_t |
y y
| pplane_t | fplane_t
| ellipsoid_t | iplane. t | | texplane_t |

31

Derived object creation

When an instance of a new class such as fplane_t is created, the new facility creates an instance of each
class as it proceeds up the hierarchy until it reaches the base class and "glues" them together. The
constructors are always invoked top down: object_t() then plane_t() then fplane_t().

Thus, our attribute loading strategy continues to work as before and model description files that worked
in the C version should work in the C++ version.

object_t

plane_t

The workings of the binding mechanism are not particulary obvious.
« When a class method at any level is invoked the "this” pointer always points to an instance of the
level in the hierarchy to which the member function belongs. This guarantees that plane_t

methods see plane_t instances.

+ Pointers may also be forcibly upcast and downcast but this should be a last resort. Downcasting
is particularly hazardous because what is below an object_t varies!!

32

The object_t class
cl ass object t

{ For mysterious reasons, g++

friend class |ight t;
friend int vischeck(vec_t hitloc);

publ i c: functions that do not provide

recently began to strongly
dislike classes with virtual

a virtual destructor.

object _t()
object t(F

}
LE *in, nodel t *nodel);

{
|

virtual ~object t(){};

Default behavior for Aits is a miss.

The printer function is in object.cpp

virtual double hits(vec_t base, vec t dir){return(-1.0);};

virtual void printer(FlLE");
virtual void getlast _hit(vec_t | oc)

{ vec _copy(last _hit, loc); }
virtual void getl ast_normal (vec_t | oc)

{ vec_copy(last_normal, loc); }
const char *get obj nane(void) { return obj nane; };
vir tual Vol d get anb(drgb_t); Default behaviors for these guys are
vi rtual voi d getdiff(drgb t);

to punt the problem to material_t.
vi rtual voi d get spec(doubl e *);
vi rtual voi d gettrans(double *);
)) . L
virtual voi d get shine(doubl e *); Protected attributes are accessible to
pr ot ect ed: derived classes. .

vec_t | ast _hit; /* Last hit point *]
vec t | ast _nor mal ; /* Normal at hit point */
I nt cooki e;

char obj type[NAME LEN]; [/* plane,

/* Surface reflectivity data */
material _t *mat;

private:

sphere, ... */

char obj nanme[NAME LEN]; /* left_wall, center _sphere */

};

33

The object_t constructor

This function mirrors the operation of the old object_init() function. Data elements of the class are now
referenced without the obj-> qualifier.

obj ect t::object t(

FI LE *in,
nodel _t *nodel)
{

char nane[NAVE_LEN] ;
i nt count;

cookie = OBJ_COXI E

/* Read the descriptive nanme of the object */
/* left _wall, center_sphere, etc. */

count = fscanf(in, "%", obj_nane);
assert(count == 1);

[* Consune the delimter */

count = fscanf(in, "%", nane);
assert(*name == '{');

[* First attribute nust be material */

count = fscanf(in, "%", nane);

assert(count == 1);

count = strcnp(nane, "nmaterial");
assert(count == 0);

count = fscanf(in, "%", nane);
assert(count == 1);

mat = material _get bynane(nodel ->nmats, nane);
assert(mt != NULL);

/* Add the object to the list */

nodel - >obj s->add((void *)this);

34

The default reflectivity getters

These functions simply punt the material reflectivity request to the proper handler in the material class.

Excessive punting is often associated with suboptimal O-O design. An alternative design that could
avoid this punt is to have the real objects (plane_t, etc) be derived from both material_t and object_t.
This technique is called multiple inheritance.

Punting can also be avoided by copious use of friend and public, but the downside of that has already
been addressed.

voi d object t::getanb(drgb t anb)
{

}

void object _t::getdiff(drgb_t diff)
{

mat - >mat eri al _get anb(anb) ;

etc....

35

Processing the complete object collection

Because an object_t member function always runs in the context of a single instance of a class, when it is
necessary to process all instances of a specific class it must be done:

in the context of a member function of another class (e.g. the model_t) or
by a "standalone" C language function that is not a member of any class

The function that drives the printing of the object list is implemented here as "case 2". It is a standard C
function that is not a member of any class.

voi d object list _print(
FI LE *out,
[ist t *list)
{
obj ect _t *obj;

list->reset();
while (list->not_end())

{
obj = (object_t *)list->get_entity();
obj ->printer(out);
fprintf(out, "\n");
l'ist->next_link();

}

36

Dumping the attributes of a single object

While it is not appropriate for an object_t member function to driver the printing process, it is
appropriate for a member function to deal with printing a single instance of the class. The printer()
function is a class member.

inline void object t::printer(
FI LE *out)

{
assert(cookie == OBJ_COXI E);
fprintf(out, "% 12s % \n", obj _type, obj _nane);
i f (mat)
fprintf(out, "%12s % \n", "material",
thi s->mat->materi al _getnane());

The printer() function prints the objects name and material name and then invokes the most specific
printer in the hierarchy. The printing heirarchy is designed so that

Each level in the hierarchy prints its own attributes
The attributes appear in stderr in top down order

In its class definition the fplane_t declares a hits function and a printer function. Thus these virtual
functions will override the hits and printer provided by both the object_t and the plane_t.

class fplane t: virtual public plane_t

{
publ i c:
fplane t();
fplane_t(FILE *, nodel _t *, int);

virtual double hits(vec_t base, vec_t dir);
virtual void printer(FILE *);

37

The fplane_t printer() function.

The fplane_t printer uses the scope operator to invoke the plane_t's printer. This always works because
each entity knows what lies above it in the hierarchy. Traversing the hierarchy the other direction is
possible but much nastier and requires specific downcasting.

After plane_t::printer() prints the normal and point attributes, it will return to the fplane_t::printer()
which will print the dims and the xdir.

/***/

void fplane t::printer(
FI LE *out)

{

plane_t::printer(out);

fprintf(out, "%12s 9%.1lf 9. 1l f\n", "dins",
dins[0], dins[1]);
fprintf(out, "%12s %.1lIf %.1lf 9%. 1 f\n", "xdir",
xdir[X], xdir[Y], xdir[Z]);

This scheme is indefininitely continuable. The pfplane_t has no attributes of its own but exists to allow
the getamb(), getdiff() functions of the pplane_t to be mated with the hits function of the fplane_t.

[**]

voi d pfplane_t::printer(
FI LE *out)

{

ppl ane_t::printer(out);
fplane t::printer(out);

38

Creating a derived class

The plane_t is derived from the object_t /

class plane_t: public object _t

Derivation is specified in the class
declaration. If its not here, then this is
a standalone class!

E)u blic: For the derived plane_t to be functional
plane_t (){}; it is necessary to use a constructor that
plane_t (FILE *, nodel _t *, int); can read the attributes
virtual double hits(vec_t base, vec_ t dir);
virtual void printer(FILE *);

Here is where the plane_t says that it

prot ect ed: ' o
vec t nor mal : will provide hits() and dumper()
vec _t poi nt ; functions that override the defaults

private:
doubl e ndotq;

b ndotq is used only in the hits()

should be made private.

function of the plane_t and thus

39

A constructor for a derived class

The plane_t is derived from the object_t. Note that unlike the C version, linking the plane_t to the
object_t is no longer required nor permitted.

[**]
/* Create a new plane object and initialize it */

pl ane_t:: plane_t(

FILE *in, This is a critically important element of
*

_m)del _t *model, . . inheritance. It specifies which constructor

i nt attrmax): object _t(in, nodel)

{ of the parent class should be used.
int mask: Leaving this off will create a befuddling

error condition in which the default object

strcpy(obj type, "plane"); constructor is called.

/* The parser is fairly generic but the address of where to */

/* put the data nust be updated for each new obj ect */
pl ane_parse[0] .l oc = point;
pl ane_parse[1] .l oc = nornmal;

mask = parser(in, plane _parse, NUMATTRS, attrnax);
assert (mask == 3);

vec_unit(normal, normal);
vec_copy(normal, |ast_normal);

ndotq = vec_dot (poi nt, normal);

40

Implementing a hits function
The plane hits function is virtually the same as the in the C version.

/* Determne if a vector projected fromlocation *base */

/* in direction *dir hits the plane.. If so the return */
/* value is the distance fromthe base to the point of */
/* contact. */

doubl e plane_t:: hits(

vec t base, /* ray base */
vec_t dir) /* unit direction vector */
{

doubl e ndot d;
doubl e t:
doubl e ndot b;

ndotq = vec_dot (normal, point);
ndotd = vec_dot(dir, normal);
/* ndotd = 0 ->ray is parallel to the plane */

if (ndotd == 0)
return(-1);

ndotb = vec_dot (nornmal, base);
t = (ndotq - ndotb) / ndotd;

if (t <=0)
return(-1);

vec_scal e(t, dir, last _hit);
vec_sun(last_hit, base, last_hit);

if ((last_hit[Z] > 0.01) && (strcnp(obj type, "projector")))
return(-1);

return(t);

41

Diffuse illumination

Diffuse illumination is associated with specific light sources but is reflected uniformly in all directions.
A white sheet of paper has a high degree of diffuse reflectivity. It reflects light but it also scatters it so
that you cannot see the reflection of other objects when looking at the paper.

To model diffuse reflectivity requires the presence of one or more light sources. The first type of light
source that we will consider is the point light source. This idealized light source emits light uniformly in
all directions. It may be located on either side of the virtual screen but is, itself, not visible.

In addition to providing additional realism, diffuse illumination also provides (almost) realistic shadows.
The "almost" qualifier is necessary because

- real light sources are not points and thus provide "soft" rather than "hard" shadow boundaries
- real objects that reflect light diffusely also illuminate other objects.

42

Implementing diffuse illumination

A list structure for holding instances of the class light_t is already present in the model_t class.

cl ass nodel _t

{
publi c:
nodel t(FILE *);
voi d print(FILE *);
canera_t *cam
list t *mats;
list t *objs;
list t *lgts;
pri vat e:
inline void nodel |oad entity(FILE *, char *);
inline void nodel |oad(FILE *);
b

43

The light_t class

class light _t

L
publ i c:
light_t(){};
light t(FILE *in, nodel t *nodel, int attrmax);
virtual ~light t(){};
Invoked for every hit
_ _ _ point and every light.
virtual void getem ss(drgb_t)
virtual int vi scheck(vec_t);
virtual void illumnate(nodel t *, object t *, drgb t);
virtual void printer(FILE *);
pr ot ect ed:
vec t | ocati on; o1
- . o] Val fied in th
drgb t emssivity, «—— azeizpw.le. mﬂe
Char narre[NA'VE_LEN] : mode escrlptlon 11e
private:
i nt cooki e;
1

44

The light_t class model description

The description of a light is consistent with the structure of the description of visible object. Each light
has a descriptive-name, a location and an emissivity. Emissivity components of white lights are
necessarily equal.

l'ight red-ceiling

{
2

| ocation 4 -
11

8
emssivity 5

}

i ght blue-fl oor

{
| ocation 2 0 0
1

emssivity 1 5

Modifications to model.cpp
Two modifications are needed in model.cpp

The model_load_entity() method must create new instances of light_t new light_t(in, this, 0);
The print() method must invoke the C function light_list_print(out, this) to print the light list.

45

The light_t constructor

The light_t constructor has the same interface as object_t constructors.

[**]
/* Create a new |ight description */
[ight t::light t(

FI LE *in,
nodel t *nodel ,

i nt att r max)
{

parse the required attribute val ues
put the light t class instance into the light |ist

}

The light list printer.

[**]
/* Produce a formatted print of the light list */

void light list print(

FI LE *out,
nodel t *nodel)
{

list t *list;
light t *light;

list = nodel ->l gts;
list->reset();

for each light t inthe light |ist
i nvoke class nethod |light _printer();

46

Adding diffuse illumination to the rayfrace() function

/* Ht object in scene, conpute anbient and diffuse */
/* intensity of reflected |ight. */

cl osest->getanb(thisray); // add anbient reflectivity

The add_illiumination() function drives the diffuse lighting process. It must add the diffuse contribution
of each light that illuminates the hitpoint to thisray. A common error is to compute the diffuse

contribution of a light and then store it in the pixel instead of adding .

add_illum nation(nodel, base, closest, thisray);

The use of the local this_ray variable is made necessary by anti-aliasing (which will be described later).
The scale before add is ABSOLUTELY NECESSARY for anti-aliasing to work properly!

