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ABSTRACT

Myriad factors increase drivers’ workload and decrease their
ability to identify hazards. Drivers’ hazard perception under
high workload conditions can benefit from the assistance of
automated hazard detection systems. However, automation is
inherently imperfect and system failures biases (false-alarm-
prone vs. miss-prone) may affect the performance benefits of
these systems. The current study explored how systems with
different failure biases affect drivers’ detection and
recognition of on-road hazards. We hypothesized that
automation false alarms better support driver hazard
recognition than automation misses. Our results found no
significant differences in detection or recognition times
between the failure bias conditions. Lessons learned and
directions for future research are discussed.
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1 INTRODUCTION

Recent safety recommendations by the National Highway
Safety Administration (NHTSA, 2016) highlight the
importance of visual attention on avoiding bicycle-motorist
collisions. For example, risk of collision may decrease if
drivers yield to and pass on-road bicycles the same as they
would other vehicles (NHTSA, 2016). Before a driver can react
to the presence of a potential on-road hazard (e.g., bicyclist),
he or she must visually detect the object, then recognize it as a
hazard. However, myriad distractions can occur under typical
driving conditions (i.e., navigation system use; Peters &
Peters, 2001) that increase drivers’ cognitive workload and
inhibit their ability to recognize visual targets (Recarte &
Nunes, 2003).

The effect of workload on attention allocation is evidenced
by changes in a variety of eye behaviors. For example, high
workload may result in increased blink frequency, saccade
speeds (Savage, Potter, & Tatler, 2013), and pupil diameter
(Tsai, Viirre, Strychacz, Chase & Jung, 2007). Importantly,
workload increases can produce visual tunneling, which refers
to a reduction of the overall size of the attentive visual field
(Rentanen and Goldberg, 1999; Tsali, Viirre, Strychacz, Chase &
Jung, 2007). Visual tunneling primarily affects the vertical axis
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of the visual field, with additional reduction occurring on the
horizontal axis (Rentanen and Goldberg, 1999, Tsai, Viirre,
Strychacz, Chase & Jung, 2007; Savage, Potter, & Tatler, 2013).
One study determined that workload can limit the overall
visual field by as much as 14%, thereby potentially reducing
drivers’ abilities to recognize hazards in their peripheral
vision (Rentanen and Goldberg, 1999). Gaze fixation is also
related to successful hazard detection. Fixations on visual
targets tend to be longer for those that are task relevant (e.g.,
potential hazards while driving; Velichkovsky, Rothert, Kopf,
Dornhoefer, & Joos, 2002) and shorter when simultaneous
tasks are attended (Tsai, Viirre, Strychacz, Chase & Jung,
2007). Therefore, decreasing the harmful impacts of cognitive
workload by removing distractions is one way to improve
drivers’ ability to detect and recognize visual targets.
However, a more practical solution may be to support drivers’
hazard detection abilities through the use of target detection
automation.

2 BACKGROUND

Automation can improve users’ abilities to detect visual
targets under conditions of high workload (e.g., Parasuraman
& Riley, 1997). Automation used in vision enhancement
systems (VESs) can help drivers identify hazards during low
speed and low visibility conditions (Tsimhoni & Green, 2002).
One type of VES projects infrared or thermal imagery of the
roadway to a secondary display (e.g., a real-time infrared
video image of the roadway projected on a heads-up display).
However, these types of VESs replicate the full roadway and
divide drivers’ visual attention between the road and the
display. Therefore, they are unsafe at high speed and increase
driver workload (Rumar, 2002). Other VES displays are
highly specific and display only task-relevant information in
the visual field. For example, Caird, Horrey, and Edwards
(2001) determined that automation which detects high-value
targets (e.g., bicyclists) can effectively enhance drivers’ target
recognition and response timing. However, automation is
inherently imperfect, and it is important to consider how
system failures affect the drivers’ perceptions and behaviors.
People are less likely to trust and use automation that is
unreliable than that which is reliable (Lee & See, 2004). When
systems are unreliable, two types of automation failures, false
alarms and misses, affect how drivers rely on systems and
comply with system alarms (Wickens & Dixon, 2007). These
failures result from system sensitivity to signals in the
environment (signal detection theory; see Nevin, 1969) Highly
sensitive systems are more likely to alert drivers to hazards
that are not present (e.g. false-alarm-prone). Minimally



sensitive systems are more likely to fail to detect hazards that
are present (e.g., miss-prone). Robust literature on these
failure types have demonstrated that false alarms tend to
primarily affect compliance and misses tend to primarily
affect reliance (Dixon, Wickens, McCarley, 2007). However,
some studies have found the contrary. For example, Schwarz
and Fastenmeier (2017) found increased compliance rates in
false-alarm-prone automation. Their study utilized a
simulated driving task wherein participants were exposed to
automation hazard detector false alarms.The authors
determined that driver braking times improved regardless of
the presence of the false alarms; this finding did not support
their hypotheses. A possible explanation of their findings is
task workload. Users are more likely to comply with
automation when experiencing high workload (McBride,
Rogers, & Fisk, 2011). Thus, high workload may dampen the
effects of false alarms on compliance in hazard detection
tasks. Driver workload may be an important determinant of
the sensitivity threshold for automated hazard detection
systems.

