
1

CpSc 1111 Lab 3
Makefiles

Overview

By the end of the lab, you will be able to:

• understand the relationship between the make command and makefiles
• create a simple makefile typical for a CpSc 1110 project
• understand how makefiles are used in real-world projects

Background Information

If you were not sick of typing and re-typing the command to compile your programming assignment, you probably will soon tire
of typing longer lines than that with each successive programming assignment. Maybe you have discovered how the up arrow key
on the keyboard will scroll through your command history, but even that can become cumbersome. In lab today, you will learn
how to use a very important tool called make. It helps automate tasks that would otherwise be repetitive.

-
Makefiles
Your “Programming in C” book explains makefiles on pages 341-342. A Makefile is a file, called either Makefile or
makefile (can start with an upper case ‘M’ or lower case ‘m’) that contains a list of files and their dependencies along with
commands that you would otherwise type at the command prompt. When you type make at the command prompt, that file
called Makefile (or makefile) is sought in the current directory, and if found, the command for the first target in that file
will be run. Your makefile can have multiple targets, as you will see later with this lab. In order to execute the other targets, you
would type: make <target_name>

Real world programs usually consist of many files that are all compiled and linked together to form one executable. If a
programmer makes a change or fixes a bug in just one of those files, by typing make (or make compile if the target is
named compile) at the command prompt, only that file that was modified will be recompiled rather than recompiling every
single file. The make utility can tell which source files need to be compiled based on the modification times of the files. If
make finds that your source (.c) file is newer than the corresponding executable file (e.g., a.out) or object (.o) file, it automatically
recompiles the source file to create a new executable or object file.

Makefiles can be much more complicated than what you will be using with this lab, as the compile commands become more
complicated with bigger programs consisting of multiple files. But, even for what you will be doing in this course, you will find
makefiles to be very useful and should practice using them throughout the rest of the semester.

The example above shows a possible, very simple, makefile that you could have used with one of the labs. If you had put those
two lines into a file called Makefile, then whenever you needed to compile your program, you would simply just have typed
make (or make main) at the command prompt. Let’s take a closer look at those two lines:

Target name Dependencies
How will you refer to What files or targets does the target
this target? name depend on?

main: main.c
_____gcc –Wall –o main main.c

Tab Character - NOT spaces! Commands
 What command(s) should be run when
 this target is called?

main: main.c
 gcc –Wall –o main main.c

2

Lab Assignment

1. While logged in to one of the School of Computing servers (adas, joeys, or koalas e.g. koala1.cs.clemson.edu) download two

files to your working directory:

reverse_echo.c
README

2. Take a look at the README file for a description of what the reverse_echo.c program is supposed to do. There is some

code that you will need to complete for that program to work.

3. Take a look at the reverse_echo.c file. You will notice pretty quickly that the program uses command line arguments. A
program that uses command line arguments allows you to pass arguments from the command line; which means – when you
run the program, you don’t just only type the executable name, such as: .

./reverse_echo

but the executable name along with some arguments, such as:
./reverse_echo testing 1 2 3

In order to do this, the main() function signature changes from what you are used to:
int main(void)

to this:

int main(int argc, char *argv[])

The first argument argc holds the number of items typed at the command prompt, including the executable name. So for
the example above, ./reverse_echo testing 1 2 3 argc would have the value 5 because the executable
name + 4 arguments = 5.

The second argument char *argv[] is an array – for now, you can think of it as an array that holds each of those items
that were entered at the command prompt (even though that is not exactly correct, it’s actually an array of character pointers,
but it’s a simplified explanation for now). So, you can picture that for that same example above, in memory, the array would
look like the following (using our simplified model):

argv[0] ./reverse_echo
argv[1] Testing
argv[2] 1
argv[3] 2
argv[4] 3

4. Add code to the for loop in the reverse_echo.c file so that the program behaves according to the description in the

README file. Don’t forget to add the appropriate header information; reminder box below:

5. Compile your modified program by typing the following:
gcc –Wall –o reverse_echo reverse_echo.c

6. Probably after typing the above compile command even once, you will realize that typing just simply make would be a

whole lot easier. So now, even if you haven’t gotten your program to work yet, (** especially if you haven’t gotten your
program to work yet **) create a makefile. Using your editor of choice, create a file called Makefile and in it, put the

Reminder About Formatting and Comments
• The top of your file should have a header comment, which should contain:

o Your name
o Course and semester
o Lab number
o Brief description about what the program does
o Any other helpful information that you think would be good to have.

