
Looking at Programmers∗

Angela Edwards
Clemson University

Computer Science Department
Clemson, South Carolina, USA

Kiamber McCrorey
Clemson University

Computer Science Department
Clemson, South Carolina, USA

Khayla Williams
Clemson University

Computer Science Department
Clemson, South Carolina, USA

ABSTRACT
In this paper, we measure the effectiveness of code troubleshooting
based on a student’s classification. Troubleshooting techniques of
freshmen will be compared to that of sophomores, and the tech-
niques of juniors will be compared to the troubleshooting tech-
niques of seniors. We tracked the eye movements of participants
while they located and identified any errors presented in the differ-
ent given coding samples.

CCS CONCEPTS
• General and reference→ Cross-computing tools and tech-
niques; Surveys and overviews; General conference proceedings; Ex-
perimentation; •Hardware→ Sensor devices and platforms; Sensor
applications and deployments;

KEYWORDS
eye tracking, expert, novice, error detection, LATEX, text tagging
ACM Reference Format:
Angela Edwards, Kiamber McCrorey, and Khayla Williams. 2018. Looking
at Programmers. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, Article 4, 5 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
Computer Science (CPSC) is one of the fastest growing and sus-
tained majors at Clemson University. The major and its subsets offer
a wide range of opportunities for students including research and
co-ops. Clemson’s supercomputer, the Palmetto Cluster, is ranked
as one of the top five supercomputers owned by a University in the
country and the School of Computing is not far behind. Clemson
takes a research first approach when teaching the art of code and
introduces students to a wide range of languages throughout the
curriculum.

In fall 2014, freshman Computer Science majors at Clemson
had two options, start in CPSC 1010 and learn C or start in CPSC
1040 and learn Python. Under the direction of Chris Plaue, Clem-
son’s computer science department added classes such as CPSC
1060, Intro to JAVA, and 1070, Programming Methodology. These
classes have slightly altered the way that students in the major
learn and retain troubleshooting information. For example, if your
∗Produces the permission block, and copyright information

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Conference’17, July 2017, Washington, DC, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

base language is Python, it is unlikely that you will look for a miss-
ing semicolon first as a possible source of an error. However, the
participant started in C this is a much more plausible scenario.

Time in the major will always play an important part of in this
study. A student with three to four years listed as a Computer
Science major will be considered an expert for the purposes of this
study. A person who has been in the major for anywhere between
one month and twenty-three months will be considered as a novice
for the purpose of this study. It is believed that exposure to different
languages and possible errors over time will have an effect on
this study, however, this study was designed so that anyone with
basic knowledge of C, Python and JAVA syntax could complete all
modules.

It is predicted that foundational principles of troubleshooting
will be used by every participant regardless of status as expert or
novice. We predict that participants will look for syntactical errors
first and then began to address logical errors. We further predict
that expert participants will look at the comments after they have
determined whether or not syntactical errors are present. Lastly,
we predict that the language order of the stimuli will have no effect
on troubleshooting methods.

2 BACKGROUND
2.1 How Do Humans Edit
First, we will discuss how humans edit academic writings since
there are much more studies on editing writing than there are on
how to troubleshoot blocks of code. Academic writing "refers to a
style of expression that researchers use to define the intellectual
boundaries of their disciplines and their specific areas of expertise"
[res]. Unlike academic writings, programming languages are un-
derstood by computers and are written in statements and blocks,
rather than sentences and paragraphs.

Humans can edit academic writings by first editing for academic
rigour, next by reducing redundancy in their papers, then editing
for consistency and signposting and linking, and lastly, they can
proofread. When editing for academic rigour you ensure your writ-
ing has evidence that supports your claims and that youwrote down
exactly what you intended to. After that, ensure that your writing
does not contain any unnecessary explanations, duplications, or
irrelevant material. When editing for consistency, make certain
that your use of tenses, voice, and style are similar throughout the
paper. As well, when it comes to signposting and linking make sure
you have let the reader know what he or she is expected to take
from your paper. To make the editing process finalized, ensure you
proofread your writing by checking for spelling, grammatical, and
numbering errors [2].

Some studies have found that programmers read source code by
skipping around the text looking for specific information. However,

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4


Conference’17, July 2017, Washington, DC, USA Angela Edwards, Kiamber McCrorey, and Khayla Williams

Figure 1: Gazepoint Eye Tracker

one study showed that humans read source code in an identical to
way to humans reading paper. This paper intends to focus more on
eye movement patterns when finding errors in blocks of code.