The current study investigated a high-workload task to
determine whether false-alarm-prone systems more
successfully support hazard perception than miss-prone
systems. We hypothesized that hazard detection and
recognition is better supported by automation false alarms
than misses.

3 METHODOLOGY

3.1 Participants

Twelve undergraduate students, ages 18-28 (M = 23.24, SD =
2.8), were recruited through in-class announcements.
Participants volunteered their efforts for this study.

3.2 Experimental Design

This study used a 2 (automation type: miss-prone, false-
alarm-prone) x 2 (automation presence: present, not present)
mixed-factors design. Automation type was the between-
subjects factor. Therefore, participants were exposed to
automation that is false-alarm-prone or miss-prone, but not
both.

Participants experienced two experimental blocks
composed of 30 target-detection trials (60 total). Each block
contained either automation or no automation. A-B
counterbalancing ensured that order presentation of the two
blocks did not confound the effects of automation on task
performance. Participants in the false-alarm-prone
automation condition only experienced false alarm failures
and participants in the miss-prone automation condition only
experienced miss failures. Prior research identified that 70%
automation reliability is the cutoff point at which individuals
perceive automation as reliable (Wickens & Dixon, 2007);
therefore, this study used automation that was 80% reliable
(e.g., 6 failures during 30 trials) so that participants would be
inclined to use the system. To increase participant workload
and provide a mask between stimuli, a math problem was
displayed at the center of a blank screen between each two-
roadway image. An experimenter recorded participants’
verbal responses to the questionnaires.

Performance measures. Target detection and recognition
time were our primary variables of interest for this study. To

measure target detection time, areas of interest (AOI; see
figure 1) were placed around each bicyclist in the roadway
images and an eye tracker measured the average time to first
gaze fixation on each AOI To measure target recognition time,
we instructed participants to left click the mouse only when
they were confident a bicyclist was present in the roadway
scenes. The average time-to-click when bicyclists were
actually present in the scene was then used to measure target
recognition time.

Subjective measures. Subjective trust in the automation,
subjective reliance on the automation, and cognitive workload
are known to affect human use of automation. Thus, these
questions were measured after each block using a 1-7 Likert
scale (1 = not at all, 7 = extremely). To measure trust and
reliance, we used a questionnaire adapted from Lee and See
(2004), and to measure workload, we used the NASA TLX
(Hart & Staveland, 1988).

Figure 1. An example AOI positioned over bicyclists in a
roadway scene.

3.3 Materials

Researchers captured 60 screenshots from footage recorded
by a high definition (1920 x 1080) video recorder. 30 of these
images included bicyclists and 30 did not. An automated
hazard warning light was simulated by presenting a red
starburst in the bottom of each screenshot. Thus, when the
simulated automation detected a bicyclist in the scene, the
warning light was shown. Example stimuli are shown in
figures 2 and 3.

Figure 2. An example false alarm (automation detects a
bicyclist that is not present)



Figure 3. An example miss automation fails to detect a
bicyclist that is present)

3.4 Apparatus

This experiment used a Gazepoint GP3 eye tracker to measure
eye gaze. This system processed pupil/corneal reflection
(PCR) with a sampling rate of 60 Hertz, an accuracy of 1-
degree visual angle, and a Savitzky-Golay filter. Participants
sat at a viewing distance 25.59 inches in front of a 22-inch,
1680 x 1050 resolution Dell LED backlit LCD display.

3.5 Procedure

First, researchers directed participants to their seat in front of
a computer and eye tracker (see figure 4). Participants
provided their informed consent and demographic
information (e.g., age and gender). We calibrated the eye
tracker to the participants’ eye gaze and then provided the
task instructions. We informed participants that the tasks may
be difficult and that they should complete each task to the best
of their ability. When participants were given the aid of
automation, they received instructions that the system is
highly reliable but imperfect. They then saw an example of the
automation performing correctly and failing so that they
would better be able to recognize errors during the task.
Participants only witness automation failures for the
condition to which they were assigned.

Participants completed several simple tasks during the
experiment to increase their workload. Participants first
memorized a string of five letters presented at the beginning
of each block. Next, participants verbally answered simple
arithmetic problems (e.g. 5 + 3, 8 - 2) presented for a short
time on screen before each roadway image is shown. In
addition to increasing workload, this task also served to mask
consecutive roadway images. Next, participants identified
bicyclists from roadway images. Participants were instructed
to click the left mouse button when they were completely
confident that they saw a bicyclist. The roadway images were
each shown for five seconds. After going through both blocks
of trials and questionnaires, the participants were thanked for
their time and dismissed.

