
1

CpSc 1111 Lab 1
Introduction to Unix Systems, Editors, and C

Welcome!

Welcome to your CpSc 1111 lab! For each lab this semester, you will be provided a document like this to guide you. This
material, as well as in-lab instruction, is intended to supplement lecture by focusing on the hands-on aspect of
programming. What better way to learn than by doing this! Plus, you’ll get individual help if you run into problems.

Typically, the labs serve to reinforce concepts learned in lecture. Sometimes, additional related concepts will be presented
in lab. Most labs will involve some reading, some computer activity, and a deliverable to turn in for a grade. The best way
to work is to read straight through, working on your computer when asked. You may not finish by the end of the first lab
period, but you will have the Thursday lab period to finish up and get more one-on-one help from your lab TA, plus you
should be able to work from anywhere with an Internet connection.

Overview

By the end of the lab, you will be able to:

• log on to and navigate the School of Computing’s Unix workstations
• use one of the many text editors available in Unix
• create, compile, execute, modify, and submit a simple C program

Login and Navigate Unix

1. Log on to your Unix workstation
• On the login screen is a place to enter your user name, and four controls:

"Language", "Session", "Restart", and "Shutdown"

• These controls are generally not useful, but you might find “session” useful in rare instances of severe

“desktop malfunction.”
• Type your CU username in the space provided and then press the enter key.
• When prompted, enter your password to complete the login procedure.

2. Starting up
• Open a terminal window. If you don’t see a terminal (command-prompt), it should be under Applications

<Utilities/Accessories> Terminal.
• Enter the pwd command. (It stands for “print working directory”). The working directory should be

something like "/users/your_username" or "/home/your_username". This is also known as
your home directory. Terminal windows open to this location by default. All your files and directories will be
kept in a directory tree with this directory as root. Another name for your home directory is simply ~ (the
tilde character), which you will see from time to time.

2

3. Create and navigate CpSc 1111 directories

• Type mkdir 1111 and hit the Enter key to create a directory for your CPSC 1111 files.
• Type ls and hit the Enter key to list the contents of the current directory. You should see the new 1111

directory.
• Enter cd 1111 to change directories into the new 1111 directory.
• Enter mkdir lecture to create a directory for the lecture portion of this course. You can use this

directory and any others that you create inside of it for your lecture work – class examples, practice programs,
assignments, etc.

• Enter mkdir lab to create a directory for the lab portion of this course.
• Enter ls to list the contents of the current directory. You should see both of those new directories.
• Enter cd lab to change directories into the new lab directory
• Enter mkdir lab1 to create a directory for today's lab.
• Enter mkdir temp to create a temporary directory.
• Enter ls to list to verify both of those new directories are now there.
• Enter the ls command again this way: ls -l which uses the -l flag to display the listing in long format.

Notice all the extra information that is displayed!
• Try another flag with ls: ls –a which shows all the files, including hidden files
• You can also combine the flags this way:

o ls –a -l or
o ls –l -a or
o ls –al or
o ls –la

• Use the cd command to change to the lab1 directory.

• To get all the way back to your root directory from anywhere that you may be in your directory tree, you can

simply type cd ~ or just cd
• Typing cd - will take you back to the last directory you were in (which is different from cd ..

which goes back to the parent directory).
• You can also specify multiple directories at once:

o cd 1111/lab/lab1 to go directly to your lab1 directory from your root directory
o cd ../../lecture to go directly to your lecture directory from your lab1 directory

• You can also use absolute paths:
o cd /home/username/1111/lab/lab1 to go directly to your lab1 directory from anywhere

NOTE: You may name and organize your directories however you want – whatever makes sense to you. Nobody
else will be accessing your account – only you (DO NOT give out your password to anyone else!). If you do name
your directories differently than in the instructions below, the commands you type will be different according to the
names that you choose. For example, if you choose to name your first directory cpsc1111 instead of just
1111, then when you change directories into that one, you would type cd cpsc1111 instead of cd 1111.

