
Animating Eyes

Gina B. Guerrero∗

Digital Production Arts
Clemson University

Andrew Duchowski†

School Of Computing
Clemson University

Figure 1: 3D head model used for this study. The screenshots have sample data already keyframed.

Abstract

Accurately and efficiently depicting the liveliness of eyes is not an
easy task in animation. In this paper, we propose a method that
utilizes eye tracking and motion capture technologies to animate
3D eyes. We measure it based on accuracy, efficiency, and user
satisfaction.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: eye tracking, motion capture, animation

1 Introduction

In animation, eye movements are modelled through a series of
aim constraints that are sometimes coupled with inverse kinemat-
ics (IK) [O’Hailey 2013; Vasconcelos 2011; Maraffi 2004]. These
methods are limited in the sense that eye states may not be accu-
rately portrayed, and the nature of eye jitter may be lost altogether,
possibly producing a lifeless character.

In motion capture, electro-oculography (EOG) devices are used by
placing markers on the face following a muscle-based method, peak
movement method or a hybrid of both [Okun and Zwerman 2010].
However, data from these do not necessarily track eye movement,
therefore eye tracking methods such as special contact lenses or
a combination of video-oculography (VOG), an eye-image analy-
sis using a camera and infrared oculography (IROG), a corneal-
reflection of near infrared light source relative to the location of the

∗e-mail:gguerre@g.clemson.edu
†e-mail:duchowski@clemson.edu

pupil center, could be used in tandem [Kerlow 2001; Duchowski
2007]. The data derived from these methods provide a complete
picture of eye motion that can be useful in animation.

As systems like Ergoneer’s Dikablis, an infrared-based gaze track-
ing device, and Vicon’s suite, a set of motion capture software, be-
come compatible and integrated, the easier it is take eye tracking
data and use it for animation purposes.

With that in mind, we want introduce a method to take such data
from Dikablis and Vicon and use it directly with Autodesk’s Maya.
We believe this is a viable method of accurately portraying eye
movement for animations without having to employ complicated
constraints and IK or placing several marker detectors on the par-
ticipant.

2 Background

For simplicity, we have broken down the different types of research
into eye movement for the sake of recreating them in animation into
the following models: data-driven, procedural, a hybrid of data-
driven and procedural, and statistical. Since Fukuyama [2002] and
colleagues have since demonstrated that gaze shifts can be enough
to convey emotion and personality, most of the research do tend to
focus on gaze.

Deng et al. [2005; 2003] take a data-driven approach which is the
model our method falls under. However, in order to calculate the
corresponding gaze for their animation, they manually estimate the
eye direction via a frame by frame analysis of the training videos,
which could result in some inaccuracy. Rhee et al. [2011] use an
estimation method to determine the eye location by minimizing the
sum of the pixel intensity.

Research done under the procedural model tend to focus on gaze
shifts based on head movements and other parameters that are
linked with neuroscience [Peters 2010; Andrist et al. 2012]. An-
other uses a sharing ratio based on view angle to determine com-
posite head-eye movements along with body movements which are
synchronized to a conversation state [Masuko and Hoshino 2007].

Lance and Marsella explore a hybrid of the two aforementioned
models known as the the ”expressive gaze model”. In this model,
they map physical behaviours with possible emotions that attribute
to a gaze shift displaying those behaviours [2010].

Within the statistical approach, there has been research that use
saccades in combination with empirical eye tracker data to model
gaze while talking or listening during social interaction [Lee et al.
2002]. Incorporating Lee’s idea of gaze behaviours and stochastic
gaze shifts along with their studies of computer graphic animations,
Queiroz at al. [2008] create a prototype for handling gaze in inter-
active environments.

A more recent study comparing simulated eye movement to no-eye
tracking movement and real eye-tracking movement demonstrate
that there is not a statistical difference between simulated and real-
eye tracking when choosing between them. However, the simulated
eye movement is limited to a specific scenario: when the participant
is looking at their own virtual reflection [Borland et al. 2013].

