
1

CpSc 1111 Lab 4
Integer Variables, Mathematical Operations, ASCII, & Redirection

Overview

By the end of the lab, you will be able to:

• declare variables
• perform basic arithmetic operations on integer variables
• use fprintf to print out integer and character values
• use redirection to send output to a file
• use the Unix command cat to echo the contents of a file to the screen

Background Information

If you remember from last week’s lab, you were given a program with errors that you had to correct. The program contained
variables as well as printf() and scanf() function calls. This week, you will be writing a program declaring variables,
initializing some and assigning results of mathematical expressions to others. You will see some of the precedence rules with the
mathematical expressions. Some background information of the concepts from this lab are shown below, some repeated from last
week and some new.

-
Variables
As you learned last week in lab and lecture, a variable is a symbolic name for a memory location where values are stored. We, as
programmers, can access the memory locations needed in our programs much easier by name rather than by the actual address of
the memory location.

In the C language, every variable must be declared. To declare a variable, its type must be indicated: int, float, bool,
double, char, etc. Note that for bool you need to #include <stdbool>. It is preferable to use meaningful variable
names, which improves program readability.

-
Integer Variables
You also learned last week that the int type is used for integral numbers, or integers – numbers without decimal places. Don’t
forget that usually, variables are all declared at the beginning of a function. The following are examples of int variable
declarations:

int sideLength;
int area;

Variables that have not been given a value at any point contain garbage – they will have the value of whatever had been in that
memory location the last time it was used. In C, you must never assume that variables have an initial value of 0 upon declaration.

You can initialize a variable upon declaration (such as sideLength below), or assign it a value at some point later in the
program (area below).

int main(void) {
int sideLength = 3;
int area;

area = sideLength * sideLength;
printf("The area of a square with side length of %i ", sideLength);
printf("is: %i \n", area);

return 0;

2

}
There are also optional modifiers that can be used with integers: long, long long, short, unsigned, and signed. An
integer, by default, is a signed value. For an integer to be a signed value, you can declare it as signed int or just simply as
int.

The format for declaring an integer variable is the following:

<optional modifier> <type_name> <variable_name>

The number of bits that a data type uses depends on the system. For example, integers are guaranteed to be at least 32 bits big, but
sometimes may be 64 bits big. On our system, they take up 32 bits.

The following are examples of different integer variable declarations:

 int value1; // signed value by default
 // at 32 bits big, the range is from:
 // -2,147,483,648 to +2,147,482,647

 unsigned int value2; // at 32 bits big, the range is from:
 // 0 to +4,294,967,295

 unsigned short has16bits; // guaranteed to be at least 16 bits
 // (it is 16 bits on our system)

 long int the_sum; // 64 bits

Basic math operations can be performed on integer variables. The following table shows a few examples.

Example Description
y = 3;
x = 5; assigns the value 3 to y and 5 to x

z = x + y; assigns the sum of x and y to z
z = x + 5; assigns the sum of x and 5 to z
x += 4; same as x = x + 4; adds 4 to x
a = x - y; assigns the difference of x and y to a
z -= 1; same as z = z – 1; subtracts 1 from z
z *= 2; same as z = z * 2; multiplies z by 2
z = x * y; assigns the product of x and y to z

z = x / y; assigns the integer dividend of x and y to z
* Be CAREFUL with integer division!

Type Size
short 16 bits (guaranteed to be at least 16 bits)
int 32 bits (guaranteed to be at least 32 bits; sometimes they are 64 bits)
long int 64 bits
long long int 64 bits

3

-
Characters and ASCII Code

In the C programming language, characters are a special type of integer. Each character is represented by an 8-bit binary code,
shown on the ASCII table. This ASCII table can be used as reference. For example, you can see from the table that the capital
letter A has a integer (decimal) value of 65, which means that it is represented by the binary value 01000001.

The following printf() statements may help to understand the character type and their relationship to ASCII:

 printf("%c", 'A'); would print to the screen: A
 printf("%d", 'A'); would print to the screen: 65
 printf("%c", 65); would print to the screen: A

-
Performing Operations on Variables

Expressions consist of a collection of operators, variables, and constants.

