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Abstract

A fully automatic tool for the quantitative comparison of various 
subject’s eye-gaze data would be very valuable in many eye 
tracking studies. In this paper we discuss our implementation of 
such a tool based on previous clustering and comparison 
techniques. The trial experiment we performed verifies that our 
implementation is correct and effective. The system developed 
will be used in further studies to compare expert/novice data. 

1   Introduction

Eye tracking has shown itself to be a valuable method of 
providing data describing the visual attention and cognitive state 
of a user. An observer focuses on a certain position in a scene so 
he or she can see that section in high detail in order to process 
specific visual information most efficiently [Duchowski 2003]. 
Consequently, eye-fixation data supplies important information 
about what regions in a scene are most significant. Methods 
needed to cluster collected fixations into larger regions-of-interest 
(ROIs) have been studied and improved to an adequate level 
[Santella and DeCarlo 2004]. What is further needed is a robust 
method of comparison between multiple viewers’ ROIs.

The aim of this paper is twofold: to describe the 
implementation of an algorithm, based on a combination previous 
work [Privitera and Stark 2000; Santella and DeCarlo 2004], that
objectively compares multiple subjects’ ROIs and to prove the 
validity of the algorithm through experimentation.

A robust comparison method can be used to more accurately 
measure results in various experimental situations. One example 
of previous eye tracking work that could use such analysis is 
aircraft inspection. The presented results from Sandsivan et al. 
[2005] measured only speed and accuracy to obtain comparison 
data between subjects. The use of the algorithm to be presented 
could provide more concrete results. Another example is the work 
done by Law et al. [2004] on surgical training. Again results were 
gauged by speed and accuracy. While such measures may be 
sufficient for any given task, direct ROI comparison will yield
more detailed and specific results. Furthermore, the work could be 
used in most eye tracking research where multiple subjects’
performance is being measured.

In section 2 relevant work concerning clustering and ROI 
comparison is discussed in detail. Section 3 describes the 
methodology used in designing an experiment to verify the 
comparison algorithm’s correctness. The operation of the 
algorithm and its use in analyzing the test data is covered in depth 
in section 4. Section 5 presents the quantitative results obtained by 
applying the algorithm to the test data. A discussion of the results 
comprises section 6. Plans for future work are conveyed in section 
7.

2   Background

An algorithm for comparing eye gaze data has already been 
developed [Privitera and Stark 2000]. The problem with this 
algorithm is that it was specifically designed to compare 
artificially generated point-of-regard (POR) data and it uses k-
means, an ineffective (for our purposes) clustering algorithm. This 
section will describe first the method developed by Privitera and 
Stark [2000] and second the clustering method developed by 
Santella and DeCarlo [2004] used to replace the k-means 
clustering technique.

In the previous ROI comparison work, all viewable area of a 
scene was split up into regions using the k-means clustering 
method. Each region was labeled with a single character. Data 
collected from human viewers and generated by various 
algorithms was applied to the scene and fell into one of the 
predefined regions to form clusters. The data was then used to 
construct a string from the characters bound to each region 
representing were a viewer had looked and in what order (Figure 
1). Two metrics were then used for comparison: a spatial index Sp

and a sequential index Ss. The coefficients of each of these 
measures can be represented in a table called a Y-matrix, but 
because of size restrictions the data from the Y-matrices were 
compacted into Parsing diagrams. The Parsing diagrams 
contained four items (scanpaths): Repetitive (R), the same viewer 
looking at the same scene at different times; Local (L), different 
viewers looking at the same scene; Idiosyncratic (I), the same 
viewer looking at different scenes; Global (G) different viewers 
looking at different scenes. Using Parsing diagrams to analyze 
various subjects’ results provides information on whether the 
subjects looked at the same areas (Sp) and whether they looked at 
those areas in similar order (Ss).
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Figure 1: k-mean clustering; two viewers - viewer 1: 
circles (ABCB), viewer 2: boxes (BDCE)



The clustering algorithm developed by Santella and DeCarlo 
[2004] was chosen over k-means for this project because of its 
increased robustness. It was developed on the key principles of 
consistency, no foreknowledge, and robustness in the sense that 
isolated outliers do not affect clusters. The clustering algorithm 
uses a mean shift method to arrive at its results. The mean shift 
procedure repeatedly moves each point x to a new location s(x)
until convergence is achieved. Then all points in the proximity of 
each other can be considered to be one cluster.

More specific information detailing the operation of these 
mentioned methods will be covered later in the operation section 
which describes their combination and implementation.

3   Methodology

The goal of the experiment was to verify the correctness of the 
comparison algorithm. It was hypothesized that the repetitive and 
local measures of subjects instructed to view an intuitive scene 
should be exceptionally high. 

