
CpSc 1111 Lab 7
Debugging With GDB

	
	

Goals

This lab will introduce you to gdb, a tool that can be used to debug programs that have run-time errors. You may find this to
be a useful tool as you begin writing more complicated programs than the ones you have seen thus far and encounter run-time
errors such as “segmentation faults” or “bus errors”. After you complete this lab, you should continue to experiment with gdb
so that you can become more familiar with it - especially if you have programs that have run-time errors.

gdb Debugger

The gdb debugger is an effective interactive tool that will allow you to run a program, stopping at predefined break points that
you set; print the value of variables, lines of code, etc.; continue executing to the next break point, or line by line; and find the
statement at which a program suffered a fatal error.

In order to use gdb (or any other debugger) on your programs, you must instruct the compiler to include debugging symbols in
the executable. Otherwise, the compiler leaves out these symbols to reduce the size of the executable files. With the gcc
compiler, the -g switch turns on debugging symbols. In other words, if you have a program called prog1.c, you would type
the following when compiling:

gcc –g –Wall prog1.c

Some of the commonly used gdb commands are shown in the table below:

gdb ./a.out load the program “a.out” in the current working directory and start the debugger
gdb –tui ./a.out load the program “a.out” in the current working directory and start the debugger; using the

-tui splits the screen showing the code in the upper half and the gdb prompt in the lower half
break main
 (or: b main)

cause execution to pause at the start of the function “main”

break 32
 (or: b 32)

cause execution to stop at line 32 (or whatever line number you specify)

run
 (or: r)

start execution of the currently loaded program

r > outputFile.txt start execution of the currently loaded program, redirecting the output to the file specified
(could be useful for debugging programs that produce an image file, e.g a .ppm image)

n (or next) execute the next line of source code
c (or continue) continue without stopping to the next breakpoint, program termination, or error
p x (or print x) print (to the screen) the current value of the variable x (or whatever variable name is specified)
d x (or display x) display the current value of x at each gdb command prompt
q (or quit) quit gdb
r restart the currently running program using the previous command line

A more in-depth list of commands may be found by searching online.

	
	
	
	

	
Assignment	
	
In this lab, you will be given a program that compiles but does not run successfully. When you try to run it, you should get the
message “Segmentation fault”. This and “Bus Error” are the two most common run-time errors. Note that no indication is
given as to where the program failed. You can imagine that in a large program, the message is pretty useless in trying to locate
the problem.

Once you log in to your account, navigate to a directory where you will do this week’s lab work. Then download:

example.c
broken.c
questions.txt

Once you copy the files, type ls and you should see the following files: example.c, broken.c and
questions.txt. Your lab assignment is to do the following:

1. compile and try to run example.c
2. follow the steps given on the next page where it says “Trying Out gdb” to try to find what is causing the seg fault in

example.c
3. compile and try to run broken.c
4. use the gdb debugger to try to find where the seg fault occurs
5. after a bit of detective work with the use of gdb, answer the questions in the file questions.txt
6. fix the error(s) in broken.c
7. Show your TA that you completed the assignment. Then submit both the fixed broken.c program and the

completed/updated questions.txt files to the	handin	page:		http://handin.cs.clemson.edu Don’t	forget	to	
always	check	on	the	handin	page	that	your	submission	worked.		You	can	go	to	your	bucket	to	see	what	is	
there.

Grading	Rubric	

If	your	program	does	not	compile	on	our	Unix	machines	or	your	assignment	was	not	submitted	on	time,	then	you	will	
receive	a	grade	of	zero	for	this	assignment.		Otherwise,	points	for	this	lab	assignment	will	be	earned	based	on	the	
following	criteria:	

Fixed broken.c file 55 (functionality: fixed the problem and now the program works)	
Formatting 10 (5 for added header information at top: name, course & semester, lab #;
 5 for other formatting)

 Answers in questions.txt 35 (5 points per question)

	 	

Trying	Out	gdb	
	
The following is the code contained in example.c:
	
/* program 17.4 page 398 */

#include <stdio.h>

int main(void)
{
 const int data[5] = {1, 2, 3, 4, 5};
 int i, sum;

 for (i = 0; i >= 0; ++i) {
 sum += data[i];
 }

 printf("sum = %i \n", sum);

 return 0;
}

1. compile:		gcc -g example.c	
2. try	to	run	the	program	the	regular	way	without	gdb:			a.out
3. it	seg	faults	
4. start	it	with	gdb:		gdb –tui ./a.out			
5. list main
6. break main
7. run (this	starts	running	the	program	up	to	the	break	point	at	main)
8. p data (the	debugger	stops	at	the	line	preceding	the	current	line	of	code	shown,	so	when	you	try	to	print	data,	at	that	point,	

the	array	called	data	has	not	been	initialized	yet;	in	other	words,	the	line	of	code	that	is	highlighted	is	the	line	that	will	be	
executed	next).

9. next
10. p data			(now	the	values	for	data	are	there)
11. next
12. next
13. next
14. p i
15. next
16. p i
17. next
18. p i (see	what’s	happening?)
19. continue 		the	program	continues	until	it	gets	to	the	next	break,	or,	as	in	this	case,	the	seg	fault	since	no	other	break	was	set
20. this	is	what	it	shows:
 Program received signal SIGSEGV, Segmentation fault.
 0x000000000040052d in main () at example.c:11

 and	the	line	of	code	that	is	highlighted	in	the	upper	box	is:
 >│11 sum += data[i];

21. list this	will	list	10	lines	near	where	the	seg	fault	occurred	(which	is	already	in	the	upper	box)
22. p i this	will	show	what	value	i	has	at	this	point	(what	is	i	on	your	screen	and	why?)
23. quit				will	quit	the	gdb	debugger	and	give	you	back	a	regular	prompt