2.2 Code Troubleshooting
Many studies discuss code troubleshooting, specifically Holmes et al.
and Ko et al. found many of those studies to be focused on strategies
and techniques used by programmers [5], [3]. "For example, some
programmers follow an âĂĲopportunisticâĂİ strategy aimed at
finding only the section of code that is needed during maintenance
tasks [6]" [9]. The findings presented in this paper intent is to
further explain this opportunistic strategy, especially since this
form of comprehension differs between subjects.

3 METHODOLOGY
3.1 Subjects
For this experiment, we will use Clemson University students seek-
ing a degree in Computer Science, Computer Engineering, Com-
puter Information Systems or Mathematics. We expect that our
participant pool will be made up of both male and female students.
We will use a pre-participation questionnaire to categorize a par-
ticipant as either a novice or an expert for the purposes of this
experiment. We will have approximately fifteen participants for
this study.

Because the nature of this experiment is a visual search task,
participants must be able to demonstrate a base level of visual
acuity and be able to discriminate various colors to complete the
task. If participants were unable to meet this requirement, they
were excluded from the experiment. Participants were recruited
through emails and general announcements in various classes at
Clemson University.

3.2 Apparatus
Figure 1. A Dell 22" monitor with a (1920 x 1080) resolution was
used. The participants were seated at a distance of 24 inches from
the monitor. The GazePoint eye-tracker was mounted under the
display to pick up eye movement and pupil diameter. This can be
seen in Figure 1. The sampling rate is 60Hz with a latency of 16ms
and an accuracy of 0.5-1.0 degrees.

Figure 2: Syntactical error in C.

Figure 3: Logical error in C.

3.3 Design
The type of experimental design used in the investigation was a
within-subjects design. Participants were given a different sources
of code and asked to locate and identify any errors present in an
unlimited time frame. The GazePoint software tracker was used to
identify key eye positions and measure the fixation time on each
section of code.

Once the participant locates the error they will instruct the
researchers and then be introduced to a blank image to restart the
process all over again with a new block of code. This will then
be repeated for the next two images. Each participant will look at
the stimulus in random order for unbiased purposes and to reduce
fatigue. The experiment was designed to include small, simple codes
that most participants should be familiar with.

3.4 Stimulus
Figures 2-5

3.5 Procedure
Each participant will be greeted in the lab and read a script about
the study. They will then read an informational letter approved by
the Clemson University Institutional Review Board. The participant
will be given the opportunity to ask any questions he/she may have



Looking at Programmers Conference’17, July 2017, Washington, DC, USA

Figure 4: Complex code with multiple errors.

Figure 5: Logical and Syntactical errors in C.

about the experiment. Once the participant has finished reading
the letter, they will answer demographic questions about their age,
gender, or any visual impairments that may skew the results of
the experiment. Participants will then be set up on a 22 inch Dell
computer and fitted to the Gazepoint eye tracker. To increase the
accuracy of the data collected from the eye tracker, the user will be
asked to calibrate the eye tracker using an image of nine numbered
circles. After calibration, the participant will view exerts of code
sampling and either verify that the would work or determine any
errors that may be present in the code. The participant will then
be instructed to click on the screen using the computer mouse to
identify any errors. The stimuli for this study will be presented to
each participant in a randomized order with a filler image between
each code exert. The filler will be displayed for 10 seconds in or-
der to give the participant both a visual and mental break. If the
participant cannot identify anything wrong with the exert, they
can give a verbal response "pass" and will be moved onto the next
excerpt of code. Each participant will have 60 seconds to identify
the error(s) in the excerpt. If the participant is confident that they
have completed a module and identified all of the errors present,
they will be instructed that they can hit the space bar to proceed.
The participants will complete this process for all four (4) code
samples.

1.jpg

Figure 6: Tracking patterns of eye movement

4 RESULTS
Eye tracking data was collected for 18 participants, but only 17
trials of data were analyzed for their gaze data. After a post study
conversation, we determined that one participant was ineligible for
the study due to falling outside of the participant criteria. Pre-study
surveys were collected to obtain background information about
participants in the study and this information helped to reduce as
many variables as possible in student experiences.