3

Useful Unix Commands To Get Started

Command Purpose
ls list all contents in your current directory
cd takes you back to your home directory
cd .. takes you back one directory
cd dir_path takes you to the directory specified by the path provided
mv src_file dest_file renames src_file to dest_file
mv src_file
dest_path moves src_file to the folder specified by the dest_path
mv src_file
dest_dir/dest_file

moves src_file to the folder specified by dest_path and gives
it the name dest_file

cp src_file dest_file copies src_file to dest_file
cp src_file
dest_path copies src_file to the folder specified by dest_path
cp src_file
dest_dir/dest_file

copies src_file to the folder specified by dest_path and gives
it the name dest_file

rm file_name deletes the file named file_name
mkdir dir_name creates a directory name dir_name in your current directory
rmdir dir_name deletes the directory named dir_name if it is empty

rm -rf dir_name
deletes the directory named dir_name (be careful when using –
rf)

cat src_file
shows the contents of the file on the screen without opening it in an
editor

control-c

send the terminate signal to a running process (kills the current
process); good to use if your program is stuck in an infinite loop, for
example

ps shows a listing of processes that are running

kill -9 [pid]
kills the process you specify with the pid (process id #) which is
shown when you type ps

man unix_command
displays the manual page (help page) for the specified Unix
command

logout logs you out

Also, here is an online Unix Tutorial http://www.ee.surrey.ac.uk/Teaching/Unix/. It looks like it might be a pretty
helpful tutorial to look over, or perhaps a good reference to bookmark.

4

Text Editors

Which editor should you use????

• A typical Unix system provides several different text editors. On our system, we can use gedit, pico, nano, vi, vim,
Emacs, and perhaps others. Any of these can be used to create and edit files of any type, including C programs.
Some have more advanced features that make elements of programming easier. Which one you choose doesn’t
really matter for creating your programs, but keep in mind that the formatting of your code may be “off” depending
on your choice of editor. Your lab ta (and instructor) can explain this further. (Points may be lost with incorrect
or inconsistent formatting.)

1. To use pico, simply type at the Unix command prompt pico <filename> which will open up a file in the
pico editor, and you can go ahead and start typing up your file. Nano is a clone of pico (so it works the same way).
If you type nano <filename> then you’ll be using nano instead of pico, but it looks and works the same
way. These are menu based editors – easier to learn how to use but not as powerful and do not have the advanced
features that some of the other editors have. These are editors where your formatting could end up being
inconsistent and cause you to lose points.

2. To use gedit, select the Applications control on the top panel and then left click "Text Editor". This will start the
gedit text editor. You may also want to create a gedit launcher on the top panel or on the desktop.

3. To use vim, simply type at the Unix command prompt vim <filename> which will open up a file for editing

in the vim editor. (vim is the “new improved” vi editor – on our system, you can type either vi or vim and then
the filename to start up the vim editor). This editor has more advanced features and is much more powerful than
pico, nano, and gedit – but – it has more of a learning curve than the others. The same is true of Emacs.

NOTE: When your files are viewed using vim, if you had used pico, nano, and maybe even gedit to create the files,
this is where your formatting may look different in vim than it does when opened with those other editors. In other
words, for those instructors who use vim to grade programs that were created using pico, nano, or gedit, the
formatting may look different and be incorrect or inconsistent, resulting in a loss of points.

Vim resources:
Vim 101: A Beginner’s Guide to Vim https://www.linux.com/learn/vim-101-beginners-guide-vim

A table with some of the more common vim commands to get you started
 http://people.cs.clemson.edu/~chochri/Courses/Documents/vimCheatSheet.pdf
Another vi reference card https://people.cs.clemson.edu/~etkraem/1730/Labs/Lab1/viquickref.pdf
Another vi “cheat sheet” https://people.cs.clemson.edu/~etkraem/1730/Labs/Lab1/viref2.pdf

Vim Adventures http://vim-adventures.com/
An Introduction to Display Edition with vi http://docs.freebsd.org/44doc/usd/12.vi/paper.html
Why should I bother to learn vi? http://www.viemu.com/a-why-vi-vim.html

Emacs resources:
Type emacs to run emacs, and see the built-in tutorial
Guided Tour of Emacs http://www.gnu.org/software/emacs/tour/
Emacs quick reference card https://people.cs.clemson.edu/~etkraem/1730/Labs/Lab1/emacs-refcard-a4.pdf

5

Creating Your First File

You will create a text file named test.txt and save it in your 1111/lab/temp/ directory.

