
Color Perception in Programming
Sohini Mazumder
Clemson University
Clemson, SC, USA

sohinim@clemson.edu

Mary Walker Felder
Clemson University
Clemson, SC, USA

mwfelde@clemson.edu

Connie Ku
Clemson University
Clemson, SC, USA
ku@clemson.edu

ABSTRACT
Syntax highlighting is one of the most commonly used features
in programming, as it is believed to make the code more compre-
hensible. While various studies have examined the effect of syntax
highlighting on code reading, few have investigated its impact
on error detection, which is one of the common challenges faced
by programmers. This study aims to study the effect of syntax
highlighting on error detection by having participants with coding
experience to read 3 color-coded and 3 non-color-coded snippets.
Performance speed, accuracy, and eye movements will be measured
in the experiment for analysis.

CCS CONCEPTS
• Software and its engineering → Syntax; • Theory of compu-
tation → Programming logic; • ;

KEYWORDS
Eye Tracking, Visual Attention, Syntax Highlighting, Error detec-
tion
ACM Reference Format:
Sohini Mazumder, Mary Walker Felder, and Connie Ku. 2024. Color Per-
ception in Programming. In . ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The ability to write and understand computer code is essential in
today’s digital world where it serves as the foundation for develop-
ing software, websites, applications, and various other technologies
that drive innovation. It allows developers to design solutions that
streamline processes and automate repetitive tasks across various
domains. It is also necessary to be used in both the front end and
back end applications for a majority of the industries.

However, one of the most common and mildly irritating errors
that programmers make while writing code are syntax errors. In
a study conducted on student programmers in 2015, the type of
error with the highest frequency was noted to be syntax errors [Al-
tadmri and Brown 2015]. Since they are easy to detect based on the
programming language, most modern integrated development envi-
ronments (IDEs) and text editors commonly used by programmers
use color-coded syntax, or syntax highlighting.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Syntax highlighting is a feature in text editors where different
parts of the source code, such as keywords, variables, strings, and
comments, are highlighted in distinct colors according to the pro-
gramming language. This is done to enhance the visual contrast
between different syntactical elements, making it easier for pro-
grammers to distinguish between them. For example, using rainbow
parenthesis, where brackets are colored in matching pairs, provides
visual cues that helps programmers detect unclosed brackets. The
benefit of the color grouping effect was demonstrated by Michalski
[2014] in a visual search study where they found that the speed of
finding the target and the accuracy of performance was enhanced
by it. This suggests that highlighting code in a certain color could be
a valuable tool for improving productivity in coding environments.

In Gestalt psychology, a theory of mind that focuses on how peo-
ple perceive and process information, the human brain naturally
organizes similar visual stimuli (e.g., color) into groups [Wertheimer
1938] [Koffka 2013]. This innate perceptual grouping process, re-
duces users cognitive workload as they can simplify information
processing by reading them in as a group, rather than a single word
or item. When this is considered in the context of detecting coding
errors, highlighted syntax prompts the brain to group those ele-
ments into distinct categories which promotes readability and error
detection. This could result in fewer fixation counts because users
are able to process the grouped elements more efficiently. Similarly,
fixation duration may also be reduced as a result of perceptual
grouping stimulated by highlighted syntax, as was hypothesized in
one of the more recent studies by Liu et al. [2021].

Though theoretically syntax highlighting may seem to improve
error detection, the different aspects of potential improvement (such
as accuracy and speed), and the extent of impact syntax highlight-
ing has on error detection has yet to be thoroughly investigated.
Newer results on the effect of syntax highlighting as used in mod-
ern Integrated Development Environments (IDEs) are inconclusive
[Hannebauer et al. 2018].

This study aims to empirically investigate the effect of syntax
highlighting on error detection by examining error detection speed
and accuracy. Eye fixation counts and durations will be captured for
analysis and discussion. Based on Gestalt principles and other exist-
ing literature such as Michalski [2014], Sarkar [2015] and Beelders
and du Plessis [2016], we hypothesize that:

(1) H1: The speed of error detection will be faster in color-coded
syntax compared to non-color-coded syntax.

(2) H2: The performance of error detection will be more ac-
curate in color-coded syntax compared to non-color-coded
syntax.

2 BACKGROUND
Eye tracking is often used to understand and quantify the way
the participant interacts with visual information. While there are

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Felder et al.

Figure 1: Sample Code with Syntax Highlighting

Figure 2: Sample Code without Syntax Highlighting

other options to learn about the choices a participant makes, like
asking them to explain their actions and thoughts, participants’
perceptions do not always align with their underlying process
[Sharafi et al. 2020]. Eye tracking allows for an understanding of
how the participants act without the interference of their perception
and quantifiable information on how that interaction occurs.

