
Color Perception in Programming
Sohini Mazumder
Clemson University
Clemson, SC, USA

sohinim@clemson.edu

Mary Walker Felder
Clemson University
Clemson, SC, USA

mwfelde@clemson.edu

Connie Ku
Clemson University
Clemson, SC, USA
ku@clemson.edu

ABSTRACT
Abstract . . . Placeholder Text

CCS CONCEPTS
• ;

KEYWORDS
eye tracking, visual attention, syntax highlighting, error finding
ACM Reference Format:
Sohini Mazumder, Mary Walker Felder, and Connie Ku. 2024. Color Per-
ception in Programming. In . ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Placeholder Text

2 BACKGROUND
Eye Tracking in Software Engineering

Eye tracking is often used to understand and quantify the way
the participant interacts with visual information. While there are
other options to learn about the choices a participant makes, such as
asking them to explain their actions and thoughts, participants’ per-
ceptions do not always align with their underlying process [Sharafi
et al. 2020]. Eye tracking allows for an understanding of how the
participants act without the interference of their perception and
quantifiable information on how that interaction occurs. Eye track-
ing can show where individuals found areas of interest, where they
fixated on the image or text, and how long each of these fixations
lasted. This allows for a quantitative understanding of participants’
attention and effort. According to [Sharafi et al. 2020], eye track-
ing in software engineering often occurs in a few typical types
of studies. These include program comprehension, diagram com-
prehension, code reviews, traceability, and code summation. This
understanding can be applied to many areas of software engineer-
ing to better understand how programmers interact with the code
that they work with. In this particular case, this paper is focused
on code reading and the possible impacts that syntax highlighting
might have on how individuals read code.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Syntax Highlighting

Syntax highlighting might enhance error detection as color helps
users to differentiate code elements. In Gestalt psychology, which is
a theory of mind that focuses on how people perceive and process
information, the human brain naturally organizes similar visual
stimuli (e.g., color) into groups (perceptual grouping; [Wertheimer
1938]; [Koffka 2013]). This innate perceptual grouping process, re-
duces users cognitive workload as they can simplify information
processing by reading them in as a group, rather than a single word
or item. In the context of detecting errors in programming, high-
lighted syntax prompts the brain to group those elements into a
certain category which promotes readability. This could result in
fewer fixation counts because users are able to process the grouped
element more efficiently. For example, syntax highlighting may
allow users to understand the structure of the code by just scanning
it once instead of fixating their gaze across individual words. Simi-
larly, fixation duration may also be reduced as a result of perceptual
grouping stimulated by highlighted syntax. When similar elements
are grouped together by color, users may need less time to read
and process the code because they are able to process the grouped
element as a whole.

The findings of [Sarkar 2015] support the benefits of syntax high-
lighting by examining its effect on program comprehension. In their
experiment, ten graduate computer science students were asked to
read three pairs of Python code. Each pair included one code with
syntax highlighting and another without it. The participants’ goal
was to determine the output of the code they viewed. Variables
such as fixation count, fixation duration, context switches, and com-
pletion time were measured and analyzed. The study found that
participants completed the task faster when syntax was highlighted
compared to when it was not. Eye-tracking data also showed that
the number of context switches was lower with syntax highlighting
than without. However, the study did not find any significant effect
on fixation counts and durations, which could be attributed to the
small sample size. As mentioned by the authors, among the ten
sets of data, three of them were excluded due to poor fixation data
caused by participants wearing glasses. This further reduced sam-
ple size, threatening the internal validity; therefore, a significant
effect on fixation counts and durations were not observed.

Impact of syntax highlighting in Code reading

The study conducted in [Beelders and du Plessis 2016] tried to
gauge a broad understanding of the impact of color coding when
a programmer reads a piece of code. The snippets provided to the
participants were written in C#, a language understood by every-
one in the group and multiple metrics were used to test the impact.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Felder et al.

The metrics used were: Fixation count, fixation count per sentence,
fixation count per word, fixation durations and regressions. Data
collected was visualized using heatmaps (the same one used in (Bus-
jahn, Shulte, & Busjahn, 2011)), and overall, the major hypotheses
derived from the fixation metrics was: There is no difference between
the number of fixations per line/AOI or in total fixation count between
the black-and-white and colored code snippets.Moreover, they also
hypothesized that: There is no difference in the number of regressions
when reading code in black-and-white versus color.

The colored code was noted to impact the readability of the code
- as participants noted that it was easier to read the color coded code
over the black-and white. Another observation made during the
experiment was that words in a warmer color were fixated on for
longer than words in cooler colors, though the difference was not
overly significant to create a benchmark for any results. The per-
centage of regressions was marginally less than previous findings
by (Busjahn, Shulte, & Busjahn, 2011) - which was attributed to the
subjective way of counting the regressions. Despite almost identi-
cal results for both the color coded and black and white snippets,
throughout all the metrics, the values for the color coded snippets
remained lower. This proved that even though not as significant,
color coded code posed comparatively less difficulty to the reader.

3 EMPIRICAL VALIDATION
Placeholder Text

3.1 Experimental Design
Placeholder Text

3.2 Participants
Placeholder Text

3.3 Procedure
Placeholder Text

3.4 Apparatus
Placeholder Text

4 DISCUSSION
Placeholder Text

5 LIMITATIONS & FUTUREWORK
Placeholder Text

6 CONCLUSION
Placeholder Text

REFERENCES
Beelders, T. and du Plessis, J.-P. L. (2016). Syntax highlighting as an influencing factor

when reading and comprehending source code. Journal of Eye Movement Research,
9(1).

Koffka, K. (2013). Principles of Gestalt psychology. routledge.
Sarkar, A. (2015). The impact of syntax colouring on program comprehension.
Sharafi, Z., Sharif, B., Guéhéneuc, Y.-G., Begel, A., Bednarik, R., and Crosby, M. (2020).

A practical guide on conducting eye tracking studies in software engineering.
Empirical software engineering : an international journal, 25(5).

Wertheimer, M. (1938). Laws of organization in perceptual forms. Psycologische
Forschung, 4, 301-350.

2


	Abstract
	1 Introduction
	2 Background
	3 Empirical Validation
	3.1 Experimental Design
	3.2 Participants
	3.3 Procedure
	3.4 Apparatus

	4 Discussion
	5 Limitations & Future Work
	6 Conclusion
	References