1. In a terminal window, cd to your 1111/lab/temp/ directory.
2. Use an editor of your choice to create a file called test.txt . Edit the file, putting whatever you want in it,

perhaps your thoughts on how much you are going to love this class.
3. When you are finished with adding text to the file, save the file and quit the editor.
4. At the Unix command prompt, type ls to see if the test.txt is there. If it is not, then you must have

somehow not saved the file before quitting the editor – go back to the editor that you are using and create it again.
5. Using an editor, open up the file to see that whatever text you had added to the file is there.

Deleting and Copying Files, and Deleting Directories

1. In the terminal window in the 1111/lab/temp/ directory, delete test.txt by typing rm test.txt
2. Type ls and confirm the file is gone.
3. Type touch file1 to create an empty file. You can use touch to create multiple new files with one

command: touch file1 file2 file3
4. Typing ls will confirm the files created with touch are there.
5. Type cp file1 test1 and then type ls to see what is there.
6. Type mv test1 test2 and then type ls to see what is there. See the difference between cp and mv?
7. Delete (remove) the files you just created. You can do this by removing each one individually, or by typing the

following, using a wildcard, the * which means “all files”: rm *
o You will be prompted to enter a Y or N for each file to make sure you do intend to remove the file.

8. Leave the temp directory by typing cd .. to return one directory back to the lab directory.
9. Now delete the temp directory by typing rmdir temp. Notice that files are removed with rm, but directories

are removed with rmdir and have to be empty before being removed.

6

Writing a C Program

Use the editor of your choice to create a simple C program in your 1111/lab/lab1 directory that will print the words
"Hello, world!" to the screen. Name your file simple.c and type the following code:

/* Name
 CpSc 1111 Lab, Spring 2018
 Lab #1
 My first “hello world” program.
*/

#include <stdio.h>

int main(void) {
 printf("Hello, world\n");

 return(0);
}

Compiling a C Program

1. In a terminal window, cd to 1111/lab/lab1. Enter ls to confirm simple.c is there.
2. The compiler we use is gcc. To compile simple.c enter the command: gcc simple.c
3. If there are errors, go back and confirm you entered the program correctly, fixing the errors indicated by the

compiler. Recompile after fixing the errors. You may have to edit/recompile several times until there are no errors
left.

4. When there are no errors, use ls to confirm that the compiled machine language program (the executable) was
created (it will have the name a.out)

5. To run the program, type the name of the executable, by typing ./a.out The ./ is used to tell the system that
a.out is in the current directory.

6. "Hello, world!" should print on its own line.

Turn In Work

1. Before turning in your program, edit simple.c to print out Hello World 20 times (DO NOT use a loop).
2. Rename the file as lab1.c and then compile it and run it to make sure it works. Always test, test, and retest

that your program compiles and runs successfully on our Unix machines before submitting it.
3. Show your ta that you completed the assignment. Then upload your lab1.c file to the SoC handin page at

http://handin.cs.clemson.edu. Don’t forget to always check on the handin page that your submission worked.
You can go to your bucket to see what is there.

Optional: Accessing Unix From Windows

Reminder About Style, Formatting, and Commenting Requirements
• The top of your file should have a header comment, which should contain:

o Your name
o Date
o Lab section
o Lab number
o Brief description about what the program does
o Any other helpful information that you think would be good to have.

• Variables should be declared at the top of the main function, and should have meaningful names.
• Always indent your code in a readable way. Some formatting examples may be found here:

https://people.cs.clemson.edu/~chochri/Assignments/Formatting_Examples.pdf
• Don’t forget to use the –Wall flag when compiling, for example: gcc –Wall lab3.c

7

• If your laptop does not already have Secure Shell Client (SSH) or Putty installed on it, you can download it from
http://download.clemson.edu

• Run SSH (or Putty).
• Press Enter to open a connection dialog.
• Type a host name:

• If you are on campus, you can use ada1.computing.clemson.edu, or ada2.computing.clemson.edu, . . .
ada17.computing.clemson.edu. There are other systems as well you can connect to instead of the ada
machines: there are 33 babbage machines, 20 joey machines, 28 cerf machines and 5 titan machines.