Since most of the research mentioned above focus solely on gaze
shifts with head/body movement or other behaviours, there is an
aspect of eye motion that gets left out which is jitter. We want to
include this motion as it is part of the natural eye movement. Most
methods above also predict or simulate eye movement which may
not always be an accurate representation for the scene at hand, as
Queiroz et al. noted regarding Lee’s statistical method [2007].

3 Methodology

3.1 System Architecture

3.1.1 Eye Tracker

The eye tracker used in this experiment is a modified version of
Ergoneer’s Dikablis to be binocular instead of monocular. It has
an accuracy of less than 0.5 degrees at a sampling rate of 25Hz.
One of the eye tracker software, D-Lab Recorder, runs on two Dell
Latitude laptops with Windows 7, 32-bit, an i5 3320M at 2.60GHz,
and 4GB of RAM: one for the right eye and one for the left. It is
also a wearable eye tracker that has been further altered to already
include the markers for motion capture.

3.1.2 Motion Capture

Figure 2: Setup of the Vicon cameras in against the back wall.

The motion capture system consists of four Vicon T40-S cameras
set up in the back of the room. These have a 4.0 megapixel resolu-
tion, with a maximum frame rate of 515. However, it is set to run at
a frame rate of 100. The software in use is Vicon Tracker 2.0 that
has a native implementation of the Dikablis Eye Tracking system
which allows gaze data to be included and has a validated latency
of 2.5 milliseconds. This runs on a Windows XP Service Pack 3,

32-bit machine with an Intel Xeon 5130 at 2.00GHz and 3GB of
RAM. D-Lab control, which is part of the Dikablis software suite
and can simultaneously control the 2 D-Lab Recorders mentioned
above, is run along side Vicon Tracker on this machine.

Tracker comes with a Virtual Reality Peripheral Network (VRPN)
server and Vicon’s own DataStream software development kit
(SDK). This allows for easy integration with third party clients that
can retrieve data from the server. The VRPN server is inherently a
UDP protocol while DataStream is a TCP protocol, in which both
are available when Tracker is live or replaying a recorded trial. Due
to the fact that Vicon’s DataStream has a method for calculating Z-
Up to Y-Up axis and provides an easily accessible frame number for
reference, a custom client was made to communicate with it instead
of the VRPN server.

3.1.3 Custom 3rd Party Client

This custom client was written in C++ and employs the DataStream
API to retrieve the following data: frame number, frame rate, head
translation, head rotation (in Euler angles), and data from Dikablis
for both right and left eye, as well as Vicon’s estimated eye transla-
tion and gaze. There is also a boolean retrieved to tell if any of the
data was occluded. The client formats the data into the following
comma-delimited string (for readability purposes, newlines were
inserted) and saves it to a local file:

[Frame Number],
[Frame Rate],
Head,
[Head Translation X],
[Head Translation Y],
[Head Translation Z],
[Head Translated Occluded],
[Head Rotation X],
[Head Rotation Y],
[Head Rotation Z],
[Head Rotation Occluded],
[Eye-R|EyeL],
[Eye Gaze X in 2D],
[Eye Gaze X in 2D Occluded],
[Eye Gaze Y in 2D],
[Eye Gaze Y in 2D Occluded],
[Eye Gaze X],[Eye Gaze X Occluded],
[Eye Gaze Y],[Eye Gaze Y Occluded],
[Eye Gaze Z],[Eye Gaze Z Occluded],
[EyePG-R|EyePG-L],
[Vicon Eye Translation X],
[Vicon Eye Translation Y],
[Vicon Eye Translation Z],
[Vicon Eye Translation Occluded],
[Vicon Eye Gaze X],
[Vicon Eye Gaze Y],
[Vicon Eye Gaze Z],
[Vicon Eye Gaze Occluded]

The client is a multi-threaded process that utilizes a template ring
buffer queue to handle incoming data and writing out data. It is a
single producer, single consumer model. It is also compiled and run
from a laptop with Ubuntu 13.10 with 8GB of memory and an i5
M430 core at 2.27GHz, and with gcc verison 4.8.1 that is connected
to the network.