3

following:
[NOTE: Don’t forget that in front of each command, (the lines colored red below), you MUST hit the tab key, not the
spacebar. If you try to copy and paste this code from below, that may not work either – some editors will add spaces in
place of the tabs.]

7. Once you are done with your makefile, save and close your text editor. To compile your program, you can just simply type
make because the “reverse_echo” target is listed first. If it wasn’t listed first, then you would type:
 make reverse_echo

So, what just happened? We defined a target called reverse_echo (could be any label, but you get some added benefits
by using the same name for the label and the executable). That target has one dependency: reverse_echo.c (don’t
compile if that file doesn’t exist or if it hasn’t changed since the last time you compiled). The second line has the command
associated with reverse_echo. Then, when you ran make, the command automatically looked for a file named
Makefile in the current directory (which it found) and ran the command for the first target (the reverse_echo target).
It then printed out the command that it was about to execute, then ran the command.

8. Before testing out the rest of the targets, complete your reverse_echo.c program if it isn’t done yet. Use the makefile by
typing make each time you compile your program. Once your program works, continue with the following steps.

9. The next target is clean. This target doesn’t depend on anything; you can run this at any point. The purpose of this target

is to remove whatever files you specify with the rm commands – in our case, it will remove the executable and the output.txt
files, if they exist. Type make clean and verify that your executable and your output.txt files are both gone.

10. Next, try a slightly more advanced Makefile. This one you can pretty much use for the rest of the semester. In this Makefile,
you define some varaibles, CC, INCLUDE, CFLAGS, LDFLAGS, and LDLIBS. To use each, enclose in $(…). The new
.c.o: target says to convert each .c file into an .o file via the associated command:

$(CC) $(INCLUDE) $(CFLAGS) -c $<

my first makefile

reverse_echo:
 gcc -Wall -o reverse_echo reverse_echo.c

clean:
 rm reverse_echo
 rm -f output.txt

CC = gcc
INCLUDE = -I.
CFLAGS = -g -Wall
LDFLAGS = -L. \
 -L/usr/lib
LDLIBS = \
 -lc -lm

.c.o:

$(CC) $(INCLUDE) $(CFLAGS) -c $<

all: main

main: main.o

$(CC) -o $@ $^ $(LDFLAGS) $(LDLIBS)

clean:
 rm -f *.o
 rm -f main

4

which expands to:

gcc -I. -g -Wall -c <file.c> <file.o>

for any .o file that is needed by a given target. The main: target is such a target since it depends on the file main.o which is
created by compiling main.c by the above target. This target takes care of the compilation step.

The main: target can now be rewritten to only handle the linking step by executing this command:

$(CC) -o $@ $^ $(LDFLAGS) $(LDLIBS)

which expands to:

gcc -o main main.o -L. -L/usr/lib -lc -lm

where the $@ variable means target (main in this case) and $^ means all the dependencies listed above (main.o in this
case).

Turn In Work

1. Before turning in your assignment, make sure you have followed all of the instructions stated in this assignment and any

additional instructions given by your lab instructor(s). Always test, test, and retest that your program compiles and runs
successfully on our Unix machines before submitting it.

2. Show your TA that you completed the assignment. Then submit your reverse_echo.c program AND your
Makefile to the handin page: http://handin.cs.clemson.edu. Don’t forget to always check on the handin page that
your submission worked. You can go to your bucket to see what is there.

Grading Rubric

For this lab, points will be based on the following:

Functionality 75 (compiles without warnings and test cases work with your makefile)
Formatting 10
Inclusion of Makefile 15

NOTE: there could be other possible point deductions for things not listed, such as (where applicable) global variables, use of

break not in switch statements, naming the file incorrectly, etc.