Eye tracking can show where individuals found areas of interest,
where they fixated on the image or text, and how long each of these
fixations lasted. This allows for a quantitative understanding of
the participants’ attention and effort. According to Sharafi et al.
[2020], eye tracking in software engineering is used in a few typical
studies like program comprehension, diagram comprehension, code
reviews, traceability, and code summation. This understanding
can be applied to many areas of software engineering to better
understand how programmers interact with the code that they
work with. In this particular case, this paper is focused on code
reading and the possible impacts that syntax highlighting might
have on how individuals read code.

There aren’t manymodern studies that examine how highlighted
or color-coded syntax affects code reading and error detection.
One of the earlier studies in this domain, conducted by Gilmore
and Green [1988], concluded that syntax highlighting improves
comprehension speed of the task. In the same year, Baecker [1988]
conducted a study on source code readability and comprehension
accuracy that found that the incorporation of color increased the

percentage of correct answers by 11%. Another study showed that
participants could find the output of a given piece of code faster if
the syntax was highlighted than if it was not along with the context
switches being lower Sarkar [2015],.

In contrast, Hakala et al. [2006] found that syntax highlighting
did not have a significant impact on the speed of visual search
on screen. Moreover, one of the more recent significant studies
Beelders and du Plessis [2016] in this domain, used heatmaps ([Bus-
jahn et al. 2011]) to show that while there is no significant dif-
ference between the number of fixations per line/AOI or in total
fixation counts between the black-and-white and color-coded snip-
pets. However, the color-coded syntax was noted to have minutely
higher values in a readability context.

These studies provide a strong base to our hypotheses that the
ease and accuracy of reading syntax when it’s highlighted is likely
going to be easier than when it is not.

3 METHODOLOGY
3.1 Participants
Ten participants were recruited from Clemson University (5 male, 4
female, 1 non-binary/third gender with average age of 24.2). All par-
ticipants were undergraduate or graduate students with an average
of 3.93 years of programming experience (SD = 0.94). Participants
were recruited byword ofmouth through student spaces and groups.
There was no incentive or compensation provided for participating,
and participation was entirely voluntary.

3.2 Apparatus
The apparatus used for this experiment is a GazePoint eye tracker
with a sampling rate of 60 Hz and a reported 0.5-1 degree visual
angle accuracy. The eye tracker was calibrated to each partici-
pant before they were shown the stimuli. The software PsychoPy
v2023.1.3 was used for the experiment. The monitor that was used
to display the stimuli to the participants was a DELL P2422H mon-
itor with a 23.8” diagonal screen, 1920 x 1080p resolution, and a 60
Hz refresh rate. Qualtrics Survey was used to conduct the intro and
exit surveys.

3.3 Stimulus
Six short programs were selected as the code stimuli. A syntax
highlighted and black and white version of each program was
created as shown in Figure 1 and 2. Each program was written
for this experiment and included documentation as seen in typical
programs. Each program was written in size 11 font and transferred
to a blank page and converted to PDFs, so that no error notation
would be visible. For the syntax highlighting, it was done in the
style of VS Code’s Light+ default highlighting which appeared to
be the default light mode highlighting. Light mode highlighting
was used as the black and white version of the stimulus is black
text on a white background and light mode is the option for a white
background.

3.4 Experimental Design
This study used a within-subject design, in which each participant
was exposed to both color-coded and non-color-coded conditions.
The order of conditions was randomized. Half of the participants (n

2



Color Perception in Programming Conference’17, July 2017, Washington, DC, USA

= 5) started with a color-coded snippet, whereas the other half (n =
5) started with a non-color-coded snippet. Participants alternated
between color-coded and non-color-coded tests based on their start-
ing condition. Each participant was provided with six code snippets
to read and was asked to identify the line containing the error.

The time spent detecting errors and the accuracy of performance
were measured. Although fixation counts and durations were in-
tended to be recorded using an eye tracker to examine the effect
on participants’ eye movements, this was unsuccessful due to ex-
perimental errors (discussed in the limitations section). There was
no time limit for the tasks.