3.1.4 Maya & Python Scripting

A python script was written in Maya 2013 to parse the flat file from
the client and keyframe objects in the open scene named: Head,

EyeR, EyeL, EyelidR, and EyelidL. The following is the structure
of the script:

b l i n k = 0

wi th open (f i l e n a m e) as mydata :
f o r l i n e in mydata :

p a r s e d l i n e = p a r s e l i n e (l i n e)
f rame number = p a r s e d l i n e [0]

d o h e a d r o t a t e ()

t r y :
i = p a r s e d l i n e . i n d e x (’ Eye−R ’)
i f p a r s e d l i n e [i +1] != ’ Eye−L ’ :

d o u n b l i n k ()
b l i n k = 0
d o e y e r o t a t e ()

e l s e :
b l i n k = 1

e xc ep t :
c o n t i nu e

t r y :
i = p a r s e d l i n e . i n d e x (’ Eye−L ’)
i f p a r s e d l i n e [i +1] != ’EyePG ’ :

d o u n b l i n k ()
d o e y e r o t a t e ()

e l s e :
i f b l i n k == 1 :

d o b l i n k ()
e xc ep t :

c o n t i nu e

A blink is registered when the data was reported to be occluded for
both right and left eyes, therefore a motion like winking would not
be animated.

In order to calculate the angles for the eyes’ rotations in the X and
Y from Dikablis’s GazeX, GazeY, and GazeZ, the following calcu-
lations were done within the Python script as part of doeyerotate():

Xrotation = − arctan(GazeX/GazeZ) (1)

Yrotation = arctan(GazeY/GazeZ) (2)

Due to the fact that the rotations, once calculated, were total ro-
tations, there needed to be a safeguard to prevent the eyes from
moving beyond the normal eye range. Without that, the resulting
animation could be less than favourable. Based on Masuko’s and
Hoshino’s [2007] assumptions regarding the average eye range, the
Python script will also adjust the rotations for both head and eyes
to fit the following model.

Due to mostly eye rotation:

0◦ ≤ |Xrotation| < 15◦ (3)

0◦ ≤ |Yrotation| < 10◦ (4)

Due to head and eye rotations:

15◦ ≤ |Xrotation| < 30◦ (5)

10◦ ≤ |Yrotation| < 20◦ (6)

Due to mostly head rotation:

30◦ ≤ |Xrotation| < 50◦ (7)

20◦ < |Yrotation| (8)

Maya 2013 runs on a Windows 8, 64-bit machine that has 8GB of
memory and an i7-3630QM core at 2.40GHz. Once the script com-
pletes, the animation can be played back at 25FPS to accommodate
Dikablis’s original sampling rate of 25Hz and recorded video which
is at 25FPS.

3.2 Design

To keep the experiment from becoming too complex and diverting
from the analysis of the proposed method, we decided to test this by
simply focusing on a specific task. In this case: reading. Limiting
the task to one with an easy to recognize eye pattern will help in
qualitatively analysing the quality of the resulting animation. In ad-
dition, the resulting animation can also be compared to the recorded
video from Dikablis.

Quantitatively, the data actually used to animate the model can be
compared with the original set of data from Dikablis. A real oc-
clusion, such as a blink, will appear in both the Dikablis data and
Vicon data. An error in Vicon, such as the participant going out
of range of the motion capture cameras, will only appear in Vicon.
Any data collected that was calibrated with a high reprojection er-
ror (greater than or equal to 25) in Vicon’s Tracker will be deemed
inaccurate and unusable.

Applying a Savitzky-Golay smoothing filter [Gander and Hebek
2004] to both the Dikablis data and the Vicon data should help us
determine when saccades occur. The comparison of the two can
then also be used to determine how precise the animation is from
the original data.

There will also be a post-survey for the participant to fill out. The
survey is a combination of a 7 point Likert-scale that asks the fol-
lowing:

1.) How efficient do you think this process was?

2.) How accurate do you think the resulating animation is?

3.) How satisfied were you regarding the resulting animation?

And 2 free response questions that ask the participant regarding the
reading material and for any comments they may have.

An incorrect answer to the reading material question will deem the
data inaccurate, as we have no other way to determine that the par-
ticipant actually read the stimuli.

3.3 Stimuli

The stimuli is nothing more than a one page paper with 22pt-size,
Times New Roman font text regarding a random fact that has noth-
ing to do with the study.