3.1   Apparatus

The experiment was performed with a Tobii 1750 eye tracker. 
The Tobii 1750 is a 17 inch flat screen monitor with an 
incorporated eye tracker. The resolution of the monitor is 1280 x 
1024. The eye tracker is capable of binocular tracking at a 50Hz 
sampling rate within 0.5 degrees of accuracy. An AMD 64 PC 
running Windows XP and software provided with the Tobii 
interprets the eye tracking data and exports it via TCP/IP. The 
display, data collection, and analysis programs were run on a PC 
with a AMD Opteron processor running Fedora Core Linux. The 
Linux box used TCP/IP to collect the data from the Windows box.
The display and analysis applications were developed in OpenGL 
using C. The data collection application was developed in C++.

Figure 2: Sample (aggregated) numerical stimulus

3.2   Experimental Design

Subjects consisted of six college students (all male). Ages of 
the participants ranged from 21 to 42 years old. The number of 

subjects was selected relative to past studies and availability. 
Subjects were screened based on their ability to calibrate well 
with the eye tracker.

The visual stimuli consisted of three blank black screens with 
randomly placed numbers 1 through 4 (Figure 2) and a more 
complex computer generated (CG) image produced by a ray tracer 
(Figure 3). In the first three numerical images each number was 
flashed onto the screen one at a time. The individual numbers 
were displayed for 500ms to allow for an initial orientation time 
and one long fixation because fixation durations generally range 
from 150-500ms [Duchowski 2003]. The first stimulus (all four 
numbers) was repeated in order to obtain repetitive measures. The 
last stimulus was displayed for 5 seconds because of its vastly 
increased complexity. 

Figure 3: Ray tracing stimulus

The last image was included because it was expected that data 
collected on the image would have far lower local measures 
between subjects than the other data. Because no task was 
provided in viewing the CG image each subject should inspect the 
image differently and therefore produce widely varying eye-gaze 
(fixation) data.

3.3   Procedures

The subjects were placed in directly in front of the Tobii at 
approximately 60cm distance. Calibration was performed by 
displaying nine blue circles evenly spaced throughout the display. 
The circles were displayed independently and shrank down from a 
diameter of 30 pixels to a diameter of 2 pixels. The eye tracker 
collected 22 calibration samples at each circle location. The 
calibration accuracy was stored after each collection. The test 
subjects were instructed to look at each circle as it appeared 
before the calibration began. Average precision variance was 
computed to ensure each calibration was within acceptable limits.

Before each trial began the test subjects were instructed to 
fixate on each number as it appeared and to freely inspect the last 
image. They were informed of how much time they would have to 
look at each number and the final CG image. For each run all the 
POR data (x, y, and time stamp) was collected. The data was 



exported along with headers indicating the current viewer and 
image to a log file to be analyzed at a later time.

After the test another calibration was performed and the 
average precision variance was again collected. The variances 
from the two calibrations were compared in order to factor out
any slippage of the eye tracker.

4   Operation

The implement algorithm consisted of two parts: clustering and 
comparing. First the clustering logic will be covered and then the 
comparing logic.

Before the clustering was performed velocity based saccade 
detection was used to filter out any data points considered as part 
of a saccade. Velocity was defined as difference in position over 
difference in time.
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Any velocity above 130°/sec [Duchowski 2003] identified data as 
part of a saccade, and resulted in its exclusion from the usable 
data set.

4.1 Clustering

The first step in the algorithm defined by Santella and DeCarlo 
[2004] is called the mean shift procedure. The process starts with 
a set of n points:
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and repeatedly relocates each point xj to a new locality s(xj) which 
is the weighted mean of nearby data points.
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The symbol k is the kernel function that defines the effects of data 
points on each other.
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The parameter σs defines the spatial extent of the kernel. 
Specifically it guarantees that no clusters exist closer in locality 
than σs. As suggested kernel support was limited to 2σs in order to 
eliminate the effects of distant outliers. 

The implementation keeps two lists: one containing the original 
data and the other the mean shifted data. The mean shifted list 
originally contains a copy of the original data but is repeatedly 
operated on (s(x) is calculated) until convergence. Convergence is 
detected by the condition that no data point moves more than ε 
pixels in a single mean shift step. For this experiment ε was set to 
five pixels for all trials. Varying ε a small amount such as ten 
pixels would produce negligible effects. A data point is then 
grouped into a cluster with all points less than σs pixels away from 
itself. The mean shifted list contains a reference back to the 
original data list that it was copied from, and therefore, the 
original data can be classified into clusters. Clusters with less than 
five members are considered outliers and discarded from further 
use. All viewer data for each image is clustered together for 
comparing.

4.2 Comparing

The comparison methods developed by Privitera and Stark 
[2000] used string based comparison to exhibit differences in scan 
paths. In this implementation each cluster is labeled with a 
character. The cluster ordering is defined by the first viewers gaze 
data and is kept the same for all other viewers. Strings for each 
viewer (for each image) are then constructed by concatenating the 
character, from each cluster visited by the viewers gaze data, to 
the current end of the string. 