/* Scale intensity by distance of ray travel */
/* then add the scaled value to the val ues pointed */
/* to by pix */

pi x_scale(l / total _dist, thisray, thisray);
pi x_sun(thisray, dpix, dpiXx);

47

The add_illumination() function

This is a standard C function. As shown on the previous page it is called every time an object is hit by a
ray. Its mission is to process the entire light list. For each light the illumination it provides must be
added to *pixel.

voi d add_i | [um nati on(
nodel t *nodel, /* object |ist */
vec t base, /* base of ray.. not used yet */
object t *hitobj, /* object that was hit by the ray */
drgb_t pi xel) /* where to add intensity */
{

light t *Iight;

list t *list;

list = nodel ->| gts;
list->reset()

for each light in the light |ist
light->illum nate(nodel, base, hitobj, pixel);

return;

48

Computing illumination

We use idealized point light sources which are themselves invisible, but do emit illumination. Thus
lights themselves will not be visible in the scene but the effect of the light will appear. Not all lights
illuminate each hit point. The diagram below illustrates the ways in which objects may occlude lights.
The small yellow spheres represent lights and the large blue ones visible objects.

Q Not

o occluded
Self occluded

Occluded by

Hit Point Surface
normal

We will assume convex objects. An object is self-occluding if the angle between the surface normal and a
vector from the hit point toward the light is larger than 90 degrees.

A simple test for this condition is that an object is not self-occluding if

the dot product of a vector from the hit point to that light with the surface normal is positive.
To see if a light is occluded by another object, it is necessary to see if a ray fired from the hitpoint to the
light hits another object before it reaches the light. This can be accomplished via a call to
find_closest_object() The light is occluded if and only if

(1) the ray hits some new object

AND
(2) the distance to the hit point on the new object is less than the distance to the light.

49

Computing the illumination (details)

void light t::illumnate(
nodel t *nodel
vec t base,
obj ect _t *hitobj, [/* The object hit by the ray */
drgb_t pi xel) /* add illum nation here */
{
vec t dir; /1l unit direction to light fromhitpt
obj ect _t *obj; /'l closest object indir to |ight
double close; // dist to closest object in dir to |ight
doubl e cos; /'l of angle between normal and dir to |ight

double dist; /1l to the light from hitpoint
drgb_t di ffuse = {0.0, 0.0, 0.0};

/* Conmpute the distance fromthe hit to the light (dist) and */
/* and a unit vector in the direction of the light fromhitpt */
[* (dir) */

/| * Test the object for self-occlusion and return if occluded */
/* ﬁék.fiﬁd;élosest_object() If aray fired toward the |Iight */
/* hits another object. Pass "hitobj" as the "lasthit" */
/* paraneter so it won't be hit again at distance O. */

/* If an object is hit and the distance to the hit (close)is */

/* closer to the hitpoint than the light, return */
/* Arriving at this point neans the |light does illum nate */
/* object. Ask hitobj->getdiff() to return diffuse */
/* reflectivity */
/* Multiply conponentwi se the diffuse reflectivity by */
/* the emssivity of the |ight. *
/* Scale the resulting diffuse reflectivy by cos/di st */
/* Add scal ed val ue to pixel. */

50

An example illumination computation

Normal vector at hit point

Suppose the diffuse reflectivity of the object is: diffuse = {1, 2, 10}

Suppose the emissivity of the light is emissivity = {8, 8, 2}

Then the componentwise product is diffuse = {8, 16, 20).
Since cos(q) =0.5. The scale factor is 0.5/10=1/20.0.

The scaled value of diffuse = {0.4, 0.8, 1.0}

is then added to the current value of *pixel.

Common fatal problems

failing to use unit vectors when attempting to compute cos(q)

inadvertently modifying the emissivity of the light or the diffuse
reflectivity of the object instead of modifying the local variable diffuse
shown on the previous page.

Accessing last_hit and last_norm

These are protected members of the object_t class. Therefore you must use the getter functions to access
them.

51

A vector class

We will develop a vector class to illustrate some aspects of C++ programming and in some lab exercises.
Use of the vector class and C++ 1/O factilities in your ray tracer is entirely optional. In contrast to lights,
materials, and visible objects we will see that O-O implementation is not very natural in many numerical

applications and forces us into unnatural asymmetric implementations.

Our C++ vector class will differ from the array based approach we have been using. It is based upon the
structured implementation we identified at the start of the course in which the (X, y, z) elements of the

vector are explicitly identified as class member variables named x, y and z;

We put the class definition in file vec.h

#i ncl ude <i ost reanr These two lines replace
usi ng nanespace std; #include <stdio.h> when
using C++ I/O

cl ass vec_t

{

publi c:
vec_t(); Default constructor will set
vec_t (doubl e, doubl e, double); | vectorto(0,0,0). Other one

i vat will set it to values provided
privat e:

doubl e x;

doubl e vy;

doubl e z;

¥

52

The vec_t constructors

As with the ray tracing routines, we put the implementations of the class methods in vec.cpp.
#i ncl ude "vec. h"

vec t::vec_t()

{

In C++ its sometimes
cerr << "default constructor" << endl; difficult to figure out which
X =y =2z =0.0; overloaded function is

} called when (or if at all).

vec t::vec_ t(double xi, double yi, double zi)

{

cerr << "3 parmconstuctor” << endl;

X = Xi;
y = vyi;
Z = Zi;

The cerr function may be passed any number of items of types that it "knows about" separated by << and
they will given a default format and sent to the standard error. cout can be used to send output to the
stdout. The counterpart of these functions is:

doubl e d;
cin >> d;

It can be used to read a value into a type that it "knows about".

The << and >> operators are used for bit shifting in standard C and are overloaded by the ostream and
istream classes. We will see later on how to make << and >> know about the vec_t class itself.

53

Vector operations

In the C++ version of the vector class, our old design can be made to work if we make vec_sum(),
vec_diff(), and so on friends of vec_t. In that way they can remain standard C functions, but have access
to the private values x, y, z of any instance of a vector class to which they hold a reference.

cl ass vec_t

{
publi c:
vec t();
vec_t (doubl e, double, double);
friend inline void vec_sun(vec_t *, vec_t *, vec_t *);
friend inline void vec _diff(vec_t *, vec_t *, vec_t *);
}

Note that the friend declaration is mandatory for this function to be able to access the private elements of
the vec_t. But when declared friend we can transform our array based functions to class based in this
straight forward way.

inline void vec_sun(vec_t *v1, vec_ t *v2, vec_t *v3)
{

Vv3->X = v1->X + v2->X;

v3->y vl->y + v2->y;

v3->z = vl->z + v2->7;

54

Reference parameters

Standard C supports only pass by value. With pass by value, when a structure name is used as a formal
parameter/actual argument, the entire structure must be copied onto the stack. This becomes
increasingly undesirable as structures increase in size. Therefore the standard C solution is to make the
formal parameter and actual argument be pointers to the structure type. Doing this provides two
benefits:

+ Only a single word (the pointer) must be pushed onto the stack
« The called function is able to modify elements of the structure.

C++ supports an additional parameter passing technique knowns as pass by reference. Use of pass by
reference is signified by the use of & instead of * in the formal parameters of the function prototype. In
C++ all function prototypes must have been defined at the point of invocation so there is no ambiguity
regarding what technique is in use.

A benefit of passing references instead of values is:

« Unlike a pointer, it is not possible to do arithmetic on a reference. Thus some of the more error
prone aspects of C programming may be avoided.

cl ass vec_t
{
publ i c:
vec_t();
vec_t (doubl e, double, double);
friend inline void vec_sunm(vec_t *, vec t *, vec_t *);
friend inline void vec_sumvec t & vec t & vec_t &);

};

55

Implementing overloaded functions

Function overloading is the practice of providing multiple implementations of a function having a single
name. Needless to say, excessive use of this technique can produce programs that are virtually
indecipherable!

When a function name is overloaded, the implementation that is actually is the one whose formal
parameters match the actual arguments being passed by the caller in both number of arguments and type
of argument. Therefore, it is mandatory that each implementation have distinguisable parameters.

The C++ compiler allows even standard C functions to be overloaded. We must provide a function body
for every distinct parameterization we wish to allow.

cl ass vec_t

{
publ i c:
vec_t();
vec_t (doubl e, double, double);
friend inline void vec_sunm(vec_t *, vec t *, vec_t *);
friend inline void vec_sunmvec t & vec t & vec t &
}

In the body of the implementation the reference parameter is treated as a structure, and not a pointer to a
structure.

inline void vec_sun(vec_t &1, vec t &2, vec_ t &v3)

{

v3.Xx = v1l. X + v2.X;
v3.y = vl.y + v2.vy,
v3.z =vl.z + v2.z;

}

inline void vec_sunm(vec_t *v1, vec_t *v2, vec_t *v3)
{

Vv3->X = v1->X + Vv2->X;

v3->y vl->y + v2->y;

v3->z = v1->z + v2->Z;

56

Invoking overloaded functions

On the previous page we created two distinct versions of vec_sum(). Fortunately, they produce the same
answer here, but there is no requirement that they do so. On this page we look at the problems of how
to invoke them and which one gets invoked.

To use pass by reference the actual argument must be an instance of the class not a pointer to an instance
of the class.

The instance of an overloaded function that is used is the one whose formal parameters (best) match the
actual arguments. The matching is straightforward when instances of or pointers to classes are the

parameters.

int main() The parameterized

{ constructor is called here.
vec t v1(1.0, 2.0, 3.0);
vec t v2(4.0, 5.0, 6.0);
vec t v3; < The default constructor is

N called here.
vec_sum(&1, &2, &v3); The pointer based
v3. put (); implementation is invoked
here.
_ The reference based

vec_sunm(vl, v2, v3); implementation is invoked
v3. put(); here.

57

A broken function:

We could attempt to add a third implementation of vec_sum() which passes parameters by value by
copying them onto the stack.

cl ass vec_t

{

publ i c:
vec_t();
vec_t (doubl e, double, double);
friend inline void vec_sunm(vec_t *, vec t *, vec_t *);
friend inline void vec_sun(vec_t , vec_t , vec_t);
friend inline void vec_sun(vec_t & vec_t & vec_t &

To call this verson we would also have to use:
vec_sum(vl, v2, v3);

This would produce the following compile time error. Because the calling sequence shown IS the correct
way to invoke either of the bottom two prototypes the compiler can't distinguish which one you want.

mai n.cpp: In function ‘int main()’:

mai n. cpp: 24: error: call of overloaded ‘vec_sumvec_t& vec_tg&,
vec_t&) '’ 1is anbi guous

vec. h: 68: note: candidates are: void vec _sunm(vec t& vec t& vec t&)
vec. h: 75: note: voi d vec_sunm(vec_t, vec_t, vec_t)
acad/ cs102/ exanpl es/vec ==>

The compile time problem could be "fixed" by removing the implementation that used reference
parameters and the resulting program would compile fine but just would not work.

Exercise: Why not?

58

A class based approach

We can also implement yet another instance of vec_sum() which is a true member function of the class.

At first glance this one looks a bit odd because v/ seems to have disappeared!! This occurs because

class methods are always invoked in the context of an instance of the class. In this case the instance will
be vi.

The const modifier makes it not
cl ass vec_t \possible for vec_sum() to modify
{ . v2. Obviously v3 should not be
publ i c: const

vec_t(); '

vec_t (doubl e, double, double);
voi d vec_sun(const vec_ t &2, vec t &v3);

friend inline void vec_sunm(vec_t *, vec_ t *, vec_t *);
friend inline void vec_sun{vec t & vec t & vec t &

¥

The implementation also looks somewhat asymmetric with v2 and v3 being explicitly accessed in contrast
to the implicit access to v1.

void vec_t::vec_sun(const vec_ t &2, vec_t &v3)

{
v3.X = X + Vv2.X;
v3.y =y + Vv2.y;
v3.z =z + Vv2.2z;
}

The asymmetry is also apparent in the invocation.

vl.vec _sum(v2, v3);
v3.put();

59

A collection of possible implementations for vec_sum

C++ makes it possible (though not necessarily desirable) to provide implementations that match virtually

any parameterization:

voi d
voi d
voi d
voi d

vec_sun{ const
vec_sun{ const
vec_sun(const
vec_sun(const

vec t &v2,
vec t *v2,
vec_t *v2,
vec t v2,

vec_t &v3);
vec_t *v3);
vec t &v3);
vec t *v3);

Exercises: Identify any possible usuable prototypes that we may have missed. Identify a prototype

different from any of those above that would cause the compile time problem we saw previously.