3.4 Participants

A sample of 16 college students from Clemson University partici-
pated in this study. Participants were primarily within the School of
Computing department, specifically those with some experience in
animation. Seeing as this is not quite a perception study on the an-
imation itself, but rather the process that resulted in the animation,
it was important to have participants with some background in this
field.

Figure 3: Screen shot of the field camera view of the stimuli.

3.5 Procedure

At the beginning of the study, we will inform the participant exactly
what the study is for: using data from their eye tracking session to
animate the eyes of a 3D model.

3.5.1 Calibrating Dikablis

Figure 4: Student with the eye tracker, facing calibration sheet.

Calibrating Dikablis requires a few steps. The participant’s eyes
must be centered on the camera’s views, and their pupil must be
easily detected by Dikablis when moving within a set range.

Once the pupil has been detected, the user will be asked to look at
a stand holding a sheet of paper with four dots, one at each corner,
and an area of interest marker at the center. They will be asked to
look at the bottom left, top left, top right, and then bottom right. Af-
terwards, to ensure calibration, we will ask them to follow a moving
target with their eyes.

3.5.2 Calibrating Vicon

Calibrating Vicon with Dikablis will require the participant to hold
a wand, and stare at the the middle, top marker. At first, they will
be asked to hold it with their right hand, arm outstretched. They
will then be asked to move it to the left, to the right, then to the
center, while maintaining their gaze on the middle, top marker, and
resisting the urge to move their head.

3.5.3 Recording & Playing Back Data

After calibration, the participant will be asked to read the stimuli.
When they have completed the reading task, we will playback the
recording in Vicon Tracker at half speed to ensure that the custom
3rd party client gathers enough frames from the DataStream server
and saves them to a flat file.

Figure 5: Screen shot of Vicon Tracker in playback mode.

The flat file can then be processed through the python script in
Maya, and will automatically keyframe the correlating objects in
the scene according to the recorded data.

The resulting animation will be played back to the participant (see
Figure 6), and the post-survey will be given for them to fill out.

4 Results

4.1 General

Everyone answered the reading material question correctly, how-
ever, out of the 16 participants, 7 had known issues during calibra-
tion. Their data was not included in the following analysis with the
exception of the survey results.

This does mean that out of all the data gathered, about 56% was us-
able without any post-processing in Maya (further explained in the
Discussion section). Out of the 7, 2 of the data sets were completely
unusable (eg, Dikablis crashed in the middle of the experiment, Vi-
con did not receive data for one eye), while 5 of the data sets were
salvageable after some post-processing. Overall, this would mean
that at least 86% of the data was usable.

4.2 Qualitative Analysis

4.2.1 Expected Motion Comparison

We chose a reading task as it would be easy to recognize eye motion
engaged in reading. As noted by Olsson [2007], reading is gener-
ally a left to right, top to bottom motion within the western culture.
However, because the animation model is facing the user, the left to
right motion is reversed so it should be right to left (Figure 6).

Both left and right eyes were scored based on whether or not they
appeared to follow that same pattern of motion. A score of 0 was
given if it did not seem correct, otherwise it was given a 1.

Overall the captured eye data translated well into Maya in regards to
the motion simulating the expected pattern mentioned above, with

Figure 6: 12 frames already keyframed with the eye tracking data.
Frames 1551-1554 indicate a saccade where the user has reached
the end of the line and is moving to the start of the next line. This
saccadic motion is reversed, therefore it is going from left to right.
The following frames show a slower motion from right to left, indi-
cating that the user has returned to a reading state.

Participant Left Eye Right Eye
1 1 1
2 1 1
3 1 0
4 1 1
5 1 1
6 1 1
7 1 1
8 1 0
9 1 1

Table 1: Results of the motion comparison.

the right eye being the most problematic for 2 participants. With a
little post-processing, this can also be corrected.

4.2.2 Animation-Video Comparison

We also overlayed the recorded videos from Dikablis on top of
the resulting animations. The participant’s pupil was estimated
and aligned to the 3D model’s estimated pupil. They were then
both played back to determine if the model’s estimated pupil gen-
erally followed the participant’s estimated pupil (Figure 7). They
were scored in a similar fashion as the expected motion comparison
where 0 indicated that they did not at all seem to stay in sync, and
1 did seem to stay in sync.

