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Figure 1. Left: A user wears eye-tracking glasses to collaboratively assemble a sandwich with a virtual character. Middle: The virtual character
produces gaze cues to relevant task objects. Right: A user interacting with the virtual character in head-mounted virtual reality.

ABSTRACT
Successful collaboration relies on the coordination and align-
ment of communicative cues. In this paper, we present mecha-
nisms of bidirectional gaze—the coordinated production and
detection of gaze cues—by which a virtual character can co-
ordinate its gaze cues with those of its human user. We im-
plement these mechanisms in a hybrid stochastic/heuristic
model synthesized from data collected in human-human in-
teractions. In three lab studies wherein a virtual character
instructs participants in a sandwich-making task, we demon-
strate how bidirectional gaze can lead to positive outcomes in
error rate, completion time, and the agent’s ability to produce
quick, effective nonverbal references. The first study involved
an on-screen agent and the participant wearing eye-tracking
glasses. The second study demonstrates that these positive
outcomes can be achieved using head-pose estimation in place
of full eye tracking. The third study demonstrates that these
effects also transfer into virtual-reality interactions.
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INTRODUCTION
When people interact they use a number of verbal and non-
verbal communication mechanisms to coordinate. Gaze is
a particularly important cue in both directions; people use
it to indicate their attention as well as sense the attention of
others. For example, an instructor might observe the gaze of
their student to see that they are looking in the wrong place
or are seeking help and then use their own gaze to capture
the student’s attention in order to guide it to the correct place.
Such bidirectional gaze mechanisms can improve coordination
in interaction by correcting potential failures before they occur
in a subtle way, avoiding interruptions in the flow of activity.

Interfaces utilizing virtual embodied agents hold great promise
for situated interaction in domains such as work training, occu-
pational therapy, rehabilitation, counseling, retail, education,
entertainment, and more. To build rich, immersive, and fluent
interactive experiences with agents in these settings, we must
build models that they can use to coordinate their actions and
behaviors with their users and shared objects in the task en-
vironment. In this paper, we present techniques that improve
the quality of human-agent interactive experiences through the
use of bidirectional gaze—the coordinated production and re-
sponsiveness to social gaze cues—and demonstrate that these
techniques indeed achieve positive interaction outcomes.

Bidirectional gaze is particularly important when people col-
laborate over a shared visual space [11, 13, 15, 45]. Coor-
dinated gazing allows conversational participants to monitor
their interlocutor for understanding, regulate the amount of
mutual gaze and averted gaze, quickly pass and receive the
conversational floor, disambiguate verbal references early in
their production, and so on. Virtual agents currently lack so-
phisticated models that would allow them to engage in similar
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coordination when interacting with people. The opportunity
exists for agents to use their embodiments to express social
gaze cues and through the use of gaze tracking technologies
detect and interpret the user’s gaze cues. However, these gaze
cues must be simultaneously expressed by the agent and inter-
preted from the user in an interactive, dynamic process.

The primary contribution of our paper is a bidirectional gaze
model that enables an agent to interpret the gaze of its user and
generate its own gaze to effectively communicate coordinative
behaviors. We utilize data collected in a previous human-
subjects experiment to inform the design of a stochastic finite-
state-machine model with heuristic rules that can respond in
real time to streams of signals, including eye-tracker infor-
mation, to drive the animation of a character’s gaze. A user
study (n = 32) utilizing an on-screen agent system validates
this model, showing that bidirectional gaze behaviors can lead
to positive collaborative outcomes in error rate, completion
time, subjective quality, and the ability of the agent to produce
quick references that require little verbal disambiguation.

In order to make the model more practical, we also explore
removing the need for accurate spatial gaze tracking. We
provide methods that use easily obtained head tracking infor-
mation as a proxy for detailed gaze information and validate
that this approximation achieves desired results in a second
empirical study (n= 12). This ability to use head-tracking data
to achieve bidirectional gaze effects also makes our approach
practical for virtual reality applications. We demonstrate this
in a third version of our system using an Oculus Rift head-
mounted display, and confirm that we can achieve the desirable
effects of bidirectional gaze in a third user study (n = 20).

BACKGROUND
Previous research on gaze behavior has characterized it as a
key mechanism for communication and coordination in human
interactions and a potential resource for creating natural and
effective interactive experiences involving embodied agents.

Gaze in Coordination and Collaboration
Human interactions involve individuals drawing on social ex-
changes to coordinate their actions toward changing their en-
vironment [13, 14, 46]. In these interactions, communicators
seek to establish common ground [17, 13, 46] by exchanging
information and to obtain situation awareness by monitor-
ing visual information available in the environment[19, 16,
22]. This awareness enables them to predict breakdowns in
coordination and engage in repair [26], using language to
re-establish common ground, such as a teacher seeing that a
student appears confused and offering clarification.

Gaze cues facilitate both the process of establishing common
ground and the process of engaging in repair. Conversational
partners monitor each others’ gaze and engage in shared gaze
to indicate attention to and understanding of references to
objects [16, 5, 21, 9]. Breakdowns in understanding or need
for more information by listeners can be judged based on
whether or not their attention is directed toward referents [5].
When breakdowns do occur, gaze cues of the speaker serve
to rapidly disambiguate references [24]. The gaze patterns of

a partner can also help predict ensuing task actions [50] and
cognitive processes such as language comprehension [48].

This continuous process of grounding and repair is facilitated
by gaze coordination, the emergent coupling of gaze patterns
between conversational partners [43]. This coordination sig-
nals how well speakers and listeners achieve visual common
ground [41, 5] and predicts conversational outcomes such as
listener comprehension [42]. Gaze coordination is an efficient
way to facilitate collaboration, reducing the cost of language
production for coordination and repair [17, 8], particularly for
rapid communication of spatial information [36].

Previous research on human communication has examined
how people engage in gaze coordination, such as the timings
of when people look toward objects to which they or their
partners verbally refer [23, 33, 48]. These investigations are
generally one-sided, looking at each person’s gaze in isola-
tion, and do not capture the intricate coordinative patterns in
which partners’ gaze behaviors interact. Previous work has
also investigated gaze alignment, exploring the extent to which
conversational partners gaze toward the same targets at various
time offsets [41, 5]. This paper extends the human communi-
cation work with a computational model of gaze coordination
and alignment applicable to embodied agents in HCI.

Gaze in Coordination with Embodied Agents
Previous work has extensively explored how embodied agents
can use the production of gaze cues for a number of social
functions, e.g., signaling attention [40, 38], spatial referencing
[10, 3], and action coordination [7, 34]. However, much less
work has considered the use of gaze as an input for agent
interaction. Previous studies have explored how embodied
agents can monitor the gaze of their users and seek to establish
shared attention by aligning their gaze with those of their
users [51]; by selectively using gaze shifts, head motion, and
voice depending on user orientation [27]; and by dynamically
engaging in mutual and averted gaze [6]. Prior research also
includes studies of gaze coordination between humans and
robots. Skantze et al. [47] investigated user interactions with
a robot that employed coordination mechanisms such as joint
attention, turn-taking, and action monitoring, finding that these
mechanisms facilitated reference disambiguation. Similarly,
Mehlmann et al. [32] devised a heuristics-based gaze model
for conversational grounding that allowed a robot to utilize
user gaze in order to disambiguate user speech, establish joint
attention, and regulate turn-taking.