Identify a prototype that would compile correctly but would not work. Each prototype must have a

distinct implementation depending upon whether reference or value pointers are used .

voi d vec_t::vec_sun(const vec_t &v2, vec_t &v3)

{

v3. X
v3.y
v3.z

N < X

}

voi d vec_t::vec_sun(const vec_t

{
v3->X
v3->y
v3->7

}

voi d vec_t::vec_sun(const vec_t

{

v3. X
v3.y
v3.z

}

+ V2. X;
+ v2.y;
+ v2.2z;

X + Vv2->X;
y + v2->y;
Z + V2->7;

X + V2->X;
y + v2->y;
Z + Vv2->z7;

*v2, vec_t *v3)

*v2, vec_t &v3)

voi d vec_t::vec_sum(const vec_ t v2, vec_t *v3)

{

Vv3->X
v3->y
v3->7

}

X + V2. X;
y + Vv2.y;
zZ + V2.2

f

This is the only place an entire

vector must be copied onto the

stack.

60

Implementations returning instances of vec_t

It is possible in both C and C++ to define instances of vec_sum() that return the answer. Unless you
have a real good reason for doing so, this is generally a bad idea because in both languages it causes a
copy on to and copy off of the stack operation. (In the C language function overloading (the use of
multiple implementations of the same function name is also illegal).

Here the prototype is declared to refurn an instance of vec_t.

vec_t vec_sun(const vec_t &v2);

The implementation requires a temporary variable in which the sum is computed. It is important to
remember to return(tmp);

vec t vec_t::vec_sun{const vec t &v2)

{
vec_t tnp;
tnmp.x = X + v2.X;

tn'p_y =y + v2.y;
tnp.x =z + v2.z;
return(tnp);

To compute the result v3 = v2 + vl the following C++ code can be used. The "default" structure
assignment mechanism takes care of copying the result off of the stack and into v3. This overhead is
realitively minor for a vector but would be seriously bad for a structure containing a large array.

The syntax of the invocation is not very "natural”
v3 = v2.vec_sum(vl);
when compared to the C function

v3 = vec_sum &l, &v2);

61

Operator overloading in C++
Most operators can be overloaded. The ones that cannot are
¥ 10 ? ¢ and Sizeof

Operator overloading is actually part of the function overloading mechanism. To overload an operator
you simply provide a function of the appropriate name. For example,

Operator Function name

+ operat or +
oper at or -

* oper ator*

<= oper at or <=

-> operator->

Operator overloading is restricted to existing operators. Thus it is not legal to try to overload **

*x oper ator**

The operator functions work "almost" exactly like "regular"” functions. They can even be invoked using
their operator+ or operator- names. Keeping this fact in mind will remove much of the mystery from
how they work and how they must be implemented. The "almost" qualifier above reflects necessity to
remember that almost all C operators take either one or two operands. Thus an operator function has at
most two parameters.

The C addition operator takes two operands: a + b
Therefore the operator+ function will have two parameters: the first will represent the left side
operand and the second the right side operand.

The C logical not operator takes one operand: /value

Therefore the operator! function will have one parameter and it will represent the right side
operand.

62

Operator overloading must preserve the "aryness" (unary or binary) nature of the operator. Thus, the !
operator could be overloaded to compute the length of a single vector but could not be used to compute
a dot product. The operators &, *, +, - have both binary and unary versions that may be overloaded

separately.

It is not possible to change the precedence or associativity of an overloaded operator.

Most operator functions return a value that replaces the operator and its operand(s) in an expression.
However, that is not mandatory. For example a side effect operator such as ++ may not need to return a

value.

Like "regular functions" all operator functions may be defined as "regular C" friend functions of the
class(es) to which their operands belong.

In some but not all cases they may be defined as class member functions instead.

63

Overloads as friend functions

We can write a version of the vec_sum() function that uses the + operator.

cl ass vec_t

Lo
publ i c:
vec_t();
vec_t (doubl e, double, double);
friend inline void vec_sum(vec t *, vec t *, vec_t *);
friend inline void vec_sun{vec_t & vec_t & vec_t &
friend inline vec_t operator+(const vec t & const vec t &);
}

The body of the function is written in exactly the same way that a vec_sum() function which returned the
sum would be written.

vec_t inline operator+(const vec_t &1, const vec_t &v2)
{

vec_ t v3;

v3.X = vl1.X + Vv2.X;

v3.y = vl.y + v2.vy,

v3.z = vl.z + v2.2z;

return(v3);

The function may then be invoked either by standard use of the + operator or by using its operator+()
name.

vec_t v1(1.0, 2.0, 3.0);
vec_t v2(4.0, 5.0, 6.0);
vec_t *vp = &2;

vec_t v3;
v3 = vl + v2
v3 = operator+(vl, v2);

64

If we try to invoke operator + as:
v3 = vl + vp;

mai n. cpp: 21: error: no match for ‘operator+ in ‘vl + vp’
vec. h: 98: note: candidates are: vec_t operator+(const vec_ t& const
vec t &)

This occurs because vp is a pointer. We can fix this in one of two ways.

1 — Write another instance of the operator+() function in which the second parameter is a vec_t *
2 — Just invoke the function as:

v3 = vl + *vp;

65

Overloads as member functions

Overloaded operators can be member functions instead of friend functions if the left side operand is an

instance of the class or if the right side operand of a unary operator such as ! is a class member.

cl ass vec_t

{ If a binary operator is a class method the
. left side operand becomes the "this"
vec t operator+(vec t & hs): instance in whose context the function is

- oP (%) . 4—linvoked..
vec_t operator+(vec_t *rhs);
vec_t operator!(void);

\

b unary operator which
is a class method needs
vec t vec_t::operator+(vec_t & hs) no parameters at all.
{
vec_ t tnp;
tnp.x = x + rhs. x;
tnmp.y =y + rhs.y;

tnp.z = z + rhs. z;

return(tnp);

}
vec_t vec_t::operator+(vec_t *rhs)
{
vec_t tnp;
tnmp.x = x + rhs->x;
tnmp.y =y + rhs->y;
tnp.z = z + rhs->z;
return(tnp);
}

This demonstrates that it is possible to create a second implementation that takes a pointer to a vector
instead of an instance of a vector. The invocation below actually works as intended, but it is really ugly
when you think about it! What sense does it make to add a vector and a pointer.

v3 = vl + vp;

66

Scaling a vector

In the scaling operation we want to multiply the components of a vector by a double precision value.

Since the left side operand is conventionally the double precision value and not a vector the friend
Junction method must be used. Note that it is possible to write the body of the friend function within the

class definition. Also note that for this weeks lab assignment, this approach is not allowed.

friend vec_t operator*(double val, const vec_t &rhs)
{

vec_t tnp;

tnp.x = val * rhs.x;

tnp.y = val * rhs.y;

tnp.z = val * rhs. z;

return(tnp);

We can also write a function that computes the component-wise product:

friend vec t operator*(const vec t & hs, const vec_t &rhs)

{
vec_t tnp;
tnp.x = lhs.x * rhs. x;
tnmp.y = lhs.y * rhs.y;
tnp.z = lhs.z * rhs. z;
return(tnp);

}

The correct implementation will be chosen by the compiler depending upon the operands.

v3 =50 * v2;
v3 = vl * v2;

The following, however, will generate a compile time error:
v3 = v2 * 5.0;

mai n.cpp: In function ‘int main()’:
mai n. cpp: 38: error: no match for ‘operator*’ in ‘vl * 5. 0e+0’

vec. h:54: note: candidates are: vec_t operator*(double, const
vec. h: 63: note: vec_t operator*(const vec_tg&,
vec t &)

67

vec_t &)
const

Further overloading of << and >>

We saw in last week's lab that the overloaded operators << and >> could be used to print and to read
numeric and character string values to the stdout and stderr and from the stdin. True to form, they can
be further overloaded to print and read a complete vec_t. We want to be able to do something like

cout << vli;

where v1 is a vector. Since the left hand side is not a vec_t, we must use the friend function form. So in
vec.h we include in the vec_t class definition:

friend ostream &oper at or <<(ostream &out, const vec_ t &pvec);

We provide the implementation in either vec.cpp or inline in the class definition.

ost r eam &oper at or <<(ostream &out, const vec_t &pvec)

{

out << pvec.Xx <<
return(out);
} t
This is the key to

cascading application
of the << operator

<< pvec.y << << pvec.z << endl;

Note that our new overload just uses the built in overload of << to output each component of the vector
along with punctuation and a \n'.

68

Cascading cout

Our implementation will also let us print an arbitrary number of vectors:
cout << vl << v2 << V3,

This seemingly magic behavior occurs because of two things:

« C++ evaluates a sequence of << operations in left to right order
« The operator<< function returns its left side operand as its result.

So what REALLY happens is: cout << v1 isevaluated and the value it returns (cout) replaces the

operator and its operands in the larger expression leaving:
cout << v2 << V3,

Then cout << V2 isevaluated and the value it returns (cout) replaces the operator and its operands

in the larger expression leaving:

cout << v3;

Then cout << v3 isevaluated and the value it returns is "dropped on the ground", because there is
nothing to assign it to.

69

The finite plane

The finite plane is a rectangular region of finite area within a general plane. It is properly implemented
as a derived class of the general plane. It is specified in the following way:

fplane origin

{

material white object_t constructor

normal 1 0 1
point 0 0 -6 plane_t constructor

xdir 100

) . fplane_t constructor
di nensions 4 2

The three sets of attributes must be specified in the order shown because of the way in which the
constructors are executed. The order within each set of attributes is arbitrary.

In retrospect a better way to have built the generalized parser would have been to have built the parse
control table dynamically.

The value of point which was an arbitrary point on the infinite plane specifies the lower left corner of the
finite plane.

The two new attributes of the fplane_t are its dimensions in world coordinate units. The first dimension
is the size in the x direction and the second the size in the y direction. The x direction is indirectly
specified by the xdir attribute. The xdir attribute is a vector which when projected into the infinite plane
specifies the x direction of the rectangle. The y direction is implicitly given by the cross product of the
unit plane normal and the unitized, projected xdir.

70

The fplane_t class definition

class fplane_t: public plane_t

{
publ i c:
fplane t();
fplane_t(FILE *, nodel t *, int);
virtual double hits(vec_t base, vec_t dir);
virtual void printer(FILE *);
pr ot ect ed:
vec_t new oc; /* translated then rotated last_hit
doubl e di ns[2] ; [* input dins in world coords */
private:
mat t rot; [* rotation matrix */
vec_t projxdir; /* projected unitized xdir */
vec t xdir; /[* input xdir */
1

71

The fplane_t constructor:
attrmax = 2 tells plane_t

[**] constructor to consume only 2
fplane_t::fplane_t(attributes

FI LE *in,

nodel _t *nodel '¢

i nt attrmax) : plane t(in, nodel, 2)

{

The constructor should perform the following actions:

« set the objtype to "fplane”

parse the xdir and dimensions attributes

+ project xdir onto the plane creating projxdir.
« ensure that projxdir is not {0.0, 0.0, 0.0}

« make projxdir unit length.

Next it is necessary to make the rot matrix that can rotate the projxdir vector into the x-axis and the plane
normal into the positive z axis.

« copy projxdir to row 0 of rot
« copy the plane normal to row 2 of rot and make it unit length.
« setrow 1 of rot to the cross product of row_2 with row_0O.

The fplane_t printer:

/***/

void fplane t::printer(
FI LE *out)

{

plane_t::printer(out);

The printer should produce a formatted output of the
xdir, projxdir, dimensions, and the rotation matrix

72

The fplane_t hits function

/***/

doubl e fplane_t::hits(

vec t base, /* ray base */
vec t dir) /* unit direction vector */

{

vec_t new oc;
doubl e t;

In general, determining if a ray hits a rectangular finite plane of arbitrary location and orientation seems
like a difficult problem.