Figure 4. Participant receiving instructions prior to beginning
task.

4 RESULTS

A 2 (automation type: miss-prone, false-alarm-prone) x 2
(automation presence: present, not present) repeated
measures analysis of variance (ANOVA) was conducted for
bicyclist detection time (see Figure 5) and recognition time
(see Figure 6). Results revealed no significant main effect of
automation presence, F(1,10) = 1.22, p > .05, and no
significant interaction of automation presence and failure
bias, F(1,10) = 3.04, p > .05. These findings suggest that
detection and recognition time were not influenced by either
the presence of automation or failure bias.

Condition
M False Alarm
B ass
1.2000

Detection Time (Sec)

Automation Present

No Automation
Automation Presence
Error Bars: +/- 1 5E
Figure 5. Mean bicyclist detection times (in seconds) for
automation false alarm and miss conditions, clustered by

automation presence.
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Figure 6. Mean bicyclist recognition times (in seconds) for
automation false alarm and miss conditions, clustered by

automation presence.

No Automation

Subjective Measures. A separate 2 (automation type:
miss-prone, false-alarm-prone) x 2 (automation presence:
present, not present) repeated measures ANOVA was
conducted for workload. Consistent with prior literature,
mean workload was lower in the automation present
condition (M = 16.67, SD = 5.24) than in the no automation
condition (M =21.33, SD = 5.16), F(1,10) = 8.95, p <.05. No
significant interaction of automation presence and failure bias
was detected for workload, F(1,10) = .129, p >.05. One-way
ANOVAs revealed no significant differences between the
automation conditions for either trust, F(1,11) = .940, p > 05,
or reliance, F(1,11) =.094, p > .05.

5 DISCUSSION

We hypothesized that participants would have faster hazard
detection and recognition times within the false-alarm prone
condition compared to the miss prone condition. The results
of our data did not show significant differences in
performance between the automation conditions. While the
data did not support the hypothesis, we see various factors
that could explain this finding. One possible explanation is
that the automation was not salient enough to effectively aid
hazard detection and recognition. Future iterations of this
research should maximize automation salience. It also may be
possible that participants were inadequately trained prior to
beginning the task (e.g, were confused about what the
automation looked like). Our workload measures indicated
relatively low scale scores, suggesting that the task did not
contain enough workload to consider the experimental tasks
high workload. Most participants had no difficulty answering
the math problems while performing the search task, and
even did well with remembering the string. This is counter to
the secondary task performance we might expect under high
workload conditions. Future studies should consider using a
longer string (7 characters instead of 5) and consider either
using more complex math problems or simultaneously
displaying the math problems during the visual search task
(e.g., by using the auditory modality). This would require

them to switch between two simultaneously occurring tasks
instead of switching between consecutive tasks.

6 LIMITATIONS

This experiment has a few limitations that would be remedied
if the work were replicated. One particularly notable
limitation is the small sample size. Our sample size resulted
low power in our statistical analyses, thereby impairing our
ability to detect mean differences. Another limitation
encountered was controlling the environment of the
experiment. This being a project for class, researchers had to
sometimes run the study with participants while other people
were in the room running studies of their own. This extra
distraction may have added statistical noise and could have
the potential to have affected participants’ ability to focus on
the experimental tasks. Future studies should attempt to
isolate the participants by accessing the experimental room
when there was no one occupying it or otherwise reserving
the space. Another possible confound 1is participant
understanding of the stimuli. Researchers found when
analyzing the data that participants seemed to not always
agree on what a “bicyclist” was considered. Some of the
stimuli showed people walking with bicycles but not actually
riding on the bicycles. For these trials, some participants did
not identify them as “bicyclists” whereas others did. To
remedy this, the researchers in the future would make clear in
the instructions what constituted a target, or use less
ambiguous stimuli so that the distinction would not have to be
made. A final limitation to consider is that participants were
told that their task was to detect hazards on the road. This
does not place participants in a natural environment of
driving, where hazards can appear at any second. The
knowledge that their primary task was hazard detection might
have led participants to default to searching for bicyclists, and
minimally use or ignore altogether the automated aid that was
provided.

7 CONCLUSIONS

This experiment set out to examine different failure biases
within an automated hazard identification system to see how
they might affect performance. Although the experiment
conducted was not able to find significant results, the
underlying work lays down a foundation to for a future study
to be designed that could yield significant and useful results.
Using an eye-tracking device and software, the researchers
were able to observe participants performing a search task for
hazards on a simulated road. The design decision of having
high cognitive workload to simulate the different activities
occurring while driving was found to not be effective enough
to give significant data, but still has a basis in research to be
useful with a tweaked experimental design. Future work
would include running the experiment again at a larger scale,
improving the quality and clarity of the stimuli, increasing the
cognitive workload, working in a more controlled
environment, and increasing the saliency of the automation
provided.
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