3.5 Procedures
The main part of the experiment before the analysis is the actual
data collection, which was done using the apparatus mentioned
above, and the test methods as discussed earlier. During this pro-
cess information about consenting to participate was shown and
read out . The participants were provided a consent form with all
the information about the experiment being conducted as well as a
verbal explanation. It was explained that they have the right to with-
draw at any time. Then, they were asked to fill out a demographic
survey. They were asked to provide some basic information about
themselves, or an alias for the purpose of the interaction during
the experiment. All of this data was cleared after the experiment,
and the data collected was assigned to non-personal identifiers
for each participant. After the intro demographic survey had been
filled out, an explanation of how the experiment will go was given
to the participants. This included an explanation of how the eye
tracker works and what will be expected of them throughout the
experiment, such as staying still so that the eye tracker can read
their gaze. The experiment methodology was clearly explained to
the participants, and they were given enough time to understand
and raise any questions they might have before the experiment
begins.

Once all questions have been answered, the experiment started.
Participants were shown to the computer and the eye tracker was
calibrated for the participant. Participants were shown 6 code snip-
pets, as described above. For Test 1, group was provided the colored
code snippet for the first test code, while group B was provided
the uncolored code snippet. For Test 2, group A was provided with
the uncolored code snippet of the second test code, while group
B was provided with the colored code snippet. The same parame-
ters were noted. The experiment was repeated until Test 6, during
which group A were reading the uncolored version of code snippet
6, while group B were reading the colored version of code snippet
6. At the end of each test, the participants were asked to enter the
line number they thought the error was on. The duration of time
taken to find the error for the snippet is noted, and the eye tracker
was also be programmed to note the fixation durations or dwell
time on each line of code. Each participant was given as much time
as needed to complete each test.

Once all tests were over, the participants were asked to fill out a
survey about their prior coding background and questions related
to their perception of color-coded and non-color-coded snippets.
An example question was, "Did you notice that some of the code
snippets had highlighted syntax while some didn’t?". They were

also asked for any final questions or commentary on the experiment,
such as possible improvements at the end of the experiment.

4 RESULTS
Data collected from the 10 participants were used for all analy-
ses. Table 1 shows the descriptive statistics of response time and
accuracy on error detection by conditions. Paired sample t-tests
were conducted to examine the effect of color-coded and non-color-
coded syntax on response time and accuracy of error detection.
Results showed that there was no significant difference in response
time between color-coded and non-color-coded condition, t (9) =
2.12, p > .05 (Figure 3). However, there was a significant difference
in accuracy between the two conditions, t (9) = -2.45, p < .05 (Figure
4). Participants were better at detecting errors when working on
color-coded syntax (M = 2, SD = 0.94) than non-color-coded syntax
(M = 1.2, SD = 0.63).

Participants’ answers to our survey questions were analyzed for
qualitative analysis. It was found that 3 of the participants did not
notice the difference between black-and-white syntax and color-
coded syntax. Among the ones that noticed the difference, one of
them responded that the black-and-white code was easier to find
errors in, while the others agreed that the color-coded syntax was
easier to read.

Table 1: Descriptive statistics of response time and accuracy
by conditions

Figure 3: Average Response time in Color-Coded and Non-
Color-Coded Conditions

5 DISCUSSION
This study investigated whether color-coded syntax influences re-
sponse time and accuracy in error detection compared to non-
color-coded syntax. Contrary to Hypothesis 1, the speed of error
detection was not significantly faster in the color-coded syntax

3



Conference’17, July 2017, Washington, DC, USA Felder et al.

Figure 4: Average Number of Accurate Responses in Color-
Coded and Non-Color-Coded Conditions

condition compared to non-color-coded syntax condition. In other
words, color-coded syntax did not reduce the time they spent on
detecting the errors. While grouping similar elements by color can
enhance readability, the use of too many colors may have dimin-
ished this effect. Research suggests that there is limited capacity for
working memory - the ability to hold and manipulate information
[Miller 1956]. It is possible that the number of groups by color
passed the limit of working memory capacity. In our experimental
task, the color-coded syntax consists of 7 colors or groups (see
Figure 1 for reference). This is very close to the maximum number
of items working memory can hold according to Miller [1956]. As
a result, the cognitive load imposed by processing multiple (7 or
above) colors may have exceeded participants’ working memory
capacity, leading to no significant improvement in detection speed.

However, our findings were consistent with Hypothesis 2 - the
accuracy of error detection was better in color-coded syntax com-
pared to non-color-coded syntax. Participants were able to detect
errors more accurately when the syntax was color-coded. This
suggests that the visual grouping provided by color-coded syntax
helped participants focus on relevant information and distinguish
key elements, enhancing their ability to detect errors. While using
a variety of colors may have hindered the potential benefit for error
detection speed, it enhanced participants’ ability to detect errors
accurately. This suggests that error detection may involve several
cognitive abilities such as working memory and attention control.
It is possible that processing speed is associated with working mem-
ory, whereas error detection accuracy is related to attention control
(the ability to focus on relevant information and disengage from
unimportant information). Thus, color-coded syntax did not have
the same effects on all aspects (i.e., speed and accuracy) of error
detection.