The first step is to invoke the hits function of the standard plane to determine if and where the ray hits
the infinite plane in which the rectangular plane lies. The plane_t::hits() will return either -1 on a miss
or a distance ? to the hitpoint on the infinite plane.

If the infinite plane is missed then clearly so is the finite plane.

If the infinite plane is hit, the problem is determining whether or not the hit point is "in bounds"
or "out of bounds.

73

If the lower left corner of the finite plane happened to lie at the origin, and the projected xdir happened
to lie on the x-axis, and the plane normal happened to lie on the z-axis, the problem would be easy. The
hit is in bounds if and only if:

0 <= last_hit[0] <= dims[0] and
0 <=last_hit[1] <= dims[1]

We can make it possible to perform this simple test if we translate the point defining the lower left
corner of the plane to the origin and then rotate the plane into the proper orientation. Therefore after we
apply these operations to the original last_hit we can make the simple test above work. So that lighting

will still work we cannot modify the original last_hit.

The translation step is accomplished by setting newloc to last_hit — point. (That is, you MUST compute
newloc by subtracting the point attribute of the plane_t from the last_hit object of the object_t.

Then we rotate newloc by transforming it with the ror matrix. After the rotation we have effectively
transformed the original /ast_hit into the "easy location" in which the lower left corner is at the origin

and the fplane lies in the x-y plane. Then we can do the test:

0 <= newloc[0] <= dims[0] and
0 <=newloc[1] <= dims][1]

We return ¢ and newloc is saved in a protected element of the fplane_t.

Note: A C language statement such as:

if (0 <= newoc[0] <= dins[0])
do- sonet hi ng

will compile correctly but will not do what you intend.

74

The general tiled plane

Tiled floors are common elements in raytracing systems primarily because they create interesting
reflections on reflective spheres! The simplest tiled planes lie in x-z space (the normal is (0, 1, 0)) and
have unit tile spacing in world coordinates.

even odd even
2
odd even odd
1
even odd even
0
0 1 2

To determine the color of a particular tile convert the x and z coordinates to int and then note that
choosing a color based upon whether the sum of the integerized x and z is even or odd produces the
desired tiling effect.

While this algorithm works correctly in the example shown above, it does have a nasty effect that is not
shown. Consider what happens when we extend to negative x space. If we simply integerize -0.5 we get
0... the same as when we integerize +0.5.

Thus we end up with an ugly "double -wide" strip of tiles centered along the line x = 0 to prevent this we
can add -1 to negative numbers before integerizing or add some big positive number to all values before
conversion to integer. This trick effectively translates the ugly stripe out of the visible area.
We will describe a slightly more sophisticated approach in which:

- the plane may have any normal vector (not just (0, 1, 0) or (0, 0, 1) etc)

- the tiles may have any rectangular dimensions
- the tiles may be laid out with any orientation

75

The tiled plane object

The tiled plane class, tplane_t, like the fplane_t illustrates multilayer inheritence. Since it is explicitly
derived from plane_t, it is implicitly derived from object_t as well. Thus whenever a tplane_t is created
an instance of a plane_t, and an object_t will automatically be created as well.

Note that the _plane has getdiff() and getamb() methods which will override the getdiff supplied in the
object_t when obj->getdiff is invoked on a tplane_t object.

class tplane_t: public plane_t

{
publ i c:
tplane_t();
tplane_t(FILE *, nodel t *, int);
virtual void printer(FILE *);
virtual void getanb(drgb t);
virtual void getdiff(drgb_ t);
private:
I nt select(void); /* 0->forgrnd 1 -> back */
doubl e di ns[2] ; /* tile dinmensions */
material t *altmat; /* background materi al */
mat t rot; /* rotation matriXx */
vec_t projxdir; /* proj / unitized xdir */
vec t xdir; /* x direction of tiling */
}

76

The tplane_t model description

canera canil

{
pi xel dim 640 480
worlddim 8 6
viewpoint 4 3 8

}

material white

diffuse 2 2 2
anbient 1 11

}

mat eri al brown

diffuse 3 30
anbient 1 11

}
light center
{
| ocation 4 3 O
emssivity 10 10 10
}

tiled plane |left

material white
nor nal 6.93 0 4

poi nt 000
xdir 110
di mensions 1 2

altmaterial brown

tiled_plane right

material white
normal -6.93 0 4
poi nt 4 0 -6.93
xdir 110

di nrensions 1 2
altmaterial brown

77

The tplane_t constructor

tplane_t::tplane_t(

FI LE *in,
nodel t *nodel
I nt attrmax) : plane_t(in, nodel, 2)

{

Parse the three required parameters

Ask material_getbyname() to return a pointer to the alternate (background) material

Project xdir into the plane and make it a unit vector

Build a rotation matrix that rotates the plane normal into the z-axis and the projected xdir into the
X-axis.

The getdiff and getamb methods

These methods are just wrappers that call other methods to retrieve the appropriate reflectivity based
upon the value returned by select().

void tplane t::getdiff(
drgb t *val ue)
{
if (select() == 0)
ask the default (object level) getdiff() to fill in value
else

ask material_getdiff{) to fill in the diffuse reflectivity of altmat.

78

The select() method

Apply the rot matrix to last_hit to rotate it into the plane having normal (0, 0, 1) with the
projected xdir of the tiling parallel to the x-axis. This should create a new vector called newloc
whose z-component should be 0. Because the plane is infinite, you don't need to translate the
point defining the plane to the origin. If you choose to do that, your tile pattern will be
unchanged but the tiles may appear shifted in the output image.

Add 100000 to newloc.x and newloc.y (westall's hack to avoid ugly doublewide stripe at origin).
Divide newloc.x by dims[0] and newloc.y by dims/[1] to compute relative tile number in each

direction and use the sum of these values to determine if the tile is forground or background.

79

Spotlights

The light object that we have been using radiates light in all directions.

A spotlight can be thought of as lying at the base of a cone and illuminating only that area which is
visible from the base of the cone.

Definining a spotlight object requires two additional items of information beyond that required for an
omnidirectional light:

« The direction the spotlight is pointing
« The cosine of the angle defining the width of the cone

It turns out that those two measures are inconvienient for humans to deal with. So our spotlight _t will
transform the human-centric measures to computer-centric measures in the constructor.

80

The spotlight class and constructor

The spotlight class needs only three methods: a constructor, a printer, and a visibility checker that
decides whether or not a hitpoint is in the spotlight's cone.

class spotlight t: public |ight _t

{
publ i c:
spotlight t(FILE *, nodel t *, int);
virtual void printer(FlILE *);
virtual int vi scheck(vec_t hitloc);
private:
doubl e theta; /1 half angle in degrees
vec t poi nt; /1l point the centerline hits
vec t dir; /1 unit vec centerline direction
doubl e cost het a; /'l cosine of the cone's half angle
b

A sample input looks like

spotlight centre_red

{
| ocation 4 3 1
emssivity 500
poi nt 40 -2
t heta 20

}

The constructor must parse the point and theta parameters. It must compute a unit vector in the
centerline direction and store it in dir and convert theta to radians and store its cosine in costheta. The C
math library supplies a cos() function that can be used:

costheta = cos(theta);

but theta must be converted from degrees to radians before calling cos().

81

The vischeck() method of the spotlight t

A spotlight can illuminate the hit location if and only if a vector from the /ocation of the spotlight (light)
to the hit location lies inside the spot cone. Therefore, it is necessary to incorporate such a test in the
vischeck() method of the spotlight_t class.

In the diagram below the dashed line is the spotlight centerline and the green lines delimit the spot cone.
The hitloc lies inside the spot cone if and only the angle between the centerline vector and a vector from
the center of the spotlight to the hitpoint is less than theta the angle that defined the halfwidth of the spot
cone. The point H1 is illuminated by the spotlight but H2 is not.

CHL W

Therefore to determine if a the hit location is illuminated:

1. Compute a unit vector from the location of the spotlight 7o the hit location

2. Take the dot product of this vector with a unit vector in the direction of the centerline of the
spotcone.

3. [If this value is greater than the costheta value previously computed, the hit location is
illuminated.

int spotlight_t::vischeck(

vec_t hitloc) /1 last hit |ocation

{

return 1 if light illumnates hitloc and O ot herw se.

82

Recursive functions

Recursive functions are those that directly (or sometimes indirectly) invoke themselves.

On the positive side these functions can produce amazingly succinct solutions to problems the are
extremely difficult to solve in other ways. In fact the "other ways" often involve emulation of recursions
or transformation of the problem in to a more complicated representation.

On the challenging side the algorithms can be quite subtle and much more difficult to develop than any
of the algorithms that we have seen so far.

The classes of problem for which recursion is most well suited are searches through trees and general
graphs.

Applications include:
- parsing of languages that support nested structures (e.g. evaluation of arithmetic expressions in
which parentheses may be nested;
« searching for any path or the shortest path through a graph or maze type structure

- generation of subsets of a larger set of elements

Recursion also provides a convenient way to deal with reflected rays in a raytracing environment.
However, it is reasonably easy to do this in a non-recursive way as well.

Specifically, when confronted with a multiple alternative path type problem recursion is often a useful
approach.

83

A simple, but not useful, application

The "traditional" example of recursion involves computing mathematical recurrences, commonly the
factorial function. The factorial (and other recurrences) are trivial to calculate in a single for loop in a
way that is much more CPU and memory efficient!

Nevertheless, the simple example provides a useful first step in understanding the approach.

#i ncl ude <stdi o. h>

int fact(: :
int val) Every recursive function
{ must include a mechism
if (val == 1) < for halting the
return(l); recursion!!
val = val * fact(val - 1);

return(val);

}

int main()

{

int fv;

fv = fact(5);
printf("%l \n", fv);

If the input value is 1, then fact returns 1. Otherwise fact() invokes itself and multiplies the value
returned by the input value.

The crucial aspect of the procedure is that no multplications occur until 1 is returned.

As described in CPSC 101 each time a function is invoked its parameters and local variables are

allocated on the stack. Thus by the time the return(1) is reach there are 5 copies of the parameter val on
the stack. The values returned by the refurn(val); are 2, 6, 24, 120

84

A version that permits better insight

Because recursive algorithms are more subtle than iterative ones, it is always a good idea to instrument
them so that a better understanding of what is transpiring may be obtained. NEVER hesitate to introduce
new local variables that can help you see how the computation is progressing... as Professor Brooks said
in another context "you will anyway".

#1 ncl ude <stdi o. h>

int fact(
int val)

{

i nt newal;
int retval

if (val == 1)
return(l);

newal fact(val - 1);
retval = val * newal

printf("val = %d newal = % retval = %l \n",
val , newal, retval);

return(retval);

}
int main()
i

int fv;

fv = fact(5);

printf("% \n", fv);
}
acad/ cs102/ exanpl es/ fact ==> a. out
val = 2 newal =1 retval = 2
val = 3 newal = 2 retval = 6
val = 4 newal = 6 retval = 24
val = 5 newal = 24 retval = 120
120

85

The proper way to compute a mathematical recurrence

The easy and efficient way requires only a single simple loop! So don't go looking for ways to use
recursion unnecessarily!

#i ncl ude <stdi o. h>

int main()
{
int fv;
int i;
fv = 1;
for (i =2; 1 <=05; |++4)
fv =fv * |;

printf("% \n", fv);

86

A more challenging problem

Many problems that are quite easy to state and easy to solve manually can be very difficult to solve with
a computer program. Here is one:

Write all the sequences of the first n letters of the alphabet taken k letters at a time.

It is well know that the number of combinations of # items taken k at a time is n/ / ((n — k)! k!)
For example let n = 5 and k = 3. Here the number of combinations is 5!/ (2!3!)=(5x4)/2=10
Being clever humans we can easily enumerate them:

We start by writing all the different combinations that start with ab

abc

abd

abe

Then we replace the b with ¢ and add

acd

ace

Next d replaces ¢ and we get

ade
That is all there are that contain a so now we start with b
bed

bce

then
bde

which leaves us with
cde

Exercise: Try to write a program that will generate these sequences one letter at a time given n=5 and k
=3.

87

A graphical view of the solution

Recursion depth
1 2 3

~
—

D o0

o -0
o o

D

o0
D

a
: AN
¢

Lines shownin ----------- denote operations done within a loop in the context of a single invocation

d e

of the recursive functions.

Lines shownin ——— denote a recursive call. Information that must be passed in the recursive
call includes

e the current length of the string and
e the base character that the lower layer must start with.