Another line of work among these studies involved enabling
embodied agents to monitor user gaze for signals of communi-
cation or task breakdowns and to offer repair. These studies
included the development of a spoken dialogue system that
monitored user gaze patterns to determine the need for refer-
ence resolution [12]; a robot system that monitored user gaze
as they performed an assembly task and proactively provide
task assistance [44]; an intelligent tutoring system that used
gaze direction to determine whether or not the student lost
attention and prompted the student to pay attention to the tutor-
ing [18]; and a robot system that monitored user gaze and task
actions to predict hesitation or breakdowns in understanding
and offer additional task information [49]. Assessments of
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these systems have demonstrated that, by monitoring, infer-
ring user states based on, and responding to gaze, agents can
improve coordination with their users.

Although previous work has extensively studied human gaze
coordination and explored integrating some of its mechanisms
into the design of embodied agents, humanlike gaze coordi-
nation with such agents is still an unrealized goal. This paper
seeks to address this knowledge gap by presenting a model
of bidirectional gaze, allowing virtual characters to express
gaze and react to user gaze in a coordinated fashion in order
to create richer and more natural interactive experiences. Our
work extends prior results on the use of coordinated gaze be-
haviors between humans and embodied agents by providing a
model constructed directly from human data, implementing
the behaviors using new technologies, and providing a unique
methodology for evaluation.

MODELING BIDIRECTIONAL GAZE
Our full model of bidirectional gaze is comprised of two major
components: a stochastic finite-state-machine with statistical
parameters of what to gaze toward, independent of the user,
and a heuristic rule-based component on what to do in response
to the user’s gaze. In this section we first describe a baseline
descriptive model of human bidirectional gaze behaviors from
previous work. We then present our work to extend the pre-
vious analyses into a generative model by turning descriptive
statistics into stochastic parameters to a finite-state-machine.
To add gaze responsiveness, we also performed extra analysis
on the existing data and developed several heuristics to inform
the agent on what to do in response to user gaze. At the end
of this section we describe a virtual agent system which we
developed to utilize the bidirectional gaze model in a physical
instruction-based task. We also describe two additional ver-
sions of the system that we developed to utilize low-cost head
tracking and to situate the interaction in virtual reality.

Human-Human Data & Descriptive Model
The general class of tasks that we focus on in this paper in-
cludes physical collaborations in which one participant pro-
vides instructions to the other participant. One of the basic
building blocks of physical collaborations is the reference-
action sequence: one participant makes a verbal reference to a
physical object and the other participant performs an action on
that object. Previous work in psychology, particularly recent
work by Andrist et al. [1], has analyzed the high-level structure
of reference-action sequences and provided a qualitative un-
derstanding of gaze coordination within such sequences. Our
model development builds on this work, using data obtained
by Andrist et al. [1] as well as the descriptive model resulting
from their analysis. The paragraphs below will briefly describe
the task and setting in which this data was collected in order
to provide the reader with context on our model.

Following Andrist et al. [1], the model scenario we uti-
lize throughout this paper is a sandwich-building task—
representing a real-world scenario that most non-experts
should be familiar with. In this task, one participant—the in-
structor—provides verbal instructions to the other participant—
the worker—on what sandwich ingredients, arranged on a

table between the participants, to physically move onto some
nearby bread. The instructor is directed to request a single
ingredient at a time, not to physically touch any of the in-
gredients, and to communicate using speech and gaze alone.
The worker is responsible for all physical actions. The task is
complete when fifteen items of the instructor’s choosing have
been moved from the task space where ingredients are located
to the target bread. All ingredients are made of toy fabric
and may have multiple instances, such as two different tomato
slices. This task consists of fifteen discrete reference-action
sequences in which ambiguous verbal references may appear,
e.g., a reference to “the cheese” when there are both swiss
cheese and cheddar cheese in the source area.

The data obtained by Andrist et al. [1] was acquired from 13
previously unacquainted dyads. Both participants wore mobile
eye-tracking glasses. Each interaction was divided into a set
of reference-action sequences which were further divided into
four discrete phases. These phases include:

• pre-reference—time before verbal reference has been made.
• reference—time during the verbal request for a specific

sandwich ingredient.
• monitor—time directly after the verbal reference when the

instructor monitors the worker for understanding.
• action—time during the worker’s successful action of mov-

ing the ingredient to the target bread.

The most pertinent analysis conducted by Andrist et al. [1]
explored the alignment between gaze behaviors of interacting
participants throughout each reference-action sequence. Gaze
alignments were computed in each of the four phases, shifting
the instructor’s and worker’s gaze streams at different offsets
in relation to each other. The peak of the line graph for each
of the four phases in Figure 2 represents the optimal time lag
at that phase. Positive lags (peaks on the right side of the
graph) put the instructor ahead of the worker, indicating that
the instructor is “driving” the gaze patterns, while negative
lags (peaks on the left side) indicate that the worker is driving.

This analysis revealed a general rise and fall in alignment
throughout a sequence, as well as a back-and-forth pattern
of which participant was leading the interaction in terms of
their gaze behavior. These observations shed light on the role
of gaze in “mixed initiative” conversations [37]. Early in an
interaction sequence, the instructor drives the interaction by
finding and referencing an object that they wish the worker
to find and act upon. Then the worker takes initiative by
searching for and acting upon the referent while the instructor
monitors for potential breakdowns. In this paper, we utilize
these observations in order to construct a model that allows an
agent to synthesize similar behavior, as described next.

Our Model
The analysis by Andrist et al. [1] was conducted from the
perspective of the instructor, which we also focus on for this
paper as a role that a virtual character could effectively take on.
Their analysis suggests that the agent should shift from lead-
ing with its gaze during pre-reference and reference phases
(producing gaze behaviors to which the user is expected to
respond) to following the user’s gaze during the monitor and
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Figure 2. Adapted from Andrist et al. [1]. Peaks of gaze alignment
within each phase, which occur in pre-reference and reference when the
instructor’s gaze is shifted ahead of the worker’s gaze and in monitor and
action phases when the instructor’s gaze is shifted behind the worker’s.

action phases (gazing in response to the detected gaze behav-
iors of the user). Thus, our model of bidirectional gaze has
two major components: a stochastic component with statistical
parameters of what to gaze at when, independent of the user,
and a heuristic rule-based component on what to gaze at in
response to the user during the monitor and action phases.

Producing Gaze with a Stochastic Finite-State-Machine
The agent’s world is broken down into five categories of gaze
targets relevant to the task: the referent, objects ambiguous to
the referent, the user, the action target (always the bread for
this scenario), and all other task-relevant objects (the ingredi-
ents that are not the referent or ambiguous to the referent).