6 LIMITATIONS & FUTUREWORK
There were several limitations within this study. One limitation was
the participant pool as there were only ten participants involved in
this study. The participants were all college students and in their
twenties. This means that the results were created from a small
set of data which brings up questions about the applicability of
the findings. Future studies recreating this study with a larger and
more diverse pool of participants would be helpful to determine

how generalizable the results are and if the results hold true with
further research.

Another limitation in this study was the lack of usable gaze
data. Gaze data was recorded for each participant, but due to a lack
of message events within the experiment file in PsychoPy, there
was no way to determine what gaze data applied to which stimuli.
Attempts were made to add these events to the experiment file,
however there appears to be an error within PsychoPy regarding
these events. There were no solutions that were able to be found
and all examples of how to use such events caused the same error. If
these events were able to be added, then new participants could have
been recruited to gather new data for the study. The likely solution
to this would be to shift future studies to another application or
develop another way of separating out each stimulus’ gaze data
without relying on message events.

In the future, further studies to determine if gaze data does
correlate to accuracy would be relevant as well as further studies to
determine the generalizability of the findings of this study. Further
research into whether these findings apply to all coding languages
or code editors may be of interest.

7 CONCLUSION
This study highlights a crucial trade-off in the design of color-coded
systems. While color coding can enhance accuracy, the number of
colors used need to be carefully controlled to avoid overwhelming
working memory capacity and reducing efficiency. Future research
should examine the optimal amount of color used in programming
to enhance both speed and accuracy in error detection.

REFERENCES
Altadmri, A. and Brown, N. C. (2015). 37 million compilations: Investigating novice

programming mistakes in large-scale student data. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, SIGCSE ’15, page 522–527,
New York, NY, USA. Association for Computing Machinery.

Baecker, R. (1988). Enhancing program readability and comprehensibility with tools
for program visualization. In Proceedings of the 10th International Conference on
Software Engineering, ICSE ’88, page 356–366. IEEE Computer Society Press.

Beelders, T. and du Plessis, J.-P. L. (2016). Syntax highlighting as an influencing factor
when reading and comprehending source code. Journal of Eye Movement Research,
9(1).

Busjahn, T., Schulte, C., and Busjahn, A. (2011). Analysis of code reading to gain
more insight in program comprehension. In Proceedings of the 11th Koli Calling
International Conference on Computing Education Research, Koli Calling ’11, page
1–9, New York, NY, USA. Association for Computing Machinery.

Gilmore, D. J. and Green, T. R. G. (1988). Programming plans and programming
expertise. The Quarterly Journal of Experimental Psychology Section A, 40(3):423–
442.

Hakala, T., Nykyri, P., and Sajaniemi, J. (2006). An experiment on the effects of program
code highlighting on visual search for local patterns.

Hannebauer, C., Hesenius, M., and Gruhn, V. (2018). Does syntax highlighting help
programming novices? In Proceedings of the 40th International Conference on
Software Engineering, ICSE ’18, page 704. Association for Computing Machinery.

Koffka, K. (2013). Principles of Gestalt psychology. routledge.
Liu, Y., Ma, W., Guo, X., Xuefen, L., Wu, C., and Zhu, T. (2021). Impacts of color coding

on programming learning in multimedia learning: Moving toward a multimodal
methodology. Frontiers in Psychology, 12:773328.

Michalski, R. (2014). The influence of color grouping on users’ visual search behavior
and preferences. Displays, 35(4):176–195.

Miller, G. (1956). The magical number seven, plus or minus two: Some limits on our
capacity for processing information. Psychological Review, 63(2):81–97.

Sarkar, A. (2015). The impact of syntax colouring on program comprehension.
Sharafi, Z., Sharif, B., Guéhéneuc, Y.-G., Begel, A., Bednarik, R., and Crosby, M. (2020).

A practical guide on conducting eye tracking studies in software engineering.
Empirical software engineering : an international journal, 25(5).

Wertheimer, M. (1938). Laws of organization in perceptual forms. Psycologische
Forschung, 4, 301-350.

4


	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Participants
	3.2 Apparatus
	3.3 Stimulus
	3.4 Experimental Design
	3.5 Procedures

	4 Results
	5 Discussion
	6 Limitations & Future Work
	7 Conclusion
	References

