
1

CpSc 1111 Lab 10
Multi-Module Programs

Overview

This week, you will gain some experience with multiple file programs by using the program you wrote for lab 8 and putting
each of the two functions into their own separate source file, and also creating a header file and a makefile for your
program.

• main.c will contain your main() function
• btod.c will contain your btod() function
• dtob.c will contain your dtob() function
• btod.h will be the header file that should contain the prototypes for functions in btod.c
• dtob.h will be the header file that should contain the prototypes for functions in dtob.c
• Makefile

Background Information

Multi-File Programs

In lecture, we talked about splitting up a file into multiple source files by moving a function into its own file. Then to
compile the program, when you use gcc, you have to compile each source file separately. For example, with this lab and the
files named as above, to compile, you would type the following:

 gcc-6 -g -Wall -c btod.c
 gcc-6 -g -Wall -c btod.c
 gcc-6 -g -Wall -c main.c

The above commands only compile the .c source files into their corresponding .o object files. These now need to be linked
to produce the executable:

 gcc-6 -o main main.o btod.o dtob.o -L. -L/usr/lib -lc -lm

The executable is now called main.

-
Header Files

User defined header files commonly contain things such as:
• prototypes for functions that appear in your source files
• shared variables, like constants or #define statements
• structure definitions

Header files do NOT contain function implementations (bodies) nor do they contain any #include statements. Only
implementation files contain #include statements.

You can name your header file whatever you want, but it should be the same as the implementation (.c) file and it must end
with .h. In your source files, you would need to #include your header file, but don’t forget that it needs to be in quotes
instead of angle brackets. The angle brackets tell the compiler to look in the location where all the other C library header
files are located. The quotes tell the compiler to look in the current directory for that file, which is where your header file
will be located.

2

-
makefile

A Makefile (named makefile or Makefile) is a file that contains a list of “targets” and their dependencies, along with
commands that you would otherwise type at the command-prompt. When you type make at the command-prompt, the
system searches for a file called either makefile or Makefile and the command for the first target is run. If that first
target contains the command to compile, then that is the command that is run. You can always type make followed by the
target name to run whichever command is in your makefile that you want to run. An example is shown below:

In the above Makefile, there are 4 targets (.c.o:, all:, main:, and clean:). If you want to add a comment, they are preceded
with a #. To run any of those targets, you would type make <target_name> such as:

 make main // which would run the compile command

or

 make clean // will remove those files, if they exist

If you just type make, then the command associated with all: is run, which in this case, is the command to compile.

By the way, the -f flag with the remove command says to remove those files listed without asking the user if they are sure.
Be very careful if you use this flag. If, for example, you have a bunch of .o files that you want to remove, and you type

 rm -f *.c

which means remove all files that end in .c (the * is a wildcard) without asking first if you’re sure, instead of typing

 rm -f *.o

then you will have just mistakenly removed all your source files and all your work is gone!

IMPORTANT NOTE:
The space before the command in the makefile MUST BE a tab. - - If it is not a tab, it won’t work.

CC = gcc
INCLUDE = -I.
CFLAGS = -g -Wall
LDFLAGS = -L. \
 -L/usr/lib
LDLIBS = \
 -lc -lm

.c.o:

$(CC) $(INCLUDE) $(CFLAGS) -c $<

all: main

main: main.o

$(CC) -o $@ $^ $(LDFLAGS) $(LDLIBS)

clean:
 rm -f *.o
 rm -f main

3

ONE OTHER NOTE:
If you have a lot of files and you need to continue the list on a second line, use a backslash and then tab over on the next line,
like this:

gcc -Wall -o newExName file1.c file2.c file3.c file4.c \
file5.c file6.c

Lab Assignment

For this week’s lab assignment, you will write a multi-module program with the following files:
• main.c will contain your main() function
• btod.c will contain your btod() function
• dtob.c will contain your dtob() function
• btod.h will be the header file that should contain the prototypes for btod()
• dtob.h will be the header file that should contain the prototypes for dtob()
• Makefile

Don’t forget to do one step at a time and compile and run AFTER EACH STEP. Perhaps try creating the header file first,
#include it in your source file commenting out the things that are in the header file, and compile and run. Then create one
of the source files listed, compile and run, moving on to the next step only after the current code works.

Also, don’t forget that EACH source file should have a header comment at the top. You can put the function description in
the header if the file contains only one function, along with the other required header comment items.

Turn In Work

Show your ta that you completed the assignment. Then submit all 5 of your files using the handin page:
http://handin.cs.clemson.edu

Grading Rubric

For this lab, points will be based on the following:

Functionality 70 (25 for general functionality according to specs
 15 points for each source file for correct implementation)
dtob.h, btod.h 10
makefile 10
code formatting 10

Possible loss of points for other things, such as warnings when compile (-5), or other penalties for not following this lab’s
instructions.

Reminder About Formatting and Comments
• The top of your file should have a header comment, which should contain:

o Your name
o Course and semester
o Lab number
o Brief description about what the program does
o Any other helpful information that you think would be good to have.

• Variables should be declared at the top of the functions, and should have meaningful names.
• Always indent your code in a readable way. Some formatting examples may be found here:

https://people.cs.clemson.edu/~chochri/Assignments/Formatting_Examples.pdf