At the highest level, the model traverses through the separate
phases of a reference-action sequence according to the agent’s
speech and the user’s actions. The pre-reference phase is en-
tered at the conclusion of the user’s action in the previous
reference-action sequence. The reference phase is entered
once the agent starts producing the verbal reference. Once
the agent finishes speaking the reference, the monitor phase
begins. This may involve responding to a user’s request for
clarification, either explicitly via speech recognition or implic-
itly from gaze via the heuristic part of the model described
below. The action phase begins when the worker begins the
relevant action, in this case grabbing the appropriate ingre-
dient. Grabbing the wrong ingredient is considered an error,
and the agent remains in the monitor phase, instructing the
user to place that ingredient back and locate the correct one,
providing additional description to help clarify. If the correct
item is grabbed, the action phase lasts until the user brings it
to the target bread location. Once that motion is complete, the
next reference-action phase begins.

Within each phase, a stochastic finite-state machine is em-
ployed to determine which targets to gaze at and for how long.

Mean Gaze Fixation Length (seconds)

Gaze Shift Probabilities

Phase Referent Ambiguous Other User Bread
Pre-reference 0.85 0.45 0.35 0.65 0
Reference 1.1 0.5 0.45 0.6 0
Monitor 1.2 0.6 0.47 1.7 0
Action 0 0 0.66 0.6 0.86

Phase to Referent to Ambiguous to Other to User to Bread
Pre-reference 0.4 0 0.57 0.03 0
Reference 0.48 0 0.41 0.11 0
Monitor 0.49 0.02 0.34 0.15 0
Action 0 0 0.65 0.11 0.24

Table 1. Top: Mean gaze lengths to targets within each phase. Bottom:
Probabilities of gazing toward targets within each phase.

This state machine includes five states, one for each category
of possible gaze targets (referent, ambiguous, user, bread,
and other). Each state is associated with a Gaussian distribu-
tion with mean and standard deviation values derived from
the existing data (Table 1 top). Values sampled from these
distributions served as gaze-length values when producing a
gaze shift to that target. Transitions among states (realized
as a gaze shift to the associated target) are dictated by the
probabilities of gazing toward each type of target within the
current phase (also derived from the existing data) (Table 1
bottom). When one gaze fixation is completed, the next gaze
target is determined through a weighted random sample of the
probabilities of gazing at the other targets. For states contain-
ing multiple discrete instances of possible locations, e.g., the
“other task-relevant objects” state, one of these instances is
randomly selected as the next gaze target.

Responding to Gaze with Heuristic Rules
In addition to the stochastic state-machine, which runs at all
times during the interaction, the full model for responsive
phases (monitor and action) also includes heuristically defined
triggers of what the agent should do in response to user gaze.
These heuristics override events in the stochastic state-machine
part of the model, which is active at all other times.

To derive these heuristics, we examined phases from the ex-
isting human-human data where the instructor seemed to be
“following” the gaze of the worker, rather than leading, looking
for potentially interesting events or triggers in the worker’s
gaze in order to discover what the instructor is likely to do in
the seconds immediately following that event. For example,
when the worker looks at an ambiguous object, what is the
instructor likely to look at next? Figure 3 (left) depicts the
likelihood, over all collected data, of what the instructor is
looking at over time following the event of a worker gazing
to a wrong ambiguous ingredient, e.g., the light green lettuce
instead of the dark green spinach. As can be observed, the
likelihood that the instructor gazes toward the correct refer-
ent goes up and that of gazing toward other ingredients goes
down, likely as a means to drive attention toward the correct
object. Similarly in Figure 3 (right), when the worker looks
at the correct referent, the likelihood of the instructor looking
towards the referent again goes up over the next second. We
examined a variety of such phenomena in our data in order to
synthesize the following heuristic rules.
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Figure 3. Gaze triggers informing the heuristic model component. Left:
Likelihood of instructor gaze to the referent goes up over time following
the worker’s gaze to an ambiguous item. Right: Likelihood of instructor
gaze to the referent goes up following the worker’s gaze to the referent.
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Figure 4. Heuristics in the monitor phase. User and agent gaze are shown in green and purple, respectively. The physical task space is replicated in the
agent’s virtual world for illustrative purposes. (A) Joint attention following to the referent. (B) Shifting joint attention from an ambiguous item to the
referent. (C) Mutual gaze in response to agent-directed gaze.

In the monitor phase (Figure 4):

1. Joint attention following — When the user gazes toward the
referent, the agent also gazes toward the referent.

2. Shifting joint attention — When the user gazes toward an
object that is ambiguous with the referent, the agent gazes
toward the referent. If the user is gazing toward the ambigu-
ous object for more than one second without fixating on the
referent, the agent gazes toward the user and preemptively
offers a verbal refinement.

3. Mutual gaze — When the user gazes toward the agent, the
agent gazes back toward the user. If the user has not made
the correct action within two seconds of gazing toward the
agent, the agent preemptively offers a verbal refinement.

In the action phase:

1. Tracking action intent — When the user gazes toward the
target bread, the agent also gazes toward the target bread.

2. Mutual gaze and shifting joint attention — When the user
gazes toward the agent, the agent gazes back to the user and
then to the target.

3. Joint attention following — When the user gazes toward
any ingredient, the agent gazes toward that ingredient.

System Design
We implemented an interactive virtual agent system on top of
the Unity game engine. In order to integrate the bidirectional
gaze model, additional system components were required.
First, a model of gaze motions is necessary to actually execute
shifts in gaze from one target to another. The gaze model
developed by Andrist et al. [3] was utilized for this purpose.

Throughout interaction, the agent requires real-time access
to the human interlocutor’s point-of-regard. In the on-screen
interaction version of the system (Figure 1 left), the user wears
SMI eye-tracking glasses to provide the agent with a constant
stream of gaze points within the glasses’ front-facing camera
view. To classify these gaze points in terms of the actual object
being looked at, a system of augmented reality (AR) tags are
used to convert camera-space points into real-world points.
The ArUco library [20] was used for the detection of tags,
providing the camera-space corner points of any and all tags
detected in the camera’s view (10 fps). Given these corner
points, a nearby gaze tracker point-of-regard, the known real-
world dimensions of the tag, and the assumption that the gaze

point falls on the same plane as the tag, the Jacobi iterative
method is used to solve for the homography between camera-
space and real-space. This produces the real-world coordinates
of the gaze point-of-regard. Tags are arranged on a table to
create a grid of 18 locations. Using this system, the agent
is provided with real-time access to the grid location being
looked at by the human, which the agent can then associate
with a particular item given its internal task representation.
Two AR tags are also placed around the agent on the frame of
the display to detect when the user looks toward the agent.

To make successful reference utterances, the speaker needs
some form of feedback from the addressee. Despite the best
efforts of speakers, there will inevitably be breakdowns—
misunderstandings or miscommunication—that can impede
ongoing progress of the interaction or lead to breakdowns in
the future [52]. The preemptive verbal refinements provided
by the heuristic portion of the model allow the agent to en-
gage in repair in a natural and efficient way. In addition to
these gaze-triggered refinements, the overall system enables
the agent to respond to explicit verbal requests for refinement.