Operators can be grouped into several classes.

Assignment: =
assigns the value of the expression on the right side to the variable on the left side.

Arithmetic: + - * /

add, subtract, multiply, divide

Comparative: == != < <= > >=

equal to, not equal to, less than, less than or equal to, greater than, greater than or equal to

Statements are expressions followed by a semicolon. The most commonly encountered statements are:
Assignment statement:

x = y + 2;

Function invocation:
howmany = scanf("%d", &v1);
howmany = fscanf(stdin, "%d", &v1); // fscanf() discussed further down
printf("Hello World!\n");

-
Expressions Are Built By Combining Operators and Operands

• Suppose the variable v1 currently has value 4 and v2 has value 3.
What is the value of the following expression?

 v1 + 5 * v2 / 3 * v1

• The C compiler has a set of immutable rules for evaluating such expressions. The rules are called precedence (e.g.
multiply and divide are done before add and subtract) and associativity (e.g. a collection of multiply and divides is
evaluated left to right so 42 / 6 * 7 = 49 and NOT 1), but they are hard to remember.

• We can ensure that the compiler does what we want by building our expressions from parenthesized sub-expressions.
Such expressions are always evaluated innermost parentheses first. All of these expressions have different values.
What values will each of these expressions have?

v1 + ((5 * v2) / (3 * v1))

v1 + (5 * (v2 / 3)) * v1

4

((v1 + 5) * v2) / (3 * v1)

-
fprintf() and fscanf()

Last week, the lab write-up contained some background information about the 3 files that the C run-time system automatically
opens up when a program is run. Do you remember what they are?

You already know that the printf() function prints to standard output (usually the screen), and the scanf()function gets
input from standard input (usually the keyboard).

The fprintf() and fscanf()functions can be used as well. These are described below.

fprintf()
The fprintf() function is similar to the printf() function except that fprintf() has an additional argument as the first
argument which specifies where the output will be sent to. If sending output to the screen, the following two statements are
essentially the same in that they will both send the same message to the terminal window:

printf("I love programming!\n");
fprintf(stdout, "I love programming!\n");

But, later in the semester, you will see that you can send output to a file specified as the first argument in the fprintf()
function.

fscanf()
The fscanf() function is similar to the scanf() function except that fscanf() has an additional argument as the first
argument which specifies where the input is coming from. If the input is coming from the keyboard, the following two statements
are essentially the same in that they will both be getting the input from the keyboard and putting it into the memory location
(variable) that we are calling userInput:

scanf("%d", &userInput);
fscanf(stdin, "%d", &userInput);

But, later in the semester, you will see that you can get input from a file, specified as the first argument in the fscanf()
function.

-
More Fun With Unix
In Unix, you can use a redirection operator to send output that would otherwise be going to the screen to a file. You can also use
redirection for input as well. For this lab, you will use redirection for the output.

For example, when executing a program, the > operator may be used on the command line to cause the standard output to be
redirected to a file:

./a.out > output.txt

Unix also provides a command that will echo the contents of a file to the screen. To view the contents of a file, you could use your
editor of choice to open the file, or you can use the following Unix command, which will show the contents to the screen without
opening the file in the editor:

cat output.txt

5

Lab Assignment

Create a file called main.c. In it, provide a C program that will do the following:

1. Declare four integers variables intVar1, intVar2, intVar3, and intVar4.

2. Initialize intVar1 to the value 4; initialize intVar2 to the value 5.

3. Declare four more integer variables exp1, exp2, exp3, and exp4.

4. Declare a character variable charVar.

5. Assign the value of each of the following expressions to variables exp1 and exp2 respectively:
exp1 = intVar1 + ((5 * intVar2) / (3 * intVar1));
exp2 = intVar1 + (5 * (intVar2 / 3)) * intVar1;

6. Using the fprintf() function, print to standard output the values of the variables (your output should look like the
following):

intVar1 = 4 and intVar2 = 5

Expression values are:
exp1 = 6
exp2 = 24

7. Compile and run and verify that your output looks like the above lines. Notice that using the –Wall option with gcc

will produce warnings about unused variables at this point. You should always fix any warnings that you get when
compiling because many times, they are indicative of a problem that does affect your program.