The results for this comparison is identical to the expected motion
comparison results table (Table 1).

Figure 7: A screen capture of the overlayed video, where the esti-
mated pupils have been outlined.

4.3 Quantitative Analysis

4.3.1 Data Smoothing

Pre-processing was done for both sets of data. Due to the fact that
Dikablis would already be recording by the time Vicon starts to
record, there was a need to trim the data to match the starting times
with Vicon. While Vicon data was trimmed of any excess frames at
the end, where there may be repeats from the beginning due to the
playback looping in Vicon Tracker. This extraneous data was also
used to fill in missing values in the beginning due to the 3rd party
client not receiving them when the playback was just starting.

A 0th order interpolation was done on both Dikablis and Vicon data.
This was simply filling in any missing values (eg, blinks) with the
previous value.

Both sets of data were then smoothed using the Savitzky-Golay fil-
ter in NumPy [Haslwanter 2012]. This function is also capable of
computing the derivative.

Dikablis used the following parameters window size =
25, order = 2, deriv = 1, rate = 25 due to its capture rate of
25Hz.

Whereas Vicon used the following parameters window size =
101, order = 2, deriv = 1, rate = 100 due to its capture rate
of 100Hz.

Figures 8 and 9 are samples of the noise-reduced data and its
derivative for both Dikablis and Vicon, separated by its horizontal
and vertical components.

Visually, both sets of data look similar despite their different sample
sizes.

4.3.2 Equivalence Test

To determine if the two sets of data per eye were statistically equiv-
alent, two one-sided tests (TOST) were done on the velocity data.
We chose to use the velocity instead of the position because of the
difference in sampling rates. Therefore if the positions did differ
significantly, as long as their velocities were similar, then it would
mean that Vicon maintained a fairly similar speed and direction as
what Dikablis recorded. This would also indicate that a loss in data
integrity did not occur between the two systems.

In this case, our null hypotheses are:

H0a : µ1 − µ2 > δ (9)

Figure 8: A sample of data from Dikablis (top) and Vicon (bottom):
smoothed position data and velocity in the horizontal component
(x).

H0b
1 : µ1 − µ2 < −δ (10)

Where δ range is [-5, 5]. By rejecting these, we can conclude that
our difference in data falls within the specified range.

We used Python’s statsmodels module, which already has a func-
tion available for TOST: ttost ind(). The function was called
with the following parameters: low = −5, upp = 5, uservar =
unequal.

Figures 10 and 11 are the results of the tests. The p-values high-
lighted in yellow were the greater of the two, and all of them reject
the null hypotheses.

4.3.3 Occlusions

It was also important to ensure that Vicon did not add more occlu-
sions than what Dikablis recorded. For simplicity, these occlusions
were noted as blinks in the animation.

Both Vicon and Dikablis data were ran through a custom Python
script that would look for sets of occlusions within the valid data
and mark those sets as one occluded event.

Results (Figure 12) show that the amount of occluded events are
about equal between the sets of data.

Figure 9: A sample of data from Dikablis (top) and Vicon (bottom):
smoothed position data and velocity in the vertical component (y).

4.4 Survey Results

As mentioned earlier, all 16 participants’ responses are included in
this section. Although the actual survey had other questions, the
three important ones were regarding the efficiency of the method,
the accuracy of the animation, and their satisfaction with the ani-
mation.

It’s interesting to note that when the responses were split between
those whose data were analysed versus those whose data were not
analysed, their opinion did not differ despite their differing experi-
ences with the calibration process.

From the results (Figure 13), most participants felt that the method
was somewhat efficient, the resulting animation was somewhat ac-
curate, and they were somewhat satisfied with the animation.

When asked for other comments regarding their experience, their
responses were a little bit more telling.

Comments from participants who had issues with the calibration
process include: ”The collected data could be more reliable,” and
”One eye’s accurate, the other is not. It looks more accurate in
Vicon than in Maya.”