We developed a second version of the system by replacing
the expensive eye-tracking technology with a lower-cost head-
tracking solution. This system used a Kinect to track the head
pose of the user. A virtual ray is extended forward from the
point between the eyes and intersected with the task space.
The bidirectional gaze model is relaxed to treat head pose as a
gaze “cone” rather than a precise gaze point. For example, a
reference gaze is detected when the user’s head pose is directed
toward the referent or to any objects within one grid cell of the
referent in the task space. A third version of the system was
subsequently developed to target head-mounted virtual reality,
specifically the Oculus Rift. This implementation also utilizes
the relaxed head-tracking version of the model, making use of
the Rift’s built-in head tracking as a proxy for gaze direction.

All three systems include speech recognition and task tracking
modules. Speech recognition for verbal clarification requests
is performed using a microphone and Microsoft Speech. Task
tracking in the first two implementations utilizes a ceiling
camera focused on the task space. As items are moved, AR
tags become revealed, which communicates to the agent that
an action has been performed. This action can be compared to
the agent’s current task model to check if the correct action has
been performed, and if not, to issue a verbal repair to correct
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the error. In VR, task tracking is accomplished by gazing with
the head toward an ingredient and tapping a button to indicate
ingredient selections, whereupon the selected ingredient (if
correct) is animated to move to the action destination.

STUDY 1: ON-SCREEN INTERACTION
We next sought to evaluate the ability of our model of bidirec-
tional gaze to improve a virtual character’s ability to interact
with people in natural, engaging, and effective ways. We chose
the same interaction scenario that was previously used in data
collection for the model—learning how to make a sandwich.

Study Design: The user study followed a 2×2 within-
participants design. The independent variables included
whether or not the agent produced gaze motions and whether
or not the agent responded to user gaze with its own gaze and
verbal clarifications. Considering both variables separately
enabled us to explore the relative effectiveness of a virtual
character reacting to user gaze as input and/or producing gaze
as output to facilitate interactive experiences. Each participant
interacted with the virtual character system four times, making
one sandwich in each condition in a randomized order.

Hypotheses: Our evaluation of the bidirectional gaze model
was guided by three central hypotheses, focusing on the pro-
duction of referential gaze behavior, the responsiveness to user
gaze, and the benefits of doing both simultaneously.

Hypothesis 1—A virtual character that produces gaze accord-
ing to the bidirectional gaze model will improve user interac-
tion over one that statically gazes toward the user.

More specifically, we predict that producing gaze cues will
enable the agent to utilize faster, ambiguous referencing with-
out breakdowns or requests for repair (e.g., clarification). This
prediction is supported by prior research that has found that
a virtual agent mimicking user behaviors more successfully
directs user attention, resulting in faster task completion and
fewer errors [4].

Hypothesis 2—A virtual character that responds to user gaze
according to the bidirectional gaze model will improve user
interaction over one that does not respond to user gaze.

By tracking and responding to user gaze with its own gaze and
speech, the virtual agent will be able to anticipate breakdowns
before they occur or before a repair request is made. This hy-
pothesis is supported by previous work that has demonstrated
that gaze behaviors precede physical actions [31, 25] and char-
acters that respond to user gaze improve learning gains in
tutoring scenarios [18].

Hypothesis 3—A virtual character that both produces gaze and
responds to user gaze will further improve user interaction
over only producing gaze or only responding to user gaze.

Previous work has shown that coordinated gaze between pairs
of people improves performance in visual search tasks [36]
and in answering comprehension questions [41].

Procedure: Following informed consent, the experimenter
provided the participant with high-level instructions and cal-
ibrated the eye-tracking glasses. A virtual character named

“Jason” was introduced, which then instructed participants on
how to assemble four sandwiches with different ingredients.
The order of the sandwiches, as well as their assignment to
condition, was randomized. Each sandwich required 12 ingre-
dients, at least four of which were inherently ambiguous, e.g.,
the character asked for “cheese” when both Swiss cheese and
cheddar cheese were present. Following each sandwich, the
participants completed a questionnaire about their experience
with that version of the agent and took a quiz that measured
their recall of the ingredients of the sandwich. Following the
completion of all sandwiches, the participant filled out a demo-
graphic questionnaire and received $5 USD for compensation.

Measures: All studies included the same core set of objective,
behavioral, and subjective measures to assess the quality and
effectiveness of a character’s use of bidirectional gaze.

Objective measures: Completion time and number of errors
(i.e., incorrect actions taken) were measured both within each
reference-action sequence and across the making of the sand-
wich. We also counted the number of verbal requests the par-
ticipant made for clarification. Finally, participants completed
a recall quiz to list the ingredients used for each sandwich.

Behavioral measures: We recorded participant gaze to extract
behavioral measures, including the amount of shared and mu-
tual gaze—percentage of time that the agent and user looked
toward the same object and toward each other, respectively—
as measures of behavioral synchrony. The percentage of time
that users looked toward ambiguous objects not relevant to
the interaction served as an indicator of confusion. Finally,
we measured the time from the onset of the character’s verbal
reference to when the user fixated on the referent.

Subjective measures: Participants completed a questionnaire
about their impressions of the agent after finishing each condi-
tion. Using an exploratory-confirmatory factor analysis, four
scales were constructed, each comprised of several seven-
point-rating-scale questions of the form, “I believe that this
version of Jason was...:”

1. Task competence: “engaged in the task,” “dedicated to the
task,” “active part of task,” “helpful” (Cronbach’s α = .88);

2. Cognitive abilities: “sensitive to my needs,” “intelligent,”
“an expert” (Cronbach’s α = .87);

3. Expressiveness: “lively,” “expressive,” “excited to help me,”
“humanlike in behavior” (Cronbach’s α = .91);

4. Visual attentiveness: “watchful,” “attentive,” “observant”
(Cronbach’s α = .91).

Participants: Forty participants from the University of
Wisconsin–Madison campus participated in the first user study.
Due to occasional system malfunctions, eight were excluded
from analysis, resulting in 32 participants (14 females, 18
males) whose ages ranged from 18 to 32 (M = 22.4, SD= 4.0).

Results
The data collected from the user study were analyzed with a
repeated-measures analysis of variance (ANOVA). The statisti-
cal model included two independent variables: gaze-producing
(on or off) and gaze-responsive (on or off). Both trial num-
ber and the particular sandwich type, e.g., “bacon special” or
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Figure 5. Study 1: results from the objective measures of task duration (seconds), number of errors, number of clarification requests, information
recall, and time it took participants to look toward the referent. Test details are provided only for significant (∗) and marginal (†) differences based on
Bonferroni-corrected alpha levels for multiple comparisons (α = 0.05 for H1 and H2 and α = 0.025 for H3).

“turkey special” were modeled as control variables in order to
control for differences in inherent ambiguity across ingredi-
ents. A Bonferroni correction was applied to control for Type
I errors in multiple comparisons. All statistical test results are
reported in Figures 5, 6, and 7 for ease of reading. We report
on the full set of measures only for Study 1 and focus on the
more important and illuminating results for Studies 2 and 3.