When the current length == target length k, the recursion is finished.

88

The recursive solution
#i ncl ude <stdi o. h>
/* build string here */

char string[27];
char *al pha = "abcdef ghij kl mopqr st uvwxyz";

int n; /] total nunber of characters to work with
int Kk; /'l target length of each string

i nt combos(
i nt base, /1l index in current string
int |en) /'l length of current string
{
int left =k - len; // remaining itens to add

if (left == 0)

{
printf("%\n", string);
return(0);

&9

/* A single activation of conbos will store a character */

/* only in one spot in the string being constructed. */
/* That spot is given by len.. However the character */
/* it actually stores inits spot will nbve one spot */
/* down the al phabet for each iteration of the | oop. */

while ((base + left) <= n)

{
string[len] = al pha[base];
string[len + 1] = 0;
fprintf(stderr, "9%3d %3d %3d B8d 9% \n",
len + 1, base, len, left, string);
conbos(base + 1, len + 1);
base = base + 1,
}
return(0);
}
Depth Base Len Left String
1 0 0 3 a
2 1 1 2 ab
3 2 2 1 abc
3 3 2 1 abd
3 4 2 1 abe
2 2 1 2 ac
3 3 2 1 acd
3 4 2 1 ace
2 3 1 2 ad
3 4 2 1 ade
1 1 0 3 b
2 2 1 2 bc
3 3 2 1 bcd
3 4 2 1 bce
2 3 1 2 bd
3 4 2 1 bde
1 2 0 3 c
2 3 1 2 cd
3 4 2 1 cde

90

int main()

{
string[k] = O;
fscanf(stdin, "% %", &n , &K);
conbos(0, 0);

}

acad/ cs102/ exanpl es/ conbos ==> tinme a.out | wc -|
26 13

10400600
r eal Onb. 627s
user Omil. 376s
sys OnD. 152s
i nt conbos(
i nt base, /1 index in current string
int |en) /1l length of current string
{
int left =k - len; // remaining itens to add

while ((base + left) <= n)

{
string[len] = al pha[base];
if (len == (k - 1))
printf("%\n", string);
el se
conbos(base + 1, len + 1);
base = base + 1;
}
return(0);

91

A maze problem

Consider the following two dimensional array

0000O0O
1111

0O000O0O0O
011111
000011
111000

We can view this as a maze in which passage through locations have a value of 0 is permitted but passage
through locations having a value of 1 is not. We add the additional constraint that movement is
permitted between adjacent locations in the array in only vertical and horizontal (not diagonal)
directions. As is conventional, the value maze[0][4] represents row 0 column 4.

Our mission will be given a start (row, col) and a target (row, col), print a path (if one exists) beween the
start and the finish. For the maze shown here given a start (0, 0) and a target (5, 5) the path is:

0

P OOOPRFrO
PORFRLPOPRFrO
PORFRPLPORKFrO
oNel ol i)

OR Rk O
ORr PR OOO

92

Sample input and output

The input will be given in the following format:

000000 Maze data. We will
111110 always work with 6 x 6
000000 y
011111 arrays
000011

111000

start (row, col)

[6) N @]
[6) N @]

target (row, col)

The path should be printed in the following format. The first 0 (0, 0)

1 (0, 1)
2 (0, 2)
3 (0, 3)
4 (0, 4)
5 (0, 5)
6 (1, 5)
7 (2, 5)
8 (2, 4)
9 (2, 3)
10 (2, 2)
11 (2, 1)
12 (2, 0)
13 (3, 0)
14 (4, 0)
15 (4, 1)
16 (4, 2)
17 (4, 3)
18 (5, 3)
19 (5, 4)
20 (5, 5)

93

/* 2-d maze search program */

#i ncl ude <i ostreanr
usi ng nanespace std,;

#define X DIM 6
#define Y DDM6

struct coord_type

{ Because recursion involves a considerable
int vy; amount of function call/return activity,
int Xx; overhead can be minimized considerably by

} path [Y_DM* X DIM; making global those variables not required

for the recursion to work.

int maze[Y. DDM[X D M;
int visitedf]Y DM[X DM;

int starty, startx; /'l (y, X) start coordinates
int targety, targetx; /'l (y, x) target coordi nates
i nt truel en; /1l length of the final path
voi d read_maze(
voi d)
{

int i = 0;

int *loc = maze[0] ;

while (i < X DIM* Y.DI'M

{
cin >> *|oc:
| oc += 1;
I += 1;

}

cin >> starty >> startx;
cin >> targety >> targetx;

94

The legal_move() function

Since we have to evaluate the possibilty of moving East, South, West, and North, it is best to write a
single function that will return true if a potential move is legal and false if it is not.

int | egal nove(
i nt desty, /'l potential destination for next step
i nt destx)

{
if ((desty, destx) is
in the maze and
hasn't been previously visited

has a value of 0
return(l);

else
return(0); // false -> not |egal nove

95

The build_path() function

The build_path() function is the recursive function that actually solves the problem. The variable

pathlen carries the current depth of the recursion which is also the current length of the path.

Because these algorithms are very subtle it is even for even an experience gdb user to have trouble

keeping track what is going on and going wrong. Thus it is a good idea to put diagnostic prints at all

entry and exit points of the recursive routine.

Return values are key to making this work. The function must return O if

it discovers that the end of the path is reached or
it receives a O return from a recursive call.

It must return -1 if

i nt
i nt
i nt
i nt

{

it reaches a point where all moves are illegal
it is returned -1 all attempts to make legal moves
bui | d_pat h(
pat hl en, /1l current length of path
Y, /[l (y, X) coordinates of this location
X)

int rc = -1;

remember this location has been visited
fprintf(stderr, "visiting %d % wth pathlen % \n",
pat hl en) ;
if this location is the target
{
fprintf(stderr, "found the target at % % \n", vy,
remember current pathlen in truelen
store this location in the path
return(O0);

96

y, X,

X);

/* Haven't reached the target so need to press onward */

try to build_path() east; Each of these is a potential

if that doesn't work try to build_path() south; recursive call depending
if that doesn't work try to build_path() west; upon whether east, south,

est, or north is a legal
if that doesn't work try to build_path() north; v move.l &

If the target was found, then build_path() returns a non-negative number and the

search is over. Note that the path is built backward as the recursion unwinds.

{
fprintf(stderr, "adding point % % wth pathlen % \n",
y, X, pathlen);
store this location in the path
return(0);
}
/* Ht a dead end... back up one spot */

i f not hi ng wor ked

{
fprintf(stderr, "stuck at % %l backing up \n", vy, X);
return(-1)
}
int main()
{
int failed = 0;
read_maze();
failed = build _path(0, starty, startx);
if (!'failed)
print_path(truel en);
el se
printf("can't get there fromhere! \n");
}

97

OPrOO0OrOo
ool Nololo)
RPFORFLRORO
OOoOPrOoOrOo
OrPrOoOor o

OCOoOOoOrrOo

O o1
o b

visiti
visiti
st uck
visiti
visiti
visiti
Visiti
visiti
visiti
visiti
Visiti
visiti
visiti
visiti
Visiti
visiti
visiti
st uck
st uck
st uck
visiti
visiti
Visiti
visiti
visiti

ng
ng
at
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
at
at
at
ng
ng
ng
ng
ng

OO OOFRLPNMNNNNNNNWWwRrOOTOOEA DS DO O1OT
GPRPRWONNWPAMPIITOAOPRPRWNREPPOOORPNNWRMOOOIO A

wi th pathlen
wi th pathlen
backi ng up

Wi th pathlen
wi th pathlen
wi th pathlen
wi th pathl en
Wi th pathlen
wi th pathlen
wi th pathlen
wi th pathl en
Wi th pathlen
wi th pathlen
wi th pathlen
wi th pathl en
Wi th pathlen
wi th pathlen
backi ng up

backi ng up

backi ng up

wi th pathlen
wi th pathlen
wi th pathl en
Wi th pathlen
wi th pathlen

found the target at 0 5

= O

O©CoO~NOUITRWNE

12
13
14
15
16

98

Specular lighting

Specular light is which is coherently reflected without scattering. The best example of an object with no
ambient or diffuse reflectivity but high specular reflectivity is a mirror.

When you look into a mirror, what you see is the reflection of light that has previously been reflected or
emitted by other objects. We can create a pure mirror by defining an fplane having a material with
diffuse and ambient = {0, 0, 0} and specular = 1.0.

Therefore in a raytracing system, if a ray hits an object with a non-zero specular reflectivity it is
necessary to reflect or bounce the ray to see what it hits next. If that object also has a non-zero specular
reflectivity it is necessary to bounce the ray again.

This process continues until the bounced ray:
hits no object
hits an object with no specular reflectivity.

travels so far that the effect of further bounces is negligible

Relfecting a ray

Basic physics says: The angle of incidence (the angle the incoming ray makes with the normal at the
hitpoint) is equal to the angle of reflection

vec_reflect(

vec_t *unitin, /* unit vector in incoming direction of the ray */
vec_t *unitnorm, /* outward surface normal */
vec_t *unitout); /* unit vector in outgoing direction reflected ray */
A%
N N cos (T) = N
Vv N (N dot U)
Let
U = -unitin

N = unitnorm

Then
U+ V =2Ncos(T) where T is the angle between U and N
cos(T) = U dot N

SO
U+V=2N(UdotN)

and
V=2N(UdotN)-U

100

The updated raytrace function:

void ray_trace(
nodel t *nodel,

vec t base, /* location of viewer or previous hit */
vec t dir, [* unit vector in direction of object */
drgb t pi X, [* pixel return | ocation */
double total _dist, /* distance ray has traveled so far */
object t *last_hit) /* nmost recently hit object */
{

obj ect t *cl osest;
doubl e specref = 0.0;

doubl e m ndi st ;
drgb_t thisray = {0.0, 0.0, 0.0};

if (total dist > MAX D ST)
return;

Find the closest object that the ray hits, and if there is a hit:
Add the distance from base of the ray to the hit point to total_dist
and do ambient and diffuse lighting as before and divide by total_dist

closest->getspec(&specref); /* see if object has specular reflectivity */
if (specref'is not 0)

{

drgb_t specint = {0.0, 0.0, 0.0};

'\ AR ~

compute direction, ref_dir, of the r\eﬂécled\my.

ray_trace(model, closest->last_hit, ref_dir, specint, total_dist, closest);

scale specrint by specref

add specint to thisray The hitloc lies on the
; surface of closest.

. . We can't allow
add thisray to pix
yop another hit at
/ distance 0

101

Specular glints

Glints are another form of specular reflection. A glint occurs when a specific light is reflected from the
surface to the viewpoint (or source of a reflected ray). In the following example we see glints produced
by a greenish light in the lower left and a redish light at the upper right.

The center of the glint is the location at which a ray arriving from the light is reflected about the normal
directly into the eye of the viewer. We will provide a model that allows us to control how tightly the

reflection is focused.

102

Modifications to ray tracing data structures

The only modification necessary is the addition of the shininess exponent to the material_t. Itisa
single double precision value and must be added to the parser and printer of the material_t. If the
shininess value is not specified it should be set to 0.0. The material_getshine() function retrieves the
shininess value. While we are at it, we also add a transparency attribute that we will describe later.

class material _t
{
friend material _t *material getbynane(nodel t *, char *);
publ i c:
material t(){};
material _t(FILE *in, nodel _t *nodel, int attrnmax);
voi d mat eri al _getanb(drgb_t dest);
voi d material _getdiff(drgb t dest);
voi d mat eri al _get spec(doubl e *spec);
voi d mat eri al _get shi ne(doubl e *shi ny);
voi d mat eri al _gettrans(double *trans);
char *material getnane();
voi d material _print(FILE *out);

private:
i nt cooki e;:
char nanme[NAVE_LEN ;
drgb_t anbient; /* Reflectivity for materials */

drgb t diffuse;
doubl e specul ar;
doubl e shi ni ness;
doubl e transparency;

103

A sample input file

The input file used to produce the blue sphere with the two glints is shown below. The larger the value
of shininess the more focused (smaller) the glint will be. Visually realistic values tend to be large.

canera canil

{
pi xel dim 800 600

worlddim 8 6
viewpoint 4 3 4
}

mat eri al bl ue

diffuse 0 0 8
specular 1 1 1
shininess 50.0

}
i ght pinkfront
{
emssivity 6 55
| ocation 10 8 4
}
I i ght cyanfront
{
emssivity 4 6 5
| ocation -2 0 4
}
spher e shadowraker
{
mat eri al bl ue
center 4 3 -6
radius 4
}

104

The model for producing glints

The model is closely related to the one underlying specular reflection. Because the angle of incidence
is equal to the angle of reflection, an incoming light ray from light 1 will be directed toward the view
point. In contrast, an incoming ray from light 2 will be reflected on the other side of the surface normal
from the ViewPt.
i Light
Light)

1 .
ViewPt

(base of ray)

Notice that if the light is reflected directly toward the view point, then the sum of the vector pointing
toward the light and the vector pointing toward the viewpoint (more precisely the source of the ray!) is a
vector that is perfectly aligned with the surface normal.