• If you are not on campus, you will have to use access1.computing.clemson.edu or
access2.computing.clemson.edu for the initial connection. Once you are connected to either access1 or
access2, you must immediately type:
 ssh named_machine.computing.clemson.edu
because access1 and access2 need to be kept free for incoming connections.

• With Putty, hit return, then type your CU username and password.
• With SSH, type your CU username and click connect.

• You may be prompted to confirm first-time connection to the server. Click Yes.
• Type your password and click OK.

• You should now be logged onto a UNIX machine. You cannot use GUI tools such as gedit, however any text-
based tools (vim, pico, gcc, ls, . . .) are available.

• When you are finished, log out using exit or logout (exiting twice if you connected with one of
the access machines and then a named machine).

Optional: Accessing Unix From a Mac:
• Open up a Terminal window (if Terminal is not already located in the dock at the bottom, you should be able to

find it under Applications/Utilities.)
• Type the following if ON CAMPUS:

• ssh user_id@machine_name.computing.clemson.edu
replacing user_id with your Clemson user id and machine_name with one of the named machines.

• For the named machines, use ada1.computing.clemson.edu, or ada2.computing.clemson.edu, . . .
ada17.computing.clemson.edu. There are other systems as well you can connect to instead of the ada
machines: there are 33 babbage machines, 20 joey machines, 28 cerf machines and 5 titan machines.

• If you are OFF CAMPUS, you can first log into either access1 or acces2 first, so type:
 ssh user_id@access1.computing.clemson.edu
 OR
 ssh user_id@access2.computing.clemson.edu

 AND then follow that with another ssh command to log into one of the named machines:
 ssh named_machine.computing.clemson.edu

• You should now be logged onto a UNIX machine. You cannot use GUI tools such as gedit, however any text-

based tools (vim, pico, gcc, ls, . . .) are available.
• When you are finished, log out using exit or logout (exiting twice if you connected with one of

the access machines and then a named machine).

8

File Transfers

The instructions below are mainly for using Graphical User Interfaces (GUIs) for transferring files from your machines at
home (e.g., laptop) to the machines in the lab. The best way to avoid this is to do all your work on the Linux machines
directly, e.g., log in to virtual.computing.clemson.edu.

Alternatively, you can do everything on the command line from home. On Windows you can install “git for Windows” and
then you’ll have a nice bash terminal window. On the Mac there’s already a Terminal window you can use. The best way
to transfer files between machines is via sftp. You use the command sftp <host> to connect to a remote host, like
this:

[sclera] ~/<1>cpsc111/fall20/labs/lab01 > sftp etra.cecas.clemson.edu
Connected to etra.cecas.clemson.edu.
sftp>

The above connected to etra.cecas.clemson.edu. You are then presented with a prompt sftp>. You can then add
commands like put <file>, get <file> and these will transfer to and from the remote machine.

If you don’t like the command line, you can try the options below, but your mileage may vary.

A. On	a	Windows	machine	

Once you go to “New File Transfer”, a window like the one below opens up. The left hand side is your computer
and the right hand side is your account on the School of Computing’s computer system. On the right hand side,
navigate to the file you want, and drag and drop to the desktop, or drag and drop the location on the left hand
side where you want it to go. Then from there, you can find the file on your computer.

9

B. On	a	Mac	

Download a program called Fetch from Clemson’s download.clemson.edu page. Once you have it installed,
double click on it, and a window like the one below opens up. Put in the information like you see below, except
with your username and password. Then you should be able to connect to your account on the School of
Computing’s system. Navigate to the file you want, drag and drop to the desktop or folder where you want it to
go. (NOTE: if you are on campus, you can skip the access login and log directly into a named machined).

10