Objective Results: Our analysis of the task duration measure
supported all three hypotheses. Participants completed the
task more quickly and with fewer errors when the character
responded to user gaze and when it produced gaze cues com-
pared to when it did not engage these mechanisms. The use
of both mechanisms had an additive effect; participants com-
pleted the character’s instructions faster and with fewer errors
when it used both mechanisms than when it engaged only one
of these mechanisms (Figure 5).

Our analysis of the number of requests participants made for
refinement provided support for H1 and H2 and partial support
for H3. While gaze responsiveness and gaze production both
reduced the number of requests made, the use of both mech-
anisms further reduced requests only marginally over gaze
production alone. The character’s use of the gaze-responsive
mechanism improved participant recall of the ingredients of
the sandwich after the task, while its use of gaze production
had no effect, and the combined use of both mechanisms did
not further improve recall (Figure 5).

Behavioral Results: Our analysis of the participants’ gaze
focused on three specific behavioral measurements: shared
gaze toward objects of interest, gaze toward irrelevant objects
(which we call “ambiguous gaze”), and mutual gaze toward
each other. We found higher shared gaze when the agent used
the gaze-responsive mechanism, indicating a higher degree of
behavioral synchrony. There was also less ambiguous gaze
when the character produced gaze, reducing the amount of
time spent looking toward task-irrelevant objects. Finally,
we found higher mutual gaze when the agent was both gaze-
producing and gaze-responsive (Figure 6).

The character’s production of gaze marginally reduced the time
it took participants to fixate on referent objects, indicating ef-
fective engagement of joint attention between the character
and its user. The character’s use of gaze responsiveness did
not affect participant fixation time. Reference ambiguity, i.e.,
whether or not multiple potential referents were present, de-
layed the ability of the participants to identify and fixate on
the referent. When references were ambiguous, the character’s
gaze reduced participant fixation time, while it had no effect
when the references were not ambiguous (Figure 5).

Subjective Results: We next tested the hypotheses using data
from our four subjective measures, including how compe-
tent, cognitively able, expressive, and attentive participants
rated the character on a seven-point scale. We found support
for H1 in ratings of the character’s cognitive ability and par-
tial support in ratings of its competence; participants found
the gaze-detecting character to be more cognitively able and
marginally more competent. Support for H2 was provided
by data from the perceived competence and perceived expres-
siveness measures, and partial support was provided by the
perceived awareness measure. The gaze-producing character
was rated as more competent and expressive and marginally
more attentive. Finally, only the perceived expressiveness mea-
sure provided partial support for H3; the use of both the gaze-
responsive and gaze-producing mechanisms resulted in higher
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Figure 7. Study 1: results from subjective measures of how competent, cognitively able, expressive, and aware participants found the character to be.
Test details are provided only for significant (∗) and marginal (†) differences using Bonferroni-corrected α = 0.05 for H1 and H2 and α = 0.025 for H3.

ratings of expressiveness over the use of gaze-responsive alone
but not over the use of gaze-producing alone (Figure 7).

Discussion
The first user study was designed to evaluate the ability of
our model of bidirectional gaze to improve a virtual charac-
ter’s ability to interact with people in natural, engaging, and
effective ways. We tested conditions in which the agent did or
did not produce gaze cues to the task space and in which the
agent did or did not respond to the gaze cues of the user. This
study demonstrated the benefits of bidirectional gaze in several
objective, subjective, and behavioral measures. Participants
conducted the collaborative sandwich-task more efficiently
when the agent used the full bidirectional gaze model, com-
pleting the task faster with fewer errors and less need to ask
the agent for clarification. Participants also scored better in
a recall quiz and engaged in higher amounts of mutual gaze
and shared gaze with the agent, indicating a higher degree
of coordination. Subjectively, participants felt that the agent
was most expressive when producing gaze, most competent
when producing and responding to gaze, and possessed greater
cognitive abilities when responding to user gaze.

STUDY 2: HEAD POSE AS GAZE PROXY
In the second study, we investigated whether or not the bidi-
rectional gaze model is effective when full eye-tracking is
replaced with low-cost head tracking. This study utilized an
identical on-screen agent as in the first study, but with the
second version of our system as described in the “System
Design” section. We hypothesized that the bidirectional gaze
model with head tracking would be more effective than not
having any kind of gaze detection (and thus not utilizing the
gaze-responsive portion of the model) and that there would be
no significant differences in outcomes when moving from the
precise eye tracking version of the system to head tracking.

This study included three conditions: not gaze-responsive,
gaze-responsive via eye tracking, and gaze-responsive via
head tracking. In all conditions, the agent produced gaze
cues according to the gaze-producing stochastic finite-state-
machine component of the model. The overall procedure was

similar to the previous study, with participants assembling
three sandwiches (one for each condition) in a random order.
We recruited 15 participants, different from those who partici-
pated in the first study. After excluding three due to system
difficulties, we were left with 12 final participants for analy-
sis (4 females, 8 males), aged 18–23 (M = 21.2, SD = 1.57).
Participants were compensated $5 USD.

Results
Our analysis utilized a repeated-measures analysis of vari-
ance (ANOVA) and pairwise comparisons with Bonferroni
correction to establish benefits of the gaze-responsive via head
tracking method over not gaze-responsive and the equivalence
of gaze-responsive via head tracking gaze-responsive via eye
tracking. To establish equivalence, we followed guidelines sug-
gested by Julnes & Mohr [29], including a p-value larger than
.50. The analysis showed that participants took significantly
shorter time to complete the sandwich, made significantly
fewer errors, and made marginally fewer requests for clarifica-
tion when the character used the gaze-responsive method via
head tracking compared to not utilizing the gaze-responsive
mechanism. On the other hand, gaze-responsive conditions
via head tracking and via eye tracking were equivalent across
these measures (statistical results reported in Figure 8).

Discussion
The second user study was designed to evaluate whether head
tracking could serve as a sufficient proxy for more complex eye
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Figure 9. Study 3: results from measures of number of errors, mutual
gaze, shared gaze, and perceived coordination ability of the character.
Data and test details are provided only for significant (∗) differences.

tracking in the bidirectional gaze model. The study confirmed
this to be the case in terms of objective task performance.
Participants completed the sandwich task more efficiently,
faster with fewer errors and requests for clarification, when
the agent responded to the participant’s head pose rather than
when it performed gaze cues unresponsively. We observed no
significant differences between eye tracking and head tracking,
but a future study with more participants might be able to tease
out the small differences.

STUDY 3: VIRTUAL REALITY
Once we confirmed in the second user study that head tracking
could serve as an adequate proxy for eye tracking in the bidi-
rectional gaze model, we next asked the following research
question: Does the bidirectional gaze model also work when
interacting with agents in virtual reality? To answer this ques-
tion, we designed and executed a third user study in which
participants carried out the same sandwich-building task with
the same virtual agent as in the previous studies, but this time
while wearing the Oculus Rift DK2 headset (Figure 1 right)
using the third version of the system described earlier.