105

Therefore the algorithm works as follows:

void light _t::add _glint(

object _t *hitobj,

vec_t base, /'l base of original ray

vec_t dir, /1 unit vector in direction to |ight
drgb_t pi xel)

If the shininess of the surface is O return.

Compute a unit vector from the hitpoint to the light.

Compute a unit vector from the hitpoint to the source of the ray.

Take the sum of these two vectors and convert the sum to a unit vector.

Compute dot = the dot product of the unit sum with the unit normal at the hitpoint. This is our
base measure of how close the line to the viewpoint is to the actual direction the light is reflected.
Raise dot to the power of shininess. Since the dot product is <= 1.0, raising it to a large power
will tend to reduce it. This is why a large value of shininess produces a more focused glint.
Scale the emissivity of the light by dot times the specular reflectivity of the hit object's material
Add the scaled value to pixel.

Technically speaking we should also scale by 1/(distance to light). But that tends to excessively reduce
the visibility of the glint.

106

Where does the glint code go?

The glint effect must be computed for every hitpoint and every light. This is also true of diffuse
illumination. Thus, the most reasonable place to put it is:

in a new method that is invoked near the end of illuminate illuminate().

pi x_sum(pi xel , di ffuse, pixel);
add glint(hitobj, base, dir, pixel);

return;

How do we access the base of the ray??

We must pass it from raytrace, through add diffuse to illuminate :-(

107

Antialiasing with sub-pixel sampling.

Aliasing is an effect in which edges that should appear smooth actually appear jagged because of the
finite size of pixels. One approach to anti-aliasing is to artificially induce an intensity gradient near any
edge. One way to do this is via random sub-pixel sampling.

In this approach, the world coordinate space is partitioned into a collection of non-overlapping squares
in which the actual pixel associated at the square is located at the center. Multiple rays are fired at each
pixel with the direction of the ray randomly jittered in a way that ensures in passes through the proper
square. The value actually stored in the image is the average of all the pixel values computed.

Magnified view without antialiasing

Magnified veiw with 16 pixel averaging

108

Jittering the ray direction

The easiest way to jitter the direction of the ray is to jitter the coordinates of the pixel through which it
passess. This is easy to do

[**]

voi d canera_t::canera_getdir(
i nt X,

i nt Y,

vec t dir)

{

vec_t world;
doubl e dx = x; Can't jitter an int!!
double dy = vy;

if (AA_SAMPLES > 1)

{
dx = random ze(dx);
dy random ze(dy);

}

/* Compute direction using (dx, dy) */

The randomize() function

Most systems provide library functions that generate streams of pseudo random numbers. The random()
function is the one we will use. It returns an integer value between 0 and Ox7fffffff.

To perform pixel randomization the value must be converted to a double in the range [-0.5, 0.5] which is
then added to the input pixel coordinate. This can be done by:

e converting the random integer to a double
e dividing the double by Ox7fffffff
e subtracting 0.5 from the double.

In the transformations, do not use the symbol RAND_MA\X.

109

Modifications to image_create()

The make_pixel function must generate AA_SAMPLES direcctions and call ray_trace() AA_SAMPLES
times.

It is necessary that ray_trace() add to and not set the contents of the pixel pointer passed to it.

After all the calls to ray_trace() have been made the final pixel value must be scaled by 1.0/
AA_SAMPLES

static inline void nmake_pi xel (
nodel t *nodel,
i nt X,
I nt y)
{
vec_t raydir;
vec t viewpt;
drgb t pix = {0.0, 0.0, 0.0};
canera_t *cam = nodel - >cam
i nt I

cam >caner a_get vi ewpt (vi ewpt) ;
for (i =0; 1 < AA SAMPLES; i ++)
{
cam >canera_getdir(x, y, raydir);
ray trace(nodel, viewpt, raydir, pix, 0.0, NULL);
}

pi x_scale(1.0 / AA SAMPLES, pix, pix);
cam >canera_setpi x(x, y, piXx);
return;

110

Partial transparency

Partial transparency of objects is somewhat less easy to implement than specular reflection. We will be
confronted by two aspects of the problem:

e allowing objects that are normally obsured because they are located behind other objects to
become visible.

e allowing lights that would normally be occluded to provided partial illumination of the
intervening objects are all partially transparent.

One could argue that if we were to do specular reflection correctly then it would be even more difficult
than partial transparency. Recall that we did not deal with the possibilty of light being reflected from a
shiny surface illuminating an object, but in the real world it surely does that.

An optional transparency factor is added to the material_t. Its default value is 0.0 which means not
transparent at all.

privat e:
I nt cooki e;
char nanme[NAME_LEN] ;
drgb_t anbient; /* Reflectivity for materials */

drgb_t diffuse;

drgb_t specul ar;

doubl e shi ni ness;

double transparency; /* 0.0 -> opaque : 1.0 invisible */

111

Example

In the above image page this is the material definition for the gold vases and the see through sphere

material gold

{
anbient 1 10
diffuse 4 4 0
transparency 0.2
specul ar 0.4

}

material see thru

{
diffuse 4 4 4
transparency 0.6

}

112

Required modifications

Modifications to material_t
The following modifications to the material_t class are needed to support transparency

e Then material constructor must parse transparency attribute
e New material_t::material_gettrans() and object_t::gettrans() methods

Modifications to ray_trace

The following modifications to the ray_trace() function are also required. This code should be inserted
immediately AFTER add_illumination() is called and thisray is scaled by 1 / total_dist.

closest->getstrans(&trans);, /* see if object has transparency */

if (trans is not 0)

{
drgb_t transint = {0.0, 0.0, 0.0}; // intensity of pass thru ray.

drgb_t diffcolor = {0.0, 0.0, 0.0}; // diffuse color of transparent object

call ray_trace recursively keeping the same ray direction but letting the new base of the
ray be the current hit point. Use the "closest" as the last hit object.

scale thisray by (1.0 - trans)

scale transint by trans

compute diffcolor and maxpix; // as in light_t::illuminate

scale diffcolor by trans / maxpix

multiply (component-wise) transint by scaled diffcolor

add transint to thisray

113

Modifications to light _t::illuminate()

The tests for occlusion must be modified in a fairly significant way. It is potentially necessary to
identify all of the objects that lie upon the path from the hit point of the object being illuminated back to
the light. For each object that lies on the path and is partially transparent it is necessary to modify the
emissivity of the light in a way that reduces its intensity and may change its color. A correct solution
should work something like this:

getem ss(emss); [/ make copy of emssivity that we can change.
baseobj = hitobj; // starting point for search
wor kdi st = dist; // make copy of dist we can change.

while (1)

{
drgb t diffcolor; // diffuse color of object in the way
doubl e maxpi x; /1 maxi mum val ue of diffcolor[] array.
doubl e trans; /'l transparency of intervening object

find cl osest object along the path

if there isn't one or it's beyond the |ight
br eak;

conpute trans;

if (trans == 0)
return;

/* Light is occluded by partially transparent object */
conpute diffcol or and maxpi x;
scale diffcolor by trans / maxpix
mul tiply (conponent-w se) em ss by scal ed diffcol or

updat e baseobj
updat e wor kdi st

114

A single partially transparent finite plane

canmera caml

{
pi xel dim 640 480

worlddim 8 6
viewpoint 4 3 8
}

material white

diffuse 16 16 16
}

mat eri al green

diffuse 0 8 2
transparency 0.6

}

pl ane backwal |

{
material white
normal 0 0 1
point 00 -8

}

fplane mddle

{
mat eri al green
normal 0 0 1
point 2 1.5 -5
xdir 100
di nensi ons 4 3

}

[ight left

{
| ocation 0 3 3
emssivity 555

}

l'ight right

{
| ocation 8 3 3
emssivity 555

}

115

The resulting image

The gray background is background is the backwall as illuminated by the two lights with neither light
passing through the finite plane. The light green area on the left side of the picture is produced by rays
that do not hit the fplane but for which the light on the right is occluded by the transparent fplane. The
bright green rectangle with the dark stripe in the middle is produced by rays that pass through the
transparent fplane and then strike the back wall. The dark stripe in the center is covers pixels on the back
wall for which the finite plane occludes both the left and right lights. The thin even darker green strips
above and below the fplane are backwall pixels created by rays that miss the fplane but for which both
lights are occluded by the fplane.

Region 1 2 3 4
Ray passes through fplane n y y n
Fplane occludes right side light y y y y
Fplane occludes left side light n n y y

116

An example with two overlapping partially transparent objects

canera canil

{
pi xel dim 640 480
worlddim 8 6
viewpoint 4 3 8
}
material white
{
diffuse 16 16 16
anbient 0O 0O O
}

mat eri al cyan

diffuse 0 8 8
transparency 0.6

}

material yell ow

{
diffuse 8 8 0

transparency 0.6

pl ane backwal |

{
material white
normal 0 0 1
point 0O -8

}

fplane middle

{
mat eri al cyan
normal 0 0 1
point 3 1.5 -5.05
xdir 100
di nensi ons 4 3

}

fplane mddle2
materi al yell ow
normal 0 0 1
point 1 1.5 -5
di nensi ons 4 3

}

[ight mddle

{
| ocation 4 3 3
em ssivity 10 10 10

}

117

The resulting image

Here the yellow fplane is on the left and the cyan fplane is on the right. The overlapping area is green as
it should be. The darker edges that comprise the border are pixels for which rays do not pass through the
fplanes, but for which the fplanes do occlude the single centrally located light.

118

The textured plane

In CPSC 101 you wrote a program which loaded a ppm image and then fiz it to arbitrary dimensions by
shrinking or stretching. Such an image is commonly called a texture and the process of mapping it onto
a planar surface is called texture mapping. Depending upon your 101 instructor you may have also tiled

a small image by repeating it over a large surface.

We can incorporate this approach into the raytracer. The textured plane is simply a finite plane onto
which a texture has been mapped. Both tiled and fit mode may be employed as shown in the following
example.

The image above includes 4 textured planes. For the brick wall, the oak floor, and the frame on which
the photograph is mounted, the texture is mapped in filed mode. The photograph itself is mapped in fit

Wy

mode. The specular refection of the wall and the photograph on the floor will be addressed later in the

course.

119

The textured plane model definition

The textured plane definition requires two items of information beyond that of the finite rectangular
plane: the name of the texture and the mapping mode. Mapping mode 0 means stretch the texture to fir
the plane. Mapping mode / means repeatedly file the texture.

t expl ane oak_f 1l oor

{
material fl oor
nor nal 0 10
poi nt -6 00
xdir 1 00
di mensions 24 6
t exname oak
node 1

}

120

The textured plane class definition
The texplane_t is derived from the fplane_t. It relies upon the hits() function of the fplane_t but overides
the default getamb and getdiff function. This function will return values based upon the reflectivities

specified by the material and the colors of the corresponding pixel in the texture.

cl ass texplane t: public fplane_t

{
publ i c:
texplane t(FILE *, nodel t *, int);
texplane t();
virtual void printer(FILE *);
virtual void getdiff(drgb_ t pix);
virtual void getanb(drgb t pix);
pr ot ect ed:
I nt node;
texture_t *texture;
private:
char t exnane[64] ;
b

121

The texplane_t class methods

texpl ane_t: :texpl ane_t(

FI LE *in,
nodel _t *nodel
i nt attrmax) : fplane_t(in, nodel, 2)
{
int mask;
e parse texname and mode attributes
e ask the texture_getbyname() function to return the address of the texname texture.

set the object_type to texplane

122

Necessary modifications to the fplane_t class

The texplane_t will need to access the location of the translated and rotated hitpoint that is computed in
performing the fplane hits test. Thus we put it and the dimensions in the protected section of the
fplane_t. 1t also needs the dims of the plane. You may have already made these modifications.

class fplane_t: public plane_t

{
publ i c:
fplane t();
fplane_t(FILE *, nodel t *, int);
virtual double hits(vec_t *base, vec_ t *dir);
virtual void printer(FILE *);
pr ot ect ed:
vec_t new oc;
doubl e di ns[2] ;
private:
mat t rot; /[* rotation matrix */
vec t xdir;
vec_t projxdir;
}

123

Determining the diffuse pixel color of the fextured plane.