8. Assign to intVar3 the value 9; assign to intVar4 the value 5.

9. Assign the value of each of the following expressions to variables exp3 and exp4 respectively:

exp3 = (intVar4 % 2) / (intVar4 / intVar3);
exp4 = 2 + intVar3 * intVar4;

10. Using the fprintf() function, print to standard output the values of the variables from step #8. Compile and run.

What happens and why? Do you get the expected new output? Write your answer in the header comment portion of
your main.c file.

11. Change the value of intVar3 to 5 and change the value of intVar4 to 9. Then compile and run and verify that

your output looks like this:

intVar1 = 4 and intVar2 = 5

Expression values are:
exp1 = 6
exp2 = 24

intVar3 = 5 and intVar4 = 9

Expression values are:
exp3 = 1
exp4 = 47

12. Assign to charVar the value 'H'.

6

13. Using the fprintf() function, print charVar as a character and the ASCII value of charVar (using the
appropriate format specifiers to display charVar as a character and as an integer respectively)

14. Increase the value of charVar by 32:
charVar += 32;

15. Use an identical fprintf() statement as used in step 13 to print charVar as a character and the ASCII value of

charVar. Then compile and run and verify that your output looks like this:

intVar1 = 4 and intVar2 = 5

Expression values are:
exp1 = 6
exp2 = 24

intVar3 = 5 and intVar4 = 9

Expression values are:
exp3 = 1
exp4 = 47

charVar = H ASCII value: 72

charVar = h ASCII value: 104

16. Run the program again but redirect the output to a file. The > operator may be used on the command line to cause the

standard output to be redirected to a file:

./a.out > output.txt

Type ls to ensure that you do have an output.txt file. To view the contents of the text file that contains the
output (called output.txt above), you can use your editor of choice to open the file, or you can use the cat
command to show the contents of the file to the screen without opening the file in the editor. Use the clear command
first and then the cat command:

clear
cat output.txt

You should see the following output printed to the screen (which should be the contents of your output file):

intVar1 = 4 and intVar2 = 5

Expression values are:
exp1 = 6
exp2 = 24

intVar3 = 5 and intVar4 = 9

Expression values are:
exp3 = 1
exp4 = 47

charVar = H ASCII value: 72

charVar = h ASCII value: 104

7

Turn In Work

1. Before turning in your assignment, make sure you have followed all of the instructions stated in this assignment and any
additional instructions given by your lab instructor(s). Always test, test, and retest that your program compiles and runs
successfully on our Unix machines before submitting it.

2. Show your TA that you completed the assignment. Then submit your main.c program and your output.txt file
using the handin page: http://handin.cs.clemson.edu. Don’t forget to always check on the handin page that your
submission worked. You can go to your bucket to see what is there.

Grading Rubric

If your program does not compile on our Unix machines or your assignment was not submitted on time, then you will receive a
grade of zero for this assignment. Otherwise, points for this lab assignment will be earned based on the following criteria:

Functionality 75
Style, Formatting, & Commenting 10
Inclusion of correct output.txt 5
Inclusion of answer in header comment 5
Use of fprintf() function 5
Other -5 if warnings when compile, and other point
 deductions decided by grader

Reminder About Style, Formatting, and Commenting Requirements
• The top of your file should have a header comment, which should contain:

o Your name
o Date
o Lab section
o Lab number
o Brief description about what the program does
o Any other helpful information that you think would be good to have.

• Variables should be declared at the top of the main function, and should have meaningful names.
• Always indent your code in a readable way. Some formatting examples may be found here:

https://people.cs.clemson.edu/~chochri/Assignments/Formatting_Examples.pdf
• Don’t forget to use the –Wall flag when compiling, for example: gcc –Wall lab3.c