This study tested two conditions: gazing responsively using
the full bidirectional gaze model and only producing gaze
cues with no responsiveness. Based on lessons learned in the
first two studies, we constructed an additional subjective scale
targeting users’ perceptions of the agent’s level of coordination
ability. This scale included the following items on a seven-
point scale: “How would you rate Jason’s responsiveness to
your attention and behaviors?” and “How in sync were you
and Jason?” Twenty participants (8 females, 12 males), aged
18–47 (M = 23.1, SD = 6.81), experienced both conditions in
a random order and received $3 USD.

Results
A repeated-measures ANOVA showed that, while the use of
the full model reduced errors, it did not significantly improve
task completion time, F(1,19) = 2.13, p = .16, or reduce the
number of requests for clarification, F(1,19) = 0.10, p = .75.
Participants established more mutual and shared gaze with the
character that used the full model compared to the character
that only used the gaze-producing mechanism. Finally, the
character that used the full model was rated by the partici-
pants as more effective in coordinating its behaviors with them
(statistical results reported in Figure 9).

Discussion
The third user study was designed to evaluate the effectiveness
of bidirectional gaze for virtual characters in head-mounted
virtual reality. This study revealed that an agent using the
full bidirectional gaze model, rather than producing gaze in
isolation, is able to help participants complete a collaborative
task with fewer errors. Task completion time was not signif-
icantly reduced in the bidirectional gaze condition, possibly
explained by a large amount of variance from differing lev-
els of familiarity with VR technology. However, participants
made more mutual gaze and engaged in more shared gaze with
the agent when it responded to their gaze, indicating a higher
degree of coordination. Participants explicitly indicated that
they subjectively felt more coordinated with the agent when it
was using bidirectional gaze than when it was not.

GENERAL DISCUSSION
Our first study demonstrated the effectiveness of bidirectional
gaze, differentially examining both the gaze-producing and
gaze-responsive components of the model. In general, it
showed that bidirectional gaze mechanisms are effective in
improving collaborative interaction with on-screen characters
providing instructions over a physical task space and are even
more effective than either of its components alone. The second
study demonstrated that relaxing and extending the model to
utilize head pose rather than full eye tracking retains much of
that effectiveness. The third evaluation demonstrated that the
bidirectional gaze model utilizing head tracking is useful in
virtual reality collaborations with virtual characters.

People are able to use a range of communication mechanisms
to collaborate and correct each other’s mistakes and misunder-
standings quickly and efficiently. Bidirectional gaze mecha-
nisms similarly enable interactive characters to preemptively
offer refinements in a quick and unobtrusive way, responding
to subtle nonverbal gaze of the user rather than relying on
explicitly spoken questions. People also frequently use am-
biguous speech that they easily resolve through context and the
use of nonverbal cues, making speech faster and more efficient.
Bidirectional gaze enables agents to utilize this power, making
potentially ambiguous but faster verbal references along with
appropriate gaze production and responsiveness.

Our model is grounded in observations of human-human in-
teractions in order to ensure that it accurately captures human
communication mechanisms of bidirectional gaze. Evalua-
tions were driven by hypotheses derived from research on
human-human interaction. This human-based modeling al-
lowed us to target human-level competence while making spe-
cific predictions about how these gaze mechanisms should im-
prove interactions objectively, subjectively, and behaviorally.

Beyond the statistically significant differences found in many
of the experimental comparisons, we would like to highlight
the practical implications and applications of our findings. For
example, differences in means indicate that error rate is cut
by about half when the agent is gaze-responsive compared to
when it is not gaze-responsive and approximately half of a
point is gained in user perceptions of their cognitive abilities
(Study 1). While these gains may individually appear small in
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magnitude, they persist as robust effects across different mea-
sures and technology implementations. Furthermore, there are
a number of potential scenarios beyond toy sandwich build-
ing where even small improvements in error rates can have a
large impact. In scenarios where these differences are not as
impactful, it may be more appropriate to utilize low-cost head
tracking rather than fully instrumenting users with gaze track-
ers. Study 2 demonstrates that much of the positive impact
from bidirectional gaze will still be retained in this case.

Limitations & Applicability
The model presented in this paper makes three simplifications
that should be addressed in future research. First, it focuses
on agents making verbal references to task objects in the form
of reference-action sequences. While these sequences are a
fundamental building block of collaborative interactions, other
elements must be addressed to extend beyond these discrete,
well-defined sequences, such as a more general model of turn-
taking, coordinating conversational gaze, and providing users
with verbal and nonverbal feedback. Previous work has ex-
plored agent gaze across these different interaction contexts,
such as how agents should utilize gaze in conversations with-
out physical objects or actions in the environment [2].

The second simplification is that the model only applies to the
instructor role. The worker role, and roles in other types of
collaborations, should be considered in future work. Recent
work has explored how a collaborative robot in the worker
role might react to user gaze in order to increase efficiency
and naturalness of the interaction [28]. Additionally, handling
multiparty interactions in which the agent must distribute its
gaze to multiple users would also require extending the model.

Third, we only explored one task instance of collaboration—
assembling toy sandwiches. While many complex real-world
tasks are comprised of the same reference-action sequences
we have studied here, the applicability of our model will vary
across three categories of scenarios: (1) those that the model
would apply directly to, (2) those that would require modifi-
cation to the model, and (3) those that are fully outside the
model’s scope, which we discuss in the paragraphs below.

Direct Application: Our approach is directly applicable to
instructional tasks in which an agent (physical or virtual) is
training a user on how to act on a set of objects (building
sandwiches, preparing recipes, assembling furniture, fixing a
bicycle, arranging table settings, etc). These tasks all involve
making mutual gaze, shifting and responding to joint attention
cues, tracking action intent, and so on. Implementations may
differ in terms of dialogue handling and object tracking, but
the model would still apply. An open question for future
work concerns the sensitivity of the precise timing parameters
collected from the sandwich-building task.

Requires Modification: The model would require some modi-
fication for fully collaborative tasks in which the agent is not
only instructing, but also receiving instructions and taking
actions. Extensions of the model would account for agent
gaze behaviors in more fluid and open-ended roles. This cat-
egory also includes tasks that do not involve taking physical
action on objects, such as tour guiding. Parts of the model are

still applicable (mutual gaze, gazing to referents, following
joint attention, etc.), but others would need to be adapted, e.g.,
“reference” and “action” phases might be merged.

Outside the Scope: Casual conversations not situated in an
environment of relevant objects or tutoring scenarios where the
agent is conveying abstract information are outside the scope
of the model. A number of existing models that have been
developed in the virtual agent and human-robot interaction
literatures [39, 30, 35, 2, 38] can be applied in these situations.

Future Work
Fully validating our models, including establishing their gen-
eralizability to other tasks, requires applying them to future
scenarios outside of lab settings. Future work should seek
to replicate these results across technologies as well as tasks
varying in similarity. Another fruitful direction for future re-
search is comparing human-agent interactions utilizing the
bidirectional gaze model to a human-human gold standard,
which can be achieved by comparing the experimental results
directly to the data by Andrist et al. [1] from which the model
was derived. However, such comparison will involve many
challenges, as the two sets of data differ not only in terms of
gaze behavior, but also in the use of unconstrained dialogue,
gestures, repair strategies, and so on.