As was the case with the tiled plane, the real action occurs in getamb/getdiff. We will describe the action
of the texplane_t::getdiff{) function.

The basic idea is that the intensity returned will be the product of the object's reflectivity with the texel
that maps to the hit point.

voi d texplane_t::getdiff(
drgb_t val ue) /'l where to store final texel color

{
drgb_t matdiff; // diffuse reflectivity of materi al
drgb_t texel;

Acquire the diffuse reflectivity mat of the underlying object_t
Ask texture_fit(texel) or texture_tile(texel) to return value of the texel hit.
store component-wise product of matdiff and texel in value

The texture_t:;getamb() function works in an analogous way

124

Entities for texture mapping in the model description language

Each textured object requires the use of three entities:

e The material definition controls hue and brightness of the texture
e The texture definition names the file that contains the ppm image to be used
e The texplane definition binds them all together.

mat eri al oak_ref

{
anbient 1.0 1.0 1.0
diffuse 5.0 5.0 5.0
specul ar 0.3

}

texture oak

{
filename ..l ../1imges/ oak. ppm

}

t expl ane oak_f 1 oor

{
material oak ref
nor nal 0 10
poi nt -6 00
xdir 1 00
di mensions 24 10
t exname oak
node 1

}

125

The texture_t class

class texture_t

{
friend texture_ t *texture_getbynane(list_t *, char *);
public:
texture t();
texture t(FILE *, nodel _t *nodel, int);
void texture fit(double relx, double rely, drgb t);
void texture_tile(double worldx, double worldy, drgb t);
void |oad texture(void);
private:
void gettexel(int, int, drgb t);
char name[NAVE_LEN] ; /'l descriptive nane
char fil enane[NAVE_LEN] ; /1 file nane in world coords
doubl e pi X_X_si ze; /'l pixel size in world coords
doubl e pi X_y_size;
i nt xdi m /'l of the texture
i nt ydi m
irghb_t *1 magebuf ;
1

126

The texture t class methods

The constructor is responsible for processing the ppm header and reading the irgb_t image data.

texture t::texture_t(

FI LE *i n, /'l nodel description file
nodel _t *nodel /'l needed for access to canera nethods
i nt at tr max) /| usua

{

read the texture name and consume {

parse filename attribute reading the name into the filename element

call load_texture() to load the texture

obtain the dimensions of a pixel in world coordinates from the camera.

add the texture to the model->texs list. You will need to add this list to the model.

void texture t::load _texture(void)

fopen() the .ppm file whose name is given in the filename/[| element.
read the .ppm header and extract xdim and ydim

malloc the buffer for the irgb_t data and save address in imagbuf
fread the irgb_t data and verify correct amount read

127

Mapping hit location to texture location.

Two strategies and corresponding routines are used depending upon whether fit mode or file mode is in
effect.

void texture t::texture fit(
doubl e rel x,

doubl e rely,

drgb t texel);

{

e convert relative x and y coordinates to absolute pixel coordinates by multiplying by the x and y
pixel dimensions of the texture.
e ask gettexel() to retrieve the texel.

}

void texture t::texture tile(
doubl e wor | dx,
doubl e worl dy,
drgb t texel);

{

Convert world hit coordinates to plane pixel coordinates by dividing pixel size.
Since we are operating in tile mode, these values may be larger than the pixel dimensions of the

texture!
e Convert plane pixel coordinates to texel coordinates by mod-ing with the appropriate texture
dimension. This will produce values between 0 and texture dimension - 1

e ask gettexel() to retrieve the texel.

128

The gettexel() method converts relative offsets to actual and converts the texel from irgb_t to drgb_t

void texture_t::gettexel (

i nt Xpi X, /* pixel coordinates relative */
I nt ypi X, /[* to lower left origin... */
drgb_t texel) /* return drgb_t texel here */
{

e convert pixel x and y offset to imagebuf offset dealing with the upside down problem
e convert texel from irgb_t to drgb_t and save in texel

The texture_getbyname() function should work just like material_getbyname() does.. only on texture list
instead of the material list.

texture_t *texture_get bynang(
list t *list,
char *nane)

{

texture_ t *tex;

129

Computing the values to be passed to texture_fit or texture_tile()

Two procedures are necessary.

fit mode

The relative x location is simply the x component of newloc / dims[0]

Example: Given the following dimensions:

The texplane is size 4 x 3 in world coordinates.
The newloc location is (1.0, 1.5, 0.0)

The the relative location newloc with respect to the fexplane is (1.0 /4.0, 1.5/3.0) =(0.25, 0.50)

,,,,,,,,,,,,, O 3.0

4.0

tile mode:

e just pass (1.0, 1.5) the (x and y) components of newloc to texture_tile()

130

Using a texture as a source of illumination

Consider the traditional color slide projector. A bright light is placed behind the translucent slide and
directed toward the screen. We can consider the light source as casting rays which pass through the
slide and illuminate the screen. In passing through the color slide the ray is filtered in such a way that it
takes on the color of the slide element through which it passes.

We can model this process by placing a light source behind a translucent textured plane. The
illumination it provides is model as follows. For each hitpoint on a reflective object a ray is fired from
the illumination source toward the hit point. If the ray hits the textured plane, then the projector
potentially illuminates the hitpoint. The emissivity of the projector at the hitpoint is modeled as the
component-wise product of the emissivity of the light source with the texel through which the ray

passes.

131

Defining a projector in the model description language

canera canil

{
pi xel dim 800 600
worlddim 8 6
viewpoint 4 3 6

}

material white

{
anbient 0 0 O
diffuse 9 9 9

}

sphere earth

{
material white
center 4 3 -8
radi us 5

}

texture sky

{
filename ../imges/sky. ppm

}

proj ector front

{
emssivity 15 15 15
| ocati on 4 37
poi nt 2 1.53
nor mal 001
xdir 100
di nensions 4 3
t exnane sky
nmode O

}

132

The projector_t class

Characteristics of the projector and multiple inheritance

The projector has characteristics of both the light_t and the texplane_t. In fact the code in projector.cpp

that is used to glue them together is very small.
The class definition is shown below. Relevant aspects of the definition are noted below.

e Like other lights we want the projector to be invisible. We can make this happen by overriding
the default fplane_hits function with one that always declares a miss.

e The vischeck function determines if a ray from the location of the projector light source to a hit
location passes through the textured plane. If not the projector doesn't illuminate the object.

e The getemiss() function returns the component-wise product of the emissivity of the projectors
light source with the texel through which the ray from the light source to the hit location passes.

e There are no data items at all associated with the projector definition

class projector _t: public light t, public texplane_t

{

publ i c:
projector t(FILE *, nodel _t *, int);
virtual int vi scheck(vec_t hitloc);
virtual void printer(FlILE *);
virtual void getem ss(drgb t);

virtual double hits(vec_ t base, vec t dir){ return(-1);}

133

Projector class methods

Creating a new projector_t creates instances of light_t, object _t, plane_t, fplane_t, and texplane_t. The
projector_t overrides only the getemiss() and vischeck() methods of the light_t and the hits() method of
the object _t.

[**]
/* Create a new projector description */
projector t::projector t(

FILE *1n, This forces the light_t constructor
rodel t * model to be invoked first. Its necessa
I nt attrmax):light _t(in, nodel, 2), o ' y
texpl ane_t (i n, nodel 0) to give it an attrmax of 2.. The
{ N texplane_t constructor processess
the rest of the attributes.

e Store the string "projector" in obj_type

134

Operational class methods

int projector_t::vischeck(
vec_t hitloc) /1 hit |ocation on the object

{
vec t dir;
doubl e t;

Compute dir a unit vector from location to hitloc

Ask fplane_t::hits() if ray fired from location in direction dir hits the fplane that is part of this
projector. (The normal test for occlusion means we don't have to worry about intervening objects
here.)

If so, return 1 else return O

}

voi d projector _t::getem ss(
drgb_t *em ss)

{
drgb t texel

Ask texture->texture_fit() or texture->texture_tile() to return the fexel that the ray from the light
location to the hitloc passes through. Use the same approach as was used in the
texplane_t::getdiff{) function to compute relative the relative coordinates required by
texture_fit() or the world coordinates required by fexture_tile() . Note that this works only
because of the work done in vischeck(). The value stored in newloc when vischeck() called
Jfplane_t::hits() will be used here.

Store component-wise product of fexel and emissivity in return value emiss

135

Patching it all together

Even though the projector_t requires minimal new code, making it all work requires some back patching
of existing methods.

Patches to plane_t

e Its often useful to place the projector in positive z space.
e The hits function of the plane_t is suppose to return -1 when the hit occurs in +z space.
e This test must be disabled if the obj_type is a projector.

136

The BIG UGLY parsing woes

Because of the multiple inheritance when a projector_t is created constructors for all of the parent classes
execute in a top down fashion. Because the projector_t is more of a light than a visible object it must
go on the light list but need not go on the object list. Because the light_t parent is specified before the
texplane_t, the light_t constructor will run first.

class projector _t: public light t, public texplane_t

Because the constructors drive the parsing, this means that the light related attributes, location and
emissivity must come first in the definition. So the model_t constructor will consume pr oj ect or .
Then the light_t constructor will consume f r ont { and the attributes. Then the object_t constructor
will be invoked. Its first action will be to try to consume the object name f r ont and { , but they are

long gone so the object_t constructor will abort.

proj ector front

{

emssivity 17 17 17 Attributes of the light_t
| ocation 4 3 8

Eglr Prfal g é i 3 Attributes of the texplane_t
xdir 100

di mensions 4 3

texnane ../images/ sky. ppm

nmode O

137

Possible ''solutions'' most ugly ... some unspeakably so.
We basically have three options here

e Provide object_t what its looking for by patching it into the entity description.

proj ector front

{
emssivity 17 17 17

| ocati on 4 3 8

ugly_hack {
mat eri al dunmmy
poi nt 21.53

e Update every constructor in the object_t hierarchy to carry a parameter that can be used to tell
object_t not to look for the obj ect _nanme { because this is a virtual object.)

e Provide overloaded fexplane_t, fplane_t, plane_t, and object_t constructors giving an alternate
path for the projector-_t.

e Provide a global variable int dontlook = 0; 1in object.cpp that can be accessed using extern int
dontlook; in model.cpp. Then in model_t do

else if (strcnp(obj type,"projector”) == 0)

{
dontl ook = 1;
new projector_t(in, this, 0);
dont| ook = O;

}

and in the object_t constructor if dontlook == 1 then just return after setting the object cookie
avoiding the parsing, material lookup, and object list operations.

138

Eliminating the useless material_t
With the last two approaches we can also obviate the useless material definition.

But its important to remember make the object_t:: printer not try to print material descriptions when
this->mat == NULL!!

[**]
/* Create a new object description */

obj ect _t::object _t(

FI LE *in,
nodel t *nmodel

i nt dont | ook)
{

char objtype[NAME_LEN]
i nt count;

cookie = OBJ_COXI E

i f (dontl ook)
return;

......... rest of object loading

139

Surfaces of revolution

Surfaces of revolution greatly expand the range of shapes that we can easily create. The objects shown
below are surfaces of revolutions created using sine and cosine functions. The object on the left is gold

in color and the object on the right is gray. The scene is illuminated by three lights. The one on the left
has a red tint, the one in the center has a green tint, and the one on the right blue.

