Paper review and Point

Paper Review

Notation: $\vec{\chi}_i \in \mathbb{R}^3$ means $(\chi, g, z)_i$ there's n of them $||\vec{\chi}_i|| = \text{magnitude of } \vec{\chi} = ||\vec{\chi}_i \cdot \vec{\chi}_i|| = ||\chi_i||_{L^2 + 2^{-1}}$ $\vec{L} - \text{norm}(?)$ $\chi = \{\vec{\chi}_i, \dots, \vec{\chi}_n\}$: our sampled data, and insort need a list of points

M: unhuard surface — the is the real surface

— we just assume some small

measurement error

what we're a small piece of surface at the should

he ye't ei)

gi is an the surface

date is p-dense if ||ei|| \(\delta \) \(\text{ti} \)

Step? Compute oriental tangent plane for each point \vec{x}_i . $Tp(\vec{x}_i) = \{\vec{\delta}_i, \vec{n}_i\}$ [ord" origin" normal (orientation of plane)

center of the plane $to x_i + b x_i + c x_i + c$

Signal distance of artifronty point
$$\vec{p} \in \mathbb{R}^3$$
 to $Tp(\vec{n}_i)$

$$= \left\{ \begin{pmatrix} P_{\infty} \\ Iy \end{pmatrix} - \begin{pmatrix} O_{C_{\infty}} \\ O_{C_{2}} \end{pmatrix} \right\} \cdot \begin{pmatrix} N_{C_{\infty}} \\ N_{C_{2}} \\ N_{C_{2}} \end{pmatrix}$$

$$= \left\{ \begin{pmatrix} P_{\infty} \\ Iy \\ I_{C_{2}} \end{pmatrix} - \begin{pmatrix} O_{C_{\infty}} \\ O_{C_{2}} \\ N_{C_{2}} \end{pmatrix} \right\} \cdot \begin{pmatrix} N_{C_{\infty}} \\ N_{C_{2}} \\ N_{C_{2}} \end{pmatrix}$$
in ctt, we'd (see to ux 496)
$$= \text{dimost verteation} : \text{operator} - (---)$$

How to calculate $\vec{o}_i \neq \vec{u}_i$?

find k-nearest neighbor of \vec{v}_0 , N_5 hod (\vec{v}_0) e.s. Nohod $(\vec{v}_0) = \{\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4, \vec{x}_5\}$, k=5then, Calculate controid of Nohod (\vec{v}_0) (what do they to get \vec{o}_0) $\vec{o}_i = \frac{1}{12} \vec{x}_i = \frac{1}{12} \left(\frac{n_1}{n_2} + n_2 + n_3 + n_4 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_2 + n_3 + n_4 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_2 + n_3 + n_4 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_2 + n_3 + n_4 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_2 + n_3 + n_4 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_3 + n_4 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_3 + n_4 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_3 + n_4 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_3 + n_4 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_3 + n_4 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_3 + n_4 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_3 + n_4 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_3 + n_4 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_3 + n_4 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_3 + n_4 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_3 + n_4 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_3 + n_4 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_5 + n_5 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_5 + n_5 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_5 + n_5 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_5 + n_5 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_5 + n_5 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_5 + n_5 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_5 + n_5 + n_5 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_5 + n_5 + n_5 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_5 + n_5 + n_5 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_5 + n_5 + n_5 + n_5 \right) \frac{1}{12} \left(\frac{n_1}{n_2} + n_5 + n$

```
-here) what the future code may look like:

Point O(0.3, 8.8, 8.8);

for (K=9; K < Nhhd. Size(); K++) ?

revlace

O[0] += (N5hd(K))[0];

O(1) += (N5hd(K))[1];

O(1) += (N5hd(K))[1];

O(1) += (N5hd(K))[1];

O(1) += (N5hd(K))[1];

O(1) = O(1)/(floot)K;

O(1) = O(1)/(floot)K;
```

went's NGhd)

Vertor < Point* > Nbhd;

STL vertor

Findude <vertor)

a list, basicallythere, in my example, it's a

list of pointers to Point

class Point;

private;

vector (double) point; (internal double member

public:

double 2 operator [] (int K) { return (point [K]); }

when you have Point p;

ploj = 42.0 | p. operator [](0) = 42.0

pass by reference

constructor

C++'\('\' Big three'' :

Constructor

Leotrulor

Cory assignment (operator =)

Point(double \$\infty = 0.0), double \$y = 0.0)

point. push-back(\$y\$);

point. push-back(\$y\$);

```
Rowt operator = (const Pointle This); } point.h

how does the get called?

Point a, s;

a = b

a. operator = (b): ansurption is that a excists

South Point: operator = (const Pointle This)

Get the != x rhs) } // aleasing test; tests for a = a

Point. clear();

for (int i = 0; i < ths. size(); t+i)

Point. prsh -bank (Ths. point[i]); }

Return settis;
```

what else? 1/0	freed as:
I'd where to say \$50:	Aparator <((cout, 1)
Point 1,	gid global scope monter of Pout
stall cout << p>) // privit p to std out
sfell: (in 5) qj	4 real in duta to g
in paint, h: Hinduck Krostrea	nm)
1 solican & oler	ato < (Ostrum S, Court Pout & My).
(Strend) Alexand >) (Strends, TOWTO (19))	
thello";	- P operator << (court, charte)
Staticost << " P = ") << f	Poperator<<(cost, charse) >)<< std: endl;

```
ostumble operator < (ostumbles, court fourthe this)

S < ths. point [0] < ( a " " ; ) and whatever sec (hs. point (1) < ( " " " ; ) hety " sec (std::embl; want)

S < Std::embl; (2 ?)

[L?)
```

istream & operator >> (istrem & s, fout & rhy)

do the f; int i=0; char c, n;

do t

s>>f, (hs[i)=f; ctt;

} while (s.get() && (c!='\n') &&

((n=s.peck (1)!='\n'));

redun s;