CONCLUSION
In face-to-face conversation, the gaze of one conversational
participant is constantly and dynamically shaping, and being
shaped by, the gaze of the other participant. Thus, interactive
virtual characters stand to benefit from tracking user gaze and
the knowledge of these coordinated gaze patterns. Grounded
in previous data collected from pairs of collaborating people,
we identified a number of subtle features of human gaze co-
ordination, including timings, spatial mappings, and repair
strategies. These features were built into a model of bidirec-
tional gaze that enables interactive virtual characters to inter-
pret the gaze of their users and generate gaze to effectively
communicate coordinated behaviors. This model enables vir-
tual characters to achieve more efficient verbal referencing
by signaling attention to the user and to items in the environ-
ment appropriately and to infer user state and goals—such as
confusion leading to an impending request for repair—from
the user’s gaze. We also demonstrated that bidirectional gaze
is achievable with low-cost head tracking and is an effective
mechanism for human-agent interaction situated in virtual re-
ality. Overall, this work extends prior research on the use of
coordinated gaze behaviors between humans and embodied
agents by providing a model constructed directly from human
data, implementing the behaviors using new technologies, and
providing a unique evaluation methodology with results that
have clear implications for the design of effective human-agent
interactions.

ACKNOWLEDGMENTS
This work was supported by National Science Foundation
awards 1149970 and 1208632. We would like to thank Ethan
Jesse, Faye Golden, Brandon Smith, and Tomislav Pejsa for
their help in executing the experiments.

Improving Gaze Mechanisms CHI 2017, May 6–11, 2017, Denver, CO, USA

2580



REFERENCES
1. Sean Andrist, Wesley Collier, Michael Gleicher, Bilge

Mutlu, and David Shaffer. 2015. Look together:
analyzing gaze coordination with epistemic network
analysis. Frontiers in psychology 6, 1016 (2015), 1–15.

2. Sean Andrist, Bilge Mutlu, and Michael Gleicher. 2013.
Conversational gaze aversion for virtual agents. In
Intelligent Virtual Agents. Springer, 249–262.

3. Sean Andrist, Tomislav Pejsa, Bilge Mutlu, and Michael
Gleicher. 2012. Designing effective gaze mechanisms for
virtual agents. In Proc. of CHI. ACM, 705–714.

4. Gérard Bailly, Stephan Raidt, and Frédéric Elisei. 2010.
Gaze, conversational agents and face-to-face
communication. Speech Communication 52, 6 (2010),
598–612.

5. Ellen Gurman Bard, Robin Hill, Manabu Arai, and ME
Foster. 2009. Referring and gaze alignment: Accessibility
is alive and well in situated dialogue. In Proc. of CogSci
(’09). Cognitive Science Society, 1246–1251.

6. Nikolaus Bee, Johannes Wagner, Elisabeth André, Thurid
Vogt, Fred Charles, David Pizzi, and Marc Cavazza. 2010.
Discovering eye gaze behavior during human-agent
conversation in an interactive storytelling application. In
Proc. of ICML-MLMI (’10). ACM, 1–8.

7. Jean-David Boucher, Ugo Pattacini, Amelie Lelong,
Gerard Bailly, Frederic Elisei, Sascha Fagel, Peter Ford
Dominey, and Jocelyne Ventre-Dominey. 2012. I reach
faster when I see you look: Gaze effects in
human–human and human–robot face-to-face
cooperation. Frontiers in Neurorobotics 6 (2012).

8. Susan E Brennan, Xin Chen, Christopher A Dickinson,
Mark B Neider, and Gregory J Zelinsky. 2008.
Coordinating cognition: The costs and benefits of shared
gaze during collaborative search. Cognition 106, 3
(2008), 1465–1477.

9. Susan E Brennan, JE Hanna, GJ Zelinsky, and Kelly J
Savietta. 2012. Eye gaze cues for coordination in
collaborative tasks. In Proc. of CSCW DUET 2012
Workshop, Vol. 9.

10. Andrew G Brooks and Cynthia Breazeal. 2006. Working
with robots and objects: Revisiting deictic reference for
achieving spatial common ground. In Proc. of HRI (’06).
ACM, 297–304.

11. Sarah Brown-Schmidt, Ellen Campana, and Michael K
Tanenhaus. 2005. Real-time reference resolution by naïve
participants during a task-based unscripted conversation.
Approaches to studying world-situated language use:
Bridging the language-as-product and
language-as-action traditions (2005), 153–171.

12. Ellen Campana, Jason Baldridge, John Dowding,
Beth Ann Hockey, Roger W Remington, and Leland S
Stone. 2001. Using eye movements to determine referents
in a spoken dialogue system. In Proceedings of the 2001
Workshop on Perceptive User Interfaces. ACM, 1–5.

13. Herbert H Clark. 1996. Using language. Cambridge
university press.

14. Herbert H Clark. 2005. Coordinating with each other in a
material world. Discourse studies 7, 4-5 (2005), 507–525.

15. Herbert H Clark and Susan E Brennan. 1991. Grounding
in communication. Perspectives on socially shared
cognition 13, 1991 (1991), 127–149.

16. Herbert H Clark and Meredyth A Krych. 2004. Speaking
while monitoring addressees for understanding. Journal
of Memory and Language 50, 1 (2004), 62–81.

17. Herbert H Clark and Deanna Wilkes-Gibbs. 1986.
Referring as a collaborative process. Cognition 22, 1
(1986), 1–39.

18. Sidney D’Mello, Andrew Olney, Claire Williams, and
Patrick Hays. 2012. Gaze tutor: A gaze-reactive
intelligent tutoring system. International Journal of
Human-Computer Studies 70, 5 (2012), 377–398.

19. Mica R Endsley. 1995. Toward a theory of situation
awareness in dynamic systems. Human Factors: The
Journal of the Human Factors and Ergonomics Society
37, 1 (1995), 32–64.

20. S Garrido-Jurado, Rafael Muñoz-Salinas, Francisco José
Madrid-Cuevas, and Manuel Jesús Marín-Jiménez. 2014.
Automatic generation and detection of highly reliable
fiducial markers under occlusion. Pattern Recognition 47,
6 (2014), 2280–2292.

21. Darren Gergle and Alan T Clark. 2011. See what I’m
saying?: Using dyadic mobile eye tracking to study
collaborative reference. In Proc. of CSCW (’11). ACM,
435–444.

22. Darren Gergle, Robert E Kraut, and Susan R Fussell.
2013. Using visual information for grounding and
awareness in collaborative tasks. Human–Computer
Interaction 28, 1 (2013), 1–39.

23. Zenzi M Griffin. 2004. The eyes are right when the mouth
is wrong. Psychological Science 15, 12 (2004), 814–821.

24. Joy E Hanna and Susan E Brennan. 2007. Speakers’ eye
gaze disambiguates referring expressions early during
face-to-face conversation. Journal of Memory and
Language 57, 4 (2007), 596–615.