140

An intuitive motivation

Consider the red line in the diagram below. When x = 0, y = 6.0 and when x = 4.0, y = 0. 'Thus the
slope of the line is -1.5 and equation of the red line is given by:

y=-6x/4+6

For reasons that will become apparent we typically express x as a function of y. It is simple to solve the
equation for x.

x=-4/6 (y-6)

The term surface of revolution is used to describe the surface that is created when the line is dragged
around the blue circle (which appears as an ellipse when it is projected upon the "floor"). The surface
that is created is a cone with vertex at location (0.0, 6.0, 0.0).

141

Example input and output (light definitions missing)

canmera canil

{
pi xel dim 640 480
worlddim 8 6
viewpoint 4 3 7

}

mat eri al gol d

{
anbient 1 10
diffuse 3 3 0

}

revsurf cone

{
mat eri al gol d
surfer 0O
base 4 0 -4
direction 0 1 0
hei ght 6

}

142

Determining an equation for the surface

The first step in developing a hits function is to develop an equation that describes the surface. Consider
the circle that is produced by dragging the point x = 4, z = 0 around the y axis. This operation produces a
circle of radius 4 in the y = 0 plane. That is, x and z vary but y does not. The equation of this circle is:

As we move along the red line, the distance of the points along the line from the y axis are given by:
x=-4/6 (y-6)

Thus any point on the cone must satisfy the equation:
X+ =(-4/6(y-6))

Which may be written as:

fix,y,2) =X + - (-4/6 (y—6)) =0

This is a quadratic equation. If V'is the viewpoint and D the ray direction We can replace (x, y, z) by

Ve + l‘dx Vy + tdy Vv, + l‘dZ and solve for ¢ in the usual way. However, we don't want to restrict
ourselves to quadratic equations. And we definitely don't want to be limited to surfaces that resolve
around the origin.

143

More complex surfaces

For example the gold vase shown earlier was produced by revolving the line:
x =2+ sin(y)
Applying the approach of the previous page we see the equation of this surface is:

fix,y, z)=x+7 -(2+sin(y)’ =0

In general given the equation of any line in the form

x=g(y)
The equation of the corresponding surface of revolution is:

fix, y,2)=x+2 -(g(y) =0

For points OUTSIDE the surface xZ + Z2 > (g (y))2 and so f(x, y, z) > 0. For points inside the

surface the reverse is true and f(x, y, z) < 0. A point lies on the surface if and only if f(x, y, z) = 0.

The normal at the hit point is given by the componentwise (partial) derivatives of the function or:

(2x, -2(g(y))g'(y), 2z)

Thus a surface normal on the gold vase at location (x, y, z) is

(2x, -2(2 + sin(y)) cos(y), 2z)

144

Determining if a ray hits a surface of revolution.
The "front end" of our approach

Assume the following:
V= viewpoint or start of the ray
D = a unit vector in the direction the ray is traveling
C = base point (y = 0) of the surface
h = desired height of the surface of revolution.

g (y) = the generating function

The arithmetic is much simpler if the base point of the surface is at the origin (as it was in the preceding

examples). So like we did with the sphere, we start by moving it there! To do so we must make a
compensating adjustment to the base of the ray.

C'=C-C=(0, 0, 0) =new center of sphere
V'=V - C = new base of ray

D does not change

A point P on the translated surface with base at (0, 0, 0) necessarily satisfies the following equation:

p’ glp,) . p =0 (1)

All points on the ray may be expressed in the form

P=V'+tD=W,+1td, v,+1td, v, +td) (2)

where ¢ is the Euclidean distance from V'to P

Thus we need to find a value of # which yields a point that satisfies the two equations. To do that we take

the (x, y, z) coordinates from equation (2) and plug them into equation (1). In this equation ¢ is the only

unknown quantity but unless g(y) is a linear function of y (as was the case with the cone) we do not have

a quadratic equation.

v\ +td) -(gv'y+1td)) +(.+td) =0

145

Numerical solution of the hits equation.

Given an arbitrary function g(?) we need a method for finding a value of # for which g(z) = 0.
If we can do that, then we can define g(¢) as follows and we are done.

qt) = (v + td.)’ - (g(v'y + td,))] + (v, + td.)’

This is actually a pretty difficult problem because in general there my be multiple values of . For
q(t) =sin(t)

setting ¢ any multiple of pi will produce g(¢) = 0.

There may also be no values of ¢ at all as in the case of
g(t) =t + 1

where the minimum value of the function is g(0) = 1.

Nevertheless we can say that: (1) if g(¢) is a continuous function and (2) we can find two points t; and t,
such that g(t,) g(t.) < 0, then we can find a point #, such that g(¢,) ~= 0.0.

The method that we will use is based upon the binary search technique and is commonly called
bisection.

146

The bisection algorithm

while(¢2 — t1) > epsilon)
{

compute tm = the midpoint between 72 and ¢/
if (q(t1) * q(tm)) < 0)

replace 2 with tm
else

replace ¢/ with tm

147

Determining the start and end points for bisection:

We begin by translating the base of the revsurf to the origin and then rotating it so that its centerline is
aligned with the y axis. The rotation step can be omitted if we assume al/ objects are so aligned.

The variable s_base will be a global variable that holds the translated base of the ray.
The variable s_dir will be a global variable that holds the (possibly rotated) ray direction.

vec_copy(raybase, s_base);
vec_diff(base, s _base, s _base);
vec_xforn(rot, s _base, s_base);
/* Also need to make a | ocal copy of the direction */

vec_copy(dir, s _dir);
vec_xform(rot, s dir, s _dir);

The value t=0 will alwaysproduce a positive value of g(7). A value of ¢ inside the surface will produce a
negative one. How do we find such a value???

148

Determining a value of t that is inside the object

We do this by determining where a ray fired from s_base in direction s_dir intersects a particular plane.
The correct plane is one that contains the y axis (just like z = 0 does) but whose normal is the reverse of
the shortest line from the base of the ray to the y-axis.

/* Consider the shortest |ine connecting */
/* the y-axis to s_base. Now consider the plane for which */
/* that line is the normal. The point on the axis is */
/* (0, s _base.y, 0) and it produces a normal of */
/* (s_base.x, 0, s _base.z) */

/* We seek the distance to where a ray fired in direction */
/* s dir hits the plane. Recall the standard plane hits */
/* equation where q is the point on the plane, bis the */
/* base of the ray, nis the normal and d is the direction */

/* t = (ndotqg - ndotb) / ndotd;

here q = (O, 0, 0)
n = (s_base.x, 0, s_base. 2)
b = (s_base.x, sbase y, s _base.2z)
d = (s_dir.x, sdir_y, s dir.z)
and ndotq == so t =- ndotb / ndotd

*/

One might be tempted to try to craft a "bogo" plane_t object and just use the plane_t hits function. While
that could possibly be made to work, it would be a bad idea. This code must execute for every ray fired.
We don't want to be created and deleting 100,000,000 plane_t objects. So instead we just include the guts
of the hits code.

vec_copy(s_base, normal);

normal [Y] = 0; [/ n = (s_base[X], 0, s_base[Z])
vec_unit(normal, normal);

/Il ¢

di stance froms_base to plane in direction s_dir

c = -vec_dot(normal, s base) / vec _dot(normal, s dir);

149

This produces somewhat more believable shadows than the previous plane.

150

Finding the hitpoint:

Your bisect() routine must test for the condition in which both initial values of the function lie on the
same side of the x axis and return -1 if that is true. This will be the case if the ray completely misses the
revsurf. The variable b is initalized to O corresponding to the start of the ray. The variable c is the
distance to where the ray passes through the target plane.

i flag = bisect(evaluators[surfer], &b, &c, epsilon);
if (iflag < 0)
return(-1);

/* Determne the hitloc in translated rotated space */

On return from bisect the value b is the distance to the hitpoint in translated rotated space (with the base
of the object at the origin and the centerline on the y axis. Thus if we scale s_dir by b and add it to
s_base we obtain the location of the hitpoint in translated rotated space. We call this xlhit.

Now its necessary to make sure we are within the vertical limits of the object.
if (xlhit[Y] < 0)
return(-1);
if (xIhit[Y] > height)
return(-1);

If within the limits we have a hit!
Ask the correct normer to supply the normal at the hitpoint.
(*normers[surfer])(xlhit, hitnorm;

Rotate the normal by irot if necessary
Rotate x/hit by irot if necessary
Translate xlhit by adding the base location of the object.

151

Evaluators and normers

The mission of a evaluator is to compute the g(y) function.

The easiest way to access these is by a table of function pointers in which the attribute surfer (0, 1,..) is
used as in index into the table.

iflag = bisect(evaluators[surfer], &b, &c, abserr);

static double (*evaluators[])(double t) =

{
f0,
f1,
f2,
f3,
f4,
};

#defi ne NUM SURFS (si zeof (eval uators) / sizeof (double *))

static void (*norners[])(vec_t , vec_t) =

{
no,
ni,
nz2,
n3,
n4
'

152

An evaluator for the cylinder

The init_sum function computes the common part of the general equation which involves the x and z
terms .

/* revsurfaces all have the sane general equation */
[* x**2 + z**2 - g(y) =0 */
/* this piece conputes the common part */

static inline double init_sun{
doubl e t)

{

doubl e v;
doubl e sum = 0. O;

/* Conpute x-coord for given "t" and square it */
Vv =s base[X] +t * s dir[X
vV *= v;
sum += v;
/* Add squared z-coord for given "t" */
v = s base[Z] +t * s dir[Z];
vV *= v,

sum += v;

return(sum;

153

The evaluators f0, f1, ... use add in the y specific part after calling init_sum.

The equation for a cylinder is sqrt(x*2 + z"2) = r. Thus our g(y) function is g(y) = r, and our
S, 9, 2) =x"2 + 22 -g"2(y) =x"2 + 22— 12

/[* The m ssion of this function is to eval uate */

[* T(x, y, z) = xX**2 + z**2 - g(y)**2 */
/* The function conputed here is: */
[* X**2 + z**2 - pO”2 * [

The f0 function only computes the y-component of the sum which is -7° where is the radius.
The variable pO the value of the attribute surferp0. This parameter allows us to compute
cylinders of different radii with a single f0 evaluator.

doubl e fO(
double t) /* At value in the search range */

{
doubl e sum = 0. 0; I f(x, vy, z)

doubl e v;
sum=init_sun(t);

\Y
\Y

no
<

* -
=

sum - = v;
return(sum;

}

Where does p0O come from??? We get a bit more flexibility if we make things like the radius of our
cylinder parameterizable.

static pparmt revsurf_parse[] =

{
{"surfer", 1, 4, "%", O},
{"base", 3, 8 "wf", 0},
{"hei ght", 1, 8, "wuf", 0},
{"direction", 3, 8, "%f", 0},
{"surferpO0”, 1, 8 "%f", O},
{"surferpl", 1, 8, "%f", 0O}

b

154

The normer function.

/* In the event there is a hit the nornmal at the hit */

/* which is the del f(x,y,z) nust be conpute */
/[* The hitloc value passed in MJST be the hitloc */
/* WHEN THE base is translated to the origin */
/* The function conputed here is: */
/* X*¥**2 4+ z**2 — r**2 So the conmponent wi se */
/* derivatives are:

| * 2x, 0, 2z */
voi d nO(

vec_t hitloc,
vec_t norm oc)

{
normoc[X] = 2 * hitloc[X];
normoc[Z] = 2 * hitloc[Z];
norm oc[0] = O;
vec_unit(norm oc, norm oc);
}

155

Refraction

The transparency model just presented does not account for refraction. Real objects that pass light bend
it about the surface normal according to Snell's Law. The coefficients n/ and n2 are known as the idices
of refraction. The index for space is 1.0 and water is about 1.33.

Snell's Law fast slow

medium medium
(smallar

Ny sinBy =,
n, sin@, =~

As light enters a slow medium it bends toward the surface normal. As it exits the slow medium it bends
away from the surface normal.

The most straightfoward way to compute the direction of the refracted way is to:

- Build a matrix that rotates the surface normal into the y-axis and the incoming ray into the x-y
plane. This can be done by rotating the cross product of the incoming ray and the surface normal
into the z axis.

« Apply basic trigonometry to compute the direction of the refracted ray in the rotated coordinate
system.

+ Invert the matrix constructed in step 1.

« Apply the inverse matrix to the vector computed in step 2.

Note that when passing from a slow medium to a faster one, it is possible for sin(theta2) to exceed 1. If

this occurs then the incoming ray has exceeded the critical angle and it will be reflected instead of
refracted.

156