The data that we collected was exported from Gazepoint Anal-
ysis for us to examine in depth for statistical significance of any
kind. One thing we noticed while analyzing our data was that
participants looked at our chart in a zigzag manner. Contrary to
our hypothesis, most of our participants began the experiment by
reading the comments, however another similarity among partici-
pants, regardless of experience level fell in line with our hypothesis.
This similarity is based on the identification of syntactical errors.
As shown in figures number 10 and 11, the time elapsed between
the start of stimuli and identifying the first syntactical error was
significantly lower than for that of identifying logical errors. We
also noticed a high saturation of fixation points within loops and
conditional statements when participants searched for logical er-
rors. Additionally, we noticed that expert level participants spent
significantly less time searching for errors. The average time that
an expert spent on a module was 30 seconds whereas the average
time spent for novices was equivalent to 41 seconds.

Although time was not originally a variable that we accounted
for nor was of interest to us we did notice a significant trend in the
time data. Both novices and experts were generally able to identify
all errors present in the code within the 60-second margin, how-
ever, most experts spent significantly less time on each module. In
contrast, both novices and experts were able to identify the first on
every module on average in under thirty seconds. All participants
identified syntactical errors first for every code exert.

Our results seem to support a narrative where the basic skills to
troubleshooting are learned during the first few courses of Com-
puter Science taught at Clemson University. Although older, expert
level participants found the errors faster and with more confidence,
novice level participants possessed the necessary skills to dissect
and troubleshoot the errors presented in this study.



Conference’17, July 2017, Washington, DC, USA Angela Edwards, Kiamber McCrorey, and Khayla Williams

2.jpg

Figure 7: Within 2 seconds of a new module starting most
participants gaze shifted to the comments

3.jpg

Figure 8: Concentrated fixation points within loop state-
ments.

4.jpg

Figure 9: Concentrated fixation points on loop declarations.

Based on our observations, if we were to perform this experiment
again, we would eliminate the timed component of this study and
give participants unlimited time to search for errors. Although
we do not believe that the time element had an adverse effect on

Elapsed Before First Error Identification.png

Figure 10: Average time elapsed before experts identified the
first error in each exert

Elapsed Before First Error Identification (1).png

Figure 11: Average time elapsed before novices identified the
first error in each exert

Time Spent er Stimulus.png

Figure 12: Average time experts spent on each module



Looking at Programmers Conference’17, July 2017, Washington, DC, USA

Time Spent Per Image.png

Figure 13: Average time novices spent on each module

our results, we note that it is a previously unaccounted for and
unnecessary variable that could influence participant behavior.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Duchowski for teaching Com-
puter Science 4120 and helping guide us through this experiment.
The authors would also like to thank each of the volunteer partici-
pants for taking part in this study. Lastly, we would like to thank
Clemson University’s Internal Review Board for the diligence and
commitment to excellence.

REFERENCES
[res] Research guides: Organizing your social sciences research paper: Academic
writing style.

[2] (2013). The art of editing.
[3] A. J. Ko, A. Myers, M. J. C. and Aung, H. H. (2006). An exploratory study of how
developers seek relate and collect relevant information during software maintenance
tasks. IEEE Transactions on Software Engineering, 32(12):971–987.

[4] Crosby, M. E. and Stelovsky, J. (1990). How do we read algorithms? a case study.
Computer, 23(1):25–35.

[5] Holmes, R. and Walker, R. (2013). Systematizing pragmatic software reuse. ACM
transactions on software engineering and methodology, 21(4):20:1–20:44.

[6] J. Brandt, M. Dontcheva, M. W. and Klemmer, S. R. (2010). Example-centric
programming: integrating web search into the development environment. In CHI
Conference : We are HCI : conference proceedings, Atlanta, Ga, USA, April 10-15, 2010,
pages 513–522. Association for Computing Machinery.

[7] Laderman, M. (2014). Clemson university moves up in global supercomputer
rankings.

[8] Lakhotia, A. (1993). Understanding someone else’s code: Analysis of experiences.
Journal of Systems and Software, 23(3):269–275.

[9] Rodeghero, P. and McMillan, C. (2015). An empirical study on the patterns of eye
movement during summarization tasks. In 2015 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM). IEEE.

[10] Sharif, B., Falcone, M., and Maletic, J. I. (2012). An eye-tracking study on the role
of scan time in finding source code defects. In Proceedings of the Symposium on Eye
Tracking Research and Applications, ETRA ’12, pages 381–384, New York, NY, USA.
ACM.
[8] [9] [10] [4] [7] [res]


	Abstract
	1 Introduction
	2 Background
	2.1 How Do Humans Edit
	2.2 Code Troubleshooting

	3 Methodology
	3.1 Subjects
	3.2 Apparatus
	3.3 Design
	3.4 Stimulus
	3.5 Procedure

	4 Results
	Acknowledgments
	References