Comments from participants who had no issues with the calibration
process include: ”I believe this technique is a good starting point for
eye animation...” and ”It was very interesting how quickly my eye
movement was tracked and then mapped to a model for animation.”

Another noteworthy comment from a participant was regarding the

Figure 10: Results of TOST for the horizontal (top) and vertical
(bottom) components for the right eye.

Figure 11: Results of TOST for the horizontal (top) and vertical
(bottom) components for the left eye.

use of all the data: ”It might be good to do for realistic movies, but
for animation some of the detailed data might not be necessary.”

5 Discussion

5.1 Discrepancies

Relating to the survey results: participants did not see their ani-
mations with the complete and interpolated data. This led to some
very noisy and inaccurate eye motions in their animations. If given
a chance to show them what their animation looks like with the
cleaned up data, their responses may differ.

However, since this study was primarily about the method, the sur-
vey responses from this trial was to serve as motivation for future
work on perception of real eye motion within animation.

5.2 Post-Processing

Earlier, we mentioned a post-processing step in Maya. For anima-
tions that had eyes in an awkward position (Figure 14) yet seemed
to have correct motion, it is possible to create a new grouping for
that eye in Maya (shortcut: Ctrl+G). This group then allows for the
eye to be rotated to a more fitting position and still maintain the
motions that were already keyframed from the eye tracking data.

Figure 12: Occlusions recorded in Dikablis and Vicon.

5.3 Accuracy

As indicated by the quantitative analysis, the data remains fairly
precise between Dikablis and Vicon.

Visually, the resulting animations look acceptable.

Unfortunately there is still the fact that 7 out of 16 data sets were
not viable for analysis due to known calibration or other miscel-
laneous errors. Of those 7, 5 data sets were salvageable with the
post-processing step mentioned above. This still leaves 2 unusable
data sets.

Based on survey results, most users felt that the accuracy of their an-
imations were somewhat accurate with some comments about how
the data could be more reliable and accurate.

5.4 Efficiency

Even with the calibration errors, no participant stayed longer than
the allotted 20 to 30 minutes. Within that time, they went through
the calibration, read the stimulus, watched the playback from Vi-
con, watched their resulting animation in Maya, and completed
their survey.

Once the data was collected, we were able to replay and reuse it on
different models in Maya as long as the model has objects appro-
priately named as mentioned in Section 3.1.4 (Figure 15). Having
this functionality also made the analysis very easy.

Based on survey results, most users felt that the process was some-
what efficient with comments noting how quickly their eye move-
ments were tracked and applied to a 3D model for animation.

5.5 Satisfaction

In terms of satisfaction, most participants felt somewhat satisfied
with their resulting animation.

6 Future Work

In regards to the method, there is a need test the implemented pro-
cess of including head rotations based off the eye rotations in addi-
tion to the rotations given by Vicon. A task involving rolling one’s
neck may be better suited for this than reading.

The method also needs to be tested with tasks outside of reading.

Enhancements to the model and method, such as more realistic eye
lids and their motions when the eye is rotated a certain way since
eye lids do not stay stationary as one looks up and down.

Testing the method in real-time could also be done. It was writ-
ten originally with the hopes of being used in real-time, but time
constraints limited it to offline use.

Lastly, there is still the question of perception regarding eye mo-
tion: would one be able to differentiate between real jitter from eye
tracking data versus a simulated jitter?

7 Conclusion

Despite the fact that this method can be bogged down with cali-
bration difficulties, the eye tracking data can be very useful for an
animator. Once the data has been recorded, it can be reused sev-
eral times. Simple errors such as positioning can be easily fixed.
This method also allows for an efficient way to conduct future tests
regarding real eye motion in animation.

Acknowledgements

We would like to thank the students in Clemson University’s Digital
Production Arts program who took time out of their endlessly busy
schedules to participate.

References

ANDRIST, S., PEJSA, T., MUTLU, B., AND GLEICHER, M. 2012.
A head-eye coordination model for animating gaze shifts of vir-
tual characters. In Proceedings of the 4th Workshop on Eye Gaze
in Intelligent Human Machine Interaction, ACM, New York, NY,
USA, Gaze-In ’12, 4:1–4:6.

