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ABSTRACT
Tracking the user’s gaze point has great importance for the
research in humnan-computer interfaces. Nowadays People
are trying to build cheaper, reliable and wearable eye track-
ers. In this paper we built and developed accurate and effi-
cent algorithms for a wearable real-time eye tracker. Our im-
plementation is based on pupil center localization and homo-
graphic mapping. We also proposed possible improvements
including corneal reflection detection and different mapping
techniques.
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INTRODUCTION
Wearable eye trackers have the capability to know where the
user looks while they are doing various actions. The cur-
rent wearable eye tracking equipment used is heavy, expen-
sive, uncomfortable, and limited in their functionality. To
cut down on these difficulties, we will develop a more cus-
tomized eye tracker using less expensive and lighter mate-
rials, which will help improve its capabilities. Some of this
work has already been established which will be used as a
basis for our project.
To understand our wearable eye tracker, its important to note
where eye tracking originated from. The development of
eye trackers has drastically evolved from where it began be-
cause of continuous efforts in its design and implementation.
Dodge and Cline [6] helped develop the first precise, non-
invasive eye tracking technique, using light reflected from
the cornea [7]. This helped give instruction for future devel-
opments to occur based on their work concerning the loca-
tion of eye fixations.
In this paper we will describe the algorithms for the eye
tracking system we are implementing. Details about the al-
gorithms will be compared with previous work also.

BACKGROUND
Some previous work that has been written about wearable
eye trackers involves techniques denoted by Babcock and

Pelz’s eye tracker[11], which is based on infrared LEDs. The
problem encountered with this technique is that any envi-
ronment where infrared light cannot be controlled may pro-
duce inaccurate results. Some work has also been done in
the visible spectrum by Li and Parkhurst[12] and Ryan[2].
The main advantage of Ryan’s work compared to Li’s and
Parkhurst’s is that it is designed to work under variable light
conditions, which is important in a wearable eye tracker.
Ryan[3] developed an eye tracking system based on the Daug-
man’s[5] elastic sheet model of the iris and on the Starburst
algorithm.
Some of our work is based off of existing algorithms in-
cluding the Starburst algorithm. One of those techniques
is called RANSAC (Random Simple Consensus) paradigm,
which helps draw the ellipse from detected feature points[13].
The mapping we used was called homographic mapping, in-
volving a 3x3 matrix that has eight degrees of freedom, be-
tween the scene point and eye coordinate.

DEVICE
Our eye tracker is composed of two cameras, one tracking
the eye (eye camera) and the other recording the scene (scene
camera). These cameras are held together by a head gear
structure (Figure 1), which has an adjustable knob placed
on top heightens or lowers the head gear based on the users
head. It also has a back knob that can tighten or loosen
around the users head. At the top of the head gear is bounded
the scene camera, which only moves with the direction of the
users head. The scene and eye camera will use a 6mm and
25mm focal diameter lens, respectively. Both have a maxi-
mum resolution of 640x480 pixels and a pixel size of 7.4 x
7.4µm. The eye camera is attached by mounted aluminum
material, located in the front of the mount. Both cameras
were made by Point Grey Research.

Figure 1. Our eye tracker
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METHODS
The flow chart of this program is shown on Figure 2, the
following paragraphs will give more detailed explaination
of all the algorithms.

Figure 2. Flow Chart

Pupil Localization
It is obvious that the pupil area is much darker compared to
the rest of the area inside the image. So the common method
would be apply a threshold to the image. But the most dif-
ficult problem is how to get the threshold of binarization for
every image. The Threshold I used for this project is derived
from the Mean value of the graylevel of the whole image:

Threshold =
0.4

Sizeimage
ΣIntensity (1)

The histogram of an eye image would contain three peaks,
one peak for pupil, one for iris ring and the last one for other.
I come up with an automatic thresholding algorithm that use
a modified Ostu’s method twice on the image. The first time
it seperate the iris from the image and the second time it
seprates the pupil from the iris. The results I get is decent
almost in every frame of image. But Ostu’s Method is time
consuming and not suitable for this real time application.

After thresholding, doing image morphology is important
because the eyelash has the similar intensity value of the
eyeball and when it is connected with pupil it will give us
trouble on finding the location of the pupil. So we here do

an erosion on the binary image we get. Since the eyelash and
eyelid are thin and long, erosion will get rid of them.

Connected components analysis is applied on the binary im-
age later. If a component pass all the criterias, it will be
accepted as candidate for pupil. Depending on the geomet-
ric and shape features we will be able to automatically locate
the pupil center by calculating the centroid of the best fitting
component.

Figure 3. Thresholding and Erosion

Figure 4. Object recognition and centroid finding

Feature Extraction
After finding the pupil center, I implemented Starburst al-
gorithm on the edge image. Then feature points for pupil
bondary will be extracted.

