
1

CpSc 1111 Lab 12
Strings & Char Pointers

Overview

In C, a string is simply an array of characters. We have used literal strings all along – the stuff in between the quotes in a
printf is a literal string. A literal string can be stored in a character array for later use, just as you would store the value 12
in an int variable. The string library string.h provides several functions for manipulation strings.

In this week’s lab, you will see static and dynamic ways of storing strings, and write your own versions of the string library
function strcpy(), which copies one string into another.

Initializing Character Arrays

Use a Makefile that has two targets: lab12_a and lab12_b. Watch out for the tabs under the following targets:
.c.o:, lab12_a:, lab12_b:, clean:.

Initializing Character Arrays

To declare storage for a string, declare a character array big enough to hold that string.

char myString[80];

You can now put a string into myString.

1. INTIALIZING WHEN DECLARING
In C, a string should always be terminated with the null character '\0'. One way to load a string is to initialize it when
declaring, as with the following:

char myString[] = "quit ";

2. USING scanf()
Another way of supplying a string value to a character array is with scanf for user input, such as:

CC = gcc
INCLUDE = -I.
CFLAGS = -g -Wall
LDFLAGS = -L. \
 -L/usr/lib
LDLIBS = \
 -lc -lm

.c.o:

$(CC) $(INCLUDE) $(CFLAGS) -c $<

all: lab12_a lab12_b

lab12_a: lab12_a.o

$(CC) -o $@ $^ $(LDFLAGS) $(LDLIBS)

lab12_b: lab12_b.o

$(CC) -o $@ $^ $(LDFLAGS) $(LDLIBS)

clean:
 rm -f *.o
 rm -f lab12_a
 rm -f lab12_b

2

char myString[80];
printf("Enter a string: ");
scanf("%s", myString); // no '&' needed with arrays

Note that the scanf() function reads up until a space, tab, or newline character, and places a null character at the end of
the string. So, if the user enters Hello World at the keyboard, scanf will put only Hello into the character array,
along with the null character right after the o. If you want the user to enter two words and want to capture both of the
words, then the following, using two character arrays, will work:

char myString1[80], myString2[80];
printf("Enter two strings: ");
scanf("%s%s", myString1, mystring2);

3. USING gets()
The function gets() can be used instead of scanf() to read in a string from user input. It will read everything up to
the end of the line, so if the user entered Hello World, gets() would put that entire string into the array and
automatically replace the newline character with a null character.

char myString[80];
printf("Enter a string: ");
gets(myString);

But – the use of gets() is frowned upon because there is no checking for overflow, i.e. there is no way to catch whether
the user enters a string that overflows the size of the array, which could cause all sorts of unpredictable results.

4. USING fgets()
Another (perhaps better) option is to use fgets() such as the following:

char myString[80];
printf("Enter a string: ");
fgets(myString, 80, stdin);

The problem with fgets() is that the newline character IS read into the array, and then the null character is placed after
that. So you can add the following line of code right after the fgets() above to get rid of the newline character and
replace it with the null character:

myString[strlen(myString) – 1] = '\0';

Dynamic Memory

When declaring an array the following way,

char myString[80];

this array is said to be a static array. By “static” we mean that the compiler knows at compile-time how big the array will
be. In other words, memory big enough to hold 80 characters is reserved at compile time for that array declared above.

We can request memory dynamically, which means that the memory will be reserved at run-time instead of at compile-time.

To do this requires the use of pointers, along with a function that will allocate memory and assign your pointer to point to
that area of allocated memory.

Remember that an array name is essentially a “pointer” – it references the area of memory where the elements of the array
reside (which is why the ‘&’ is not needed with a scanf() because the name of the array already refers to the address
location in memory of those items in the array).

3

However, when dynamically allocating memory for a character array, a pointer type must be used. The pointer for a string
must be a character pointer (because the pointer will be pointing to an individual item in the array). When declaring the
character pointer, space is reserved in memory for just the pointer. It’s after the call to the function to allocate the memory
(at run-time) that the pointer will be assigned to point to the beginning of a chunk of memory.