25. Mary Hayhoe and Dana Ballard. 2005. Eye movements in
natural behavior. Trends in cognitive sciences 9, 4 (2005),
188–194.

26. Graeme Hirst, Susan McRoy, Peter Heeman, Philip
Edmonds, and Diane Horton. 1994. Repairing
conversational misunderstandings and
non-understandings. Speech communication 15, 3 (1994),
213–229.

27. Mohammed Moshiul Hoque and Kaushik Deb. 2012.
Robotic system for making eye contact pro-actively with
humans. In Proc. of ICECE (’12). IEEE, 125–128.

Improving Gaze Mechanisms CHI 2017, May 6–11, 2017, Denver, CO, USA

2581



28. Chien-Ming Huang and Bilge Mutlu. 2016. Anticipatory
robot control for efficient human-robot collaboration. In
Proc. of HRI (’16). IEEE, 83–90.

29. George Julnes and Lawrence B Mohr. 1989. Analysis of
no-difference findings in evaluation research. Evaluation
Review 13, 6 (1989), 628–655.

30. B.J. Lance and S.C. Marsella. 2010. The Expressive Gaze
Model: Using Gaze to Express Emotion. Computer
Graphics and Applications, IEEE 30, 4 (2010), 62–73.

31. Michael Land, Neil Mennie, and Jennifer Rusted. 1999.
The roles of vision and eye movements in the control of
activities of daily living. Perception 28, 11 (1999),
1311–1328.

32. Gregor Mehlmann, Markus Häring, Kathrin Janowski,
Tobias Baur, Patrick Gebhard, and Elisabeth André. 2014.
Exploring a model of gaze for grounding in multimodal
HRI. In Proc. of ICMI (’14). ACM, 247–254.

33. Antje Meyer, Femke van der Meulen, and Adrian Brooks.
2004. Eye movements during speech planning: talking
about present and remembered objects. Visual Cognition
11, 5 (2004), 553–576.

34. AJung Moon, Daniel M Troniak, Brian Gleeson,
Matthew KXJ Pan, Minhua Zheng, Benjamin A Blumer,
Karon MacLean, and Elizabeth A Croft. 2014. Meet me
where i’m gazing: how shared attention gaze affects
human-robot handover timing. In Proc. of HRI (’14).
ACM, 334–341.

35. Bilge Mutlu, Takayuki Kanda, Jodi Forlizzi, Jessica
Hodgins, and Hiroshi Ishiguro. 2012. Conversational gaze
mechanisms for humanlike robots. ACM Transactions on
Interactive Intelligent Systems (TiiS) 1, 2 (2012), 12.

36. Mark B Neider, Xin Chen, Christopher A Dickinson,
Susan E Brennan, and Gregory J Zelinsky. 2010.
Coordinating spatial referencing using shared gaze.
Psychonomic bulletin & review 17, 5 (2010), 718–724.

37. David G Novick, Brian Hansen, and Karen Ward. 1996.
Coordinating turn-taking with gaze. In Proc. of ICSLP
(’96), Vol. 3. IEEE, 1888–1891.

38. Tomislav Pejsa, Sean Andrist, Michael Gleicher, and
Bilge Mutlu. 2015. Gaze and Attention Management for
Embodied Conversational Agents. ACM Transactions on
Interactive Intelligent Systems (TiiS) 5, 1 (2015), 3.

39. C. Pelachaud and M. Bilvi. 2003. Modelling gaze
behavior for conversational agents. In Intelligent Virtual
Agents. Springer, 93–100.

40. Christopher Peters, Stylianos Asteriadis, and Kostas
Karpouzis. 2010. Investigating shared attention with a
virtual agent using a gaze-based interface. Journal on
Multimodal User Interfaces 3, 1-2 (2010), 119–130.

41. Daniel C Richardson and Rick Dale. 2005. Looking to
understand: The coupling between speakers’ and
listeners’ eye movements and its relationship to discourse
comprehension. Cognitive science 29, 6 (2005),
1045–1060.

42. Daniel C Richardson, Rick Dale, and Natasha Z Kirkham.
2007. The art of conversation is coordination common
ground and the coupling of eye movements during
dialogue. Psychological science 18, 5 (2007), 407–413.

43. Daniel C Richardson, Rick Dale, and John M Tomlinson.
2009. Conversation, gaze coordination, and beliefs about
visual context. Cognitive Science 33, 8 (2009),
1468–1482.

44. Kenji Sakita, Koichi Ogawara, Shinji Murakami, Kentaro
Kawamura, and Katsushi Ikeuchi. 2004. Flexible
cooperation between human and robot by interpreting
human intention from gaze information. In Proc. of IROS
(’04), Vol. 1. IEEE, 846–851.

45. Michael F Schober. 1993. Spatial perspective-taking in
conversation. Cognition 47, 1 (1993), 1–24.

46. Natalie Sebanz, Harold Bekkering, and Günther Knoblich.
2006. Joint action: bodies and minds moving together.
Trends in cognitive sciences 10, 2 (2006), 70–76.

47. Gabriel Skantze, Anna Hjalmarsson, and Catharine
Oertel. 2014. Turn-taking, feedback and joint attention in
situated human–robot interaction. Speech Communication
65 (2014), 50–66.

48. Michael K Tanenhaus, Michael J Spivey-Knowlton,
Kathleen M Eberhard, and Julie C Sedivy. 1995.
Integration of visual and linguistic information in spoken
language comprehension. Science 268, 5217 (1995),
1632–1634.

49. Cristen Torrey, Aaron Powers, Susan R Fussell, and Sara
Kiesler. 2007. Exploring adaptive dialogue based on a
robot’s awareness of human gaze and task progress. In
Proc. of HRI (’07). ACM, 247–254.

50. Weilie Yi and Dana Ballard. 2009. Recognizing behavior
in hand-eye coordination patterns. International Journal
of Humanoid Robotics 6, 03 (2009), 337–359.

51. Yuichiro Yoshikawa, Kazuhiko Shinozawa, Hiroshi
Ishiguro, Norihiro Hagita, and Takanori Miyamoto. 2006.
Responsive Robot Gaze to Interaction Partner.. In Proc.
of RSS (’06).

52. Christopher J Zahn. 1984. A reexamination of
conversational repair. Communications Monographs 51, 1
(1984), 56–66.

Improving Gaze Mechanisms CHI 2017, May 6–11, 2017, Denver, CO, USA

2582


	Introduction
	Background
	Gaze in Coordination and Collaboration
	Gaze in Coordination with Embodied Agents

	Modeling Bidirectional Gaze
	Human-Human Data & Descriptive Model
	Our Model
	Producing Gaze with a Stochastic Finite-State-Machine
	Responding to Gaze with Heuristic Rules

	System Design

	Study 1: On-Screen Interaction
	Results
	Discussion

	Study 2: Head Pose as Gaze Proxy
	Results
	Discussion

	Study 3: Virtual Reality
	Results
	Discussion

	General Discussion
	Limitations & Applicability
	Future Work

	Conclusion
	Acknowledgments
	REFERENCES 