After the strings are constructed Sp and Ss are then computed. 
Given the strings a and b, Sp is computed by dividing the number 
of characters that appear in both strings by the number of 
characters in a. Consider the strings a = ABACED and b = 
ABACD. Then Sp, the location similarity between a and b is (5/6) 
= 0.83. Again given the strings a and b, Ss is computed by 
subtracting the Levenshtein distance between a and b divided by 
the number of characters in a. The Levenshtein distance between 
two strings is based on the cost of three operations: insertion, 
deletion, and substitution used two transform the second string (b) 
into the first (a). Using the strings supplied above Ss, the 
sequential similarity between a and b is (1-1/6) = 0.83.

While Privitera and Stark [2000] used four similarity metrics: 
repetitive, local, idiosyncratic, and global, for viewer comparison 
purposes, the idiosyncratic (same viewer, different images) and 
global (different viewer, different images) were not relevant, 
hence, not included in our implementation.

4.3 Visual Data Representation

The analysis program displays a visualization of the data for 
each (aggregate) image (Figure 4). Subject’s original eye-gaze 
data is color coded to match the legend in the top right corner of 
the display. Bright red points represent all subject’s mean shifted 
data. A bright blue ellipse surrounds each cluster, and a bright 
green character towards the center of the cluster is its label.



5   Results

The parafoveal range that can be seen by humans in high detail 
is approximately 5° [Duchowski 2003]. With a viewer at 60cm 
away from the display, a 17 inch monitor, and a resolution of 
1280 x 1024 pixels the parafoveal radius translates to 
approximately 100 pixels.  Therefore, the data was analyzed with 
σs = 100 to cluster in respect to what a viewer can foveate on.

Sp Ss

numbers1 1.00 1.00
numbers2 1.00 0.88
numbers3 1.00 0.96
numbers1 (second run) 1.00 0.80
raytrace 0.83 0.43

Figure 5: Local results, σs = 100

The local results present an average of the measures (Sp and Ss) 
of all subjects for each image. The Sp values demonstrate that all 
subjects looked at all clusters in the numerical images and most 
clusters in the CG image. The Ss values are high for the numerical 

images expressing that the view sequences between subjects were 
very similar; the value was lower for the CG image indicating less 
relation between the view sequences of the subjects.

Sp Ss

Subject1 1.00 0.75
Subject2 1.00 0.50
Subject3 1.00 0.50
Subject4 1.00 0.75
Subject5 1.00 0.25
Subject6 1.00 0.50

Figure 6: Repetitive results (numbers1), σs = 100

The repetitive results present an average of the measures (Sp

and Ss) for each of the viewer’s two viewings of the numbers1 
image. The outcome can be interpreted much in the same way as 
the previous results.

Since the σs value was selected based on human physiology it is 
possible that the data could have been skewed (too large/not 
enough clusters) relative to the image size. Furthermore the data 
was run with σs = 70 and σs = 40 exhibited in Figures 7-10.

Figure 4: Sample data visualization (σs = 100)



Sp Ss

numbers1 1.00 1.00
numbers2 1.00 0.68
numbers3 090 0.83
numbers1 (second run) 1.00 0.72
raytrace 0.82 0.32

Figure 7: Local results, σs = 70

Sp Ss

Subject1 1.00 0.75
Subject2 1.00 0.50
Subject3 1.00 0.50
Subject4 1.00 0.75
Subject5 1.00 0.25
Subject6 1.00 0.25

Figure 8: Repetitive results (numbers1), σs = 70

Sp Ss

numbers1 1.00 1.00
numbers2 0.90 0.57
numbers3 0.90 0.77
numbers1 (second run) 0.87 0.57
raytrace 0.53 0.24

Figure 9: Local results, σs = 40

Sp Ss

Subject1 1.00 0.50
Subject2 1.00 0.25
Subject3 1.00 0.25
Subject4 0.75 0.50
Subject5 0.75 0.25
Subject6 1.00 0.0

Figure 10: Repetitive results (numbers1), σs = 40

6   Discussion

The results suggest that the algorithm works as expected. Both 
the location and sequential (local) measures were high for the 
numerical images and significantly lower for the CG image. Even 
when decreasing σs the pattern remained. The results for the 
repetitive measures did not reveal much significance because only 
two runs over the same image were conducted. This fact is not a 
great loss, because the same method is used to compute both local 
and repetitive measures (different values are averaged to come up 
with the repetitive outcome). Consequently, proof off the local 
results infers the correctness of the repetitive results barring any 
coding errors. Even so, further testing is warranted.

The local results for all but the first image suffered because 
data was collected uninterruptedly throughout each entire trial. 
This fact did not allow the subjects to reorient their eyes, and data 
from the previous image’s last fixation was carried over to the 
next image. This problem could have been averted by briefly 
pausing the data collection when an image changed.

The experimentation yielded a worthwhile consideration. When 
testing a static scene for a short time low values should be used 
for σs to avoid too few clusters and thus possibly distorted or 
insignificant results.

7   Future Work

Future work will include porting the system from C to C++ for 
added readability and maintainability. Also a graphical interface 
will be designed to make program controls easier to access and 
display results in an easier to read format. While the idiosyncratic 
measure was not deemed necessary for the initial implementation, 
it could be useful in certain situations and will be included the 
future. After the tool is updated it will be used in future studies.
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