Using the calloc() function would do the same thing. The difference is that calloc() has two arguments whereas
malloc() has one:

At compile time, either of the two text boxes above will result in memory being reserved for the following:

myString

strSize

At run-time, you can imagine the following, where the myString pointer is assigned to point to another area of memory
where 12 characters can be stored:

myString

strSize

NOTE: Usually, when visualizing pointers, we draw an arrow to point to our pretend area of memory; but in actuality, the
value of the myString pointer would be the address of that area of memory. In other words, once assigned, the value of
a pointer is the address of where it is “pointing to”, not really an asterisk with an arrow pointing somewhere else in
memory. (Before a pointer is assigned a value (i.e. an address), it has the value of NULL.)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

char *myString; // character pointer
const int strSize = 12;

myString = malloc(strSize * sizeof(char)); // malloc() function is in <stdlib.h>

 *

 12

 12

 *

char *myString; // character pointer
const int strSize = 12;

myString = calloc(strSize, sizeof(char)); // calloc() function is in <stdlib.h>

4

The following is an entire example program using a character pointer and malloc():

Lab Assignment – Part 1 – Using Static Arrays

Do this part on your own. Write a program named lab12_a.c containing the following function:

// preconditions: src is terminated by '\0'
// dest is big enough to hold src
// postconditions: dest contains src and is terminated by '\0'
//
void my_strcpy(char dest[], const char src[])

This function will take two character arrays as parameters. The function should use a loop to copy the contents of src
from start to '\0' into dest. It should also copy the '\0' into dest. (This function will fail if dest isn't big
enough to hold src, but there's really no easy way for us to check for that, so we'll have to assume that the user uses our
function properly.)

In main(), define two character arrays str1 and str2 of length 31. Prompt the user for a string and use scanf()
to read the string into the first character array, str1.

Then use my_strcpy() to copy the string from str1 into the other char array, str2. Now copy "You entered:"
into str1 using your my_strcpy() function. Use printf("%s %s\n", str1, str2); to print both
strings.

Example Output:
$./lab12_a
Enter a string of length at most 30: Hello World
You entered: Hello

Lab Assignment – Part 2 – Using Character Pointers and Dynamically Allocated Memory

#include <stdio.h>
#include <stdlib.h> // the library that provides malloc

int main(void) {
 char *myString;
 const int strSize = 12;

 myString = malloc(strSize * sizeof(char));

 // if malloc returns NULL, it wasn’t able to allocate enough memory
 if (myString == NULL) {
 printf("malloc failed to allocate enough memory!\n");
 return 1; // returns 1, which quits the program with a value

// that indicates an unsuccessful run of the program
 }

 myString = "Hello World!!"; // notice that if using a pointer,
 // a string value can be assigned;
 // could have used strcpy() instead
 printf("myString is: %s\n", myString);

 return 0;
}

5

Do this part on your own. Write a program named lab12_b.c containing the following function:

// preconditions: src is terminated by '\0'
// dest is big enough to hold src
// postconditions: dest contains src and is terminated by '\0'
//
void my_strcpy(char *dest, const char *src)

This function will take two character pointers as parameters. The function should use a loop to copy the contents of src
from start to '\0' into dest. It should also copy the '\0' into dest. Note that incrementing a pointer makes it
point to the next memory location.

In main(), define two character pointers str1 and str2 and an integer. Prompt the user for string length and use
scanf() to store this in your int variable. Use malloc() (or calloc(), whichever one your prefer) to allocate
memory for both character pointers with the length (plus one) read from the user. Make sure that malloc() (or
calloc()) returned non-NULL addresses for both character pointers. Then prompt the user for a string using scanf()
to read the string into the first pointer, str1.

Then, as in Part 1, use my_strcpy() to copy the string from str1 into the other char pointer, str2. Now copy
"You entered:" into str1 using your my_strcpy() function. Use printf("%s %s\n", str1, str2);
to print both strings.

Example Output 1:
$./lab12_a
What is the longest length of a string that you will you enter? 30
Enter a string: Hello World
You entered: Hello

Example Output 2:
$./lab12_b
What is the longest length of a string that you will you enter? 3000000000
malloc failed to allocate enough memory!

Turn In Work

Before submitting your files, show your ta that you completed both parts of the lab assignment. Then submit both of your
files lab12_a.c and lab12_b.c using the handin page: http://handin.cs.clemson.edu