1. Apply Canny Edge Detection to the image.

2. Shoot rays extending from the pupil center in a range of
directions.

3. If the ray hits any edge within a bounding box, place a
feature point.

Figure 5. Feature Points Extraction

Ellipse Fitting
Given a set candidate feature points, the next step of the al-
gorithm is to find the best fitting ellipse. We apply the Ran-
dom Sample Consensus(RANSAC) paradigm for model fit-
ting. By selecting five pupil points at random we can create

2



a 5x5 quations for an ellipse:

ax2 + by2 + cx+ dy + exy + f = 0 (2)

Singular Value Decomposition (SVD) on the conic constraint
matrix generated with normalized feature points is used to
find the parameters of the ellipse that fits the five points.

1. Randomly select five points.

2. Normalize the feature points.

3. Build conic constrait matrix using the normalized feature
points.

4. SVD is applied to solve the parameters for the ellipse.

5. Apply the ellipse to all the feature points and caculate the
number of inliers

6. Repeat step 1 to 5 for 100 times.

7. Select the ellipse that has the most inliers

Figure 6. Good fitting Results

Figure 7. Not ideal fitting Results

Calibration
In order to calculate the point of gaze of the user in the scene
image, a mapping between locations in the scene image and
an eye position must be determined. The mapping will be
calculated by calibration. During calibration, the user is to
look at scene markers which the coordinates are deteted ~s
=(xs, ys, 1). At the mean time the pupil center of ~e =(xe, ye,
1) is measured. Then we generate the mapping between eye
and scene using linear homographic mapping. Ihe mapping
H is a 33 matrix and has eight degrees of freedom.

The markers can be placed anywhere where there is a high
contrast between the markers and background. The center of
each markers and eye coordinates are stored through several
steps:

1. Threshold the graylevel image using Ostu’s method.

Figure 8. Scene Markers for Calibration

2. Connected components Analysis is applied to the fore-
ground objects

3. Each component is measure by its shape and geometry, if
pass threshold then marker accepted

4. Sort the markers by its center coordinates

5. User then look at each marker through 1 to 9 and press
the number on keyboard. Then the coordinates of both
marker and eye will be stored

Homographic mapping
After we recorded a group of pairs from the scene and eye
image, we will gnerate the mapping between the two sets
of points using homographic mappping. RANSAC is im-
plement to select the best mapping matrix. The steps of the
algorithm is below:

1. Randomly choose 9 pairs of points and normalize them

2. Direct Linear Transform and SVD are implemented and
we will get a mapping matris H .

3. Use the H we get and map the eye coordinates to scene
and calculate the total error.

4. Repeat 1 to 3 and select the H with the smallest error.

5. Once the mapping is determined, the user’s gaze point
would be as ~s = H ~e.

EXPERIMENTAL RESULTS
After calculating the H matrix, we then can map the eye
coordinates to the scene point. We display the gaze point as
a cross in the scene image as shown in Figure 9 and Figure
10.

Figure 9. Point of Gaze at the block 4

The camera is taking images 25 frames per second, the qual-
ity of the processed video is smooth.
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Figure 10. Point of Gaze at the block 2

We evalute the accuracy of our implementation by mapping
the eye coordinates to the scene points using the coefficents
we calculated. For the above experiment, I got an H matrix:

H =

[ −3.40346 −0.266491 1459.11
0.79225 5.06758 −344.293

−0.000645615 0.00193906 1

]

The corresponding coordinates are:

eye(x, y) =



365 44
328 50
287 60
356 63
318 68
280 82
360 88
324 94
287 106



scene(x, y) =



258 184
379 192
501 190
244 299
369 296
488 302
221 406
343 401
462 403



s′ = H ∗ e =



241 197
372 190
500 200
258 288
387 272
495 299
224 412
340 399
445 411


The average mapping error given in pixels is 13 in our 640X480
image.

CONCLUSION
We built and developed accurate and efficent algorithms for
a wearable real-time eye tracker. The pupil center is lo-
cated through thresholding and image morphology. Then

RANSAC is applied to maximize the accuracy of ellipse fit-
ting in the presence of feature-detection errors. Our ellipse
fitting is robust to variation in the distance and luminance
condition. Finally homographic mapping is used to calcu-
late the user’s gaze point in the scene.

FUTURE WORK
A number of improvements could be made to our current im-
plementation. For example, instead of using the pupil cen-
ter’s coordinates for mapping, we could use the vector dif-
ference between the pupil center and corneal refletion point.
The vector difference will lead to better performance be-
cause the corneal reflection stays stable on the eyeball.

The ellipse fitting algorithm we use is RANSAC, there are
other methods like Fitzgibbon’s Direct Least Square fitting
which proves work better even with few very noisy points.
Next step is to implement this algorithm and test its efficency
and accuracy.

Also different Mapping techniques can be used besides a ho-
mographic mapping. There are other techniques like linear
mapping and second-order polynomial mappings. We will
need to test the other methods and calculate their accuracy.

In the hardware, the head gear tends to vibrate when the user
makes a fast move with their head. This affects the eye cam-
era critically due to the system’s high sensitivity to the po-
sition of the eye. Moreover the tracker is quite heavy and it
is not comfortable to wear, lighter cameras are preferred. As
the scene camera is placed over the user’s head, the image
captured is higher above what we really see. If the scence
camera could be placed beside the user’s eye, the mapping
would be more accurate.
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