BORLAND, D., PECK, T., AND SLATER, M. 2013. An evalua-
tion of self-avatar eye movement for virtual embodiment. Visu-
alization and Computer Graphics, IEEE Transactions on 19, 4,
591–596.

DENG, Z., LEWIS, J. P., AND NEUMANN, U. 2003. Practical eye
movement model using texture synthesis. In ACM SIGGRAPH
2003 Sketches & Applications, ACM, New York, NY, USA, SIG-
GRAPH ’03, 1–1.

DENG, Z., LEWIS, J., AND NEUMANN, U. 2005. Automated eye
motion using texture synthesis. Computer Graphics and Appli-
cations, IEEE 25, 2, 24–30.

DUCHOWSKI, A. 2007. Eye Tracking Methodology: Theory and
Practice. Springer.

FUKAYAMA, A., OHNO, T., MUKAWA, N., SAWAKI, M., AND
HAGITA, N. 2002. Messages embedded in gaze of interface
agents — impression management with agent’s gaze. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, ACM, New York, NY, USA, CHI ’02, 41–48.

GANDER, W., AND HEBEK, J., Eds. 2004. Solving Problems in
Scientific Computing Using Maple and Matlab. Springer.

HASLWANTER, T., 2012. Scipy cookbook: Savitzky golay filtering.

KERLOW, I. V. 2001. The Art of 3D: Computer Animation and
Effects. John Wiley & Sons.

LANCE, B., AND MARSELLA, S. 2010. The expressive gaze
model: Using gaze to express emotion. Computer Graphics and
Applications, IEEE 30, 4, 62–73.

LEE, S. P., BADLER, J. B., AND BADLER, N. I. 2002. Eyes
alive. In Proceedings of the 29th annual conference on Com-
puter graphics and interactive techniques, ACM, New York, NY,
USA, SIGGRAPH ’02, 637–644.

MARAFFI, C. 2004. Maya Character Creation, Modeling and
Animation Controls. New Riders.

MASUKO, S., AND HOSHINO, J. 2007. Head-eye animation corre-
sponding to a conversation for cg characters. Computer Graphics
Forum 26, 3, 303–312.

O’HAILEY, T. 2013. Rig it Right! Maya Animation Rigging Con-
cepts. Taylor & Francis.

OKUN, J. A., AND ZWERMAN, S., Eds. 2010. The VES Handbook
of Visual Effects. Elsevier Inc.

OLSSON, P., 2007. Real-time and offline filters for eye tracking.

PETERS, C. 2010. Animating gaze shifts for virtual characters
based on head movement propensity. In Proceedings of the 2010
Second International Conference on Games and Virtual Worlds
for Serious Applications, IEEE Computer Society, Washington,
DC, USA, VS-GAMES ’10, 11–18.

QUEIROZ, R. B., BARROS, L. M., AND MUSSE, S. R. 2008. Pro-
viding expressive gaze to virtual animated characters in interac-
tive applications. Comput. Entertain. 6, 3 (Nov.), 41:1–41:23.

RHEE, T., HWANG, Y., KIM, J. D., AND KIM, C. 2011. Real-time
facial animation from live video tracking. In Proceedings of the
2011 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, ACM, New York, NY, USA, SCA ’11, 215–224.

RODRIGUES, P., QUEIROZ, R., BARRO, L., FEIJ, B., VELHO, L.,
AND MUSSE, S. R. 2007. Automatically generating eye motion
in virtual agents. In Proceedings of the IX Symposium on Virtual
and Augmented Reality, SVR2007, 84–91.

VASCONCELOS, V. 2011. Blender 2.5 Character Animation Cook-
book. Packt.

Figure 13: Survey results of those whose data was used in the anal-
ysis portion (top), those whose data was not used (middle), and the
combined results (bottom). A score of 1 indicates that it was very
efficient/accurate/satisfied while a score of 7 indicates that it was
very inefficient/inaccurate/unsatisfied.

Figure 14: An example of awkward positioning that would require
the post-processing step.

Figure 15: This is the minimalistic model that was used while test-
ing the method. Although this model did not have any objects for
eyelids, data for eye and head rotations were still usable with this
model.

