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ABSTRACT

This paper presents a numerically stable non-iterative algorithm for fitting an ellipse to a set of data points.
The approach is based on a least squares minimization and it guarantees an ellipse-specific solution even
for scattered or noisy data. The optimal solution is computed directly, no iterations are required. This leads
to a simple, stable and robust fitting method which can be easily implemented. The proposed algorithm has
no computational ambiguity and it is able to fit more than 100,000 points in a second.
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INTRODUCTION

One of basic tasks in pattern recognition and com-
puter vision is a fitting of geometric primitives to a set
of points (see [Duda73] for a summary). The use of
primitive models allows reduction and simplification
of data and, consequently, faster and simpler process-
ing. A very important primitive is an ellipse, which,
being a perspective projection of a circle, is exploited
in many applications of computer vision like 3-D vi-
sion and object recognition, medical imaging, indus-
trial inspections, etc.

Regarding the importance of ellipses, many differ-
ent methods have been proposed for their detection
and fitting. The approaches exploit various ideas (for
example Hough transform [Leave92, Yuen89, Yin92,
Wu93], RANSAC [Rosin93, Werma95], Kalman fil-
tering [Porri90, Rosin95], fuzzy clustering [Dav´e92,
Gath95], or least squares approach [Haral93, Books79,
Taubi91, Samps92, Gande94]), but in principle they
can be divided into two main groups: voting/clustering
and optimization methods. The methods belonging to
the first group (Hough transform, RANSAC, and fuzzy
clustering) are robust against outliers and they can de-
tect multiple primitives at once. Unfortunately, these

methods are slow, require large memory and their ac-
curacy is low. Moreover, regarding the popular Hough
transform, there are problems with a detection of ob-
jects due to blurred and spurious peaks in the accumu-
lators [Grims90].

The second group of fitting methods are based on opti-
mization of an objective function which characterizes
a goodness of a particular ellipse with respect to the
given set of data points. The main advantages of these
methods are their speed and accuracy, on the other
hand the methods can fit only one primitive at time
(i.e. the data should be pre-segmented before the fit-
ting). Also the sensitivity to outliers is higher than in
the clustering methods.

An analysis of the optimization approaches was done
in [Fitzg95a] and [Fitzg96a]. It was shown that the
methods are typically based on a general conic fit-
ting (such as [Books79, Taubi91, Samps92]) with ad-
ditional constraints ensuring that the solution will be
an ellipse rather than a general conic. Although the
general conic fitting can be computed directly, the con-
straint on the ellipse-specific solution makes the com-
plete methods iterative. There were many attempts to
make the fitting process computationally effective. Fi-



nally, Fitzgibbonet al. proposed a direct least squares
based ellipse-specific method in [Fitzg96b].

In this paper we analyze the Fitzgibbon’s approach,
characterize its drawbacks and propose an improved
method for a direct fitting of ellipses. The paper is
organized as follows: First, the original approach is
described. We investigate the method and discuss sit-
uations when it fails or provides non-optimal results.
Then, based on a block decomposition of matrices, an
improved fitting method is proposed. Finally, a prac-
tical realization of our approach is presented together
with its evaluation in several experiments. A compar-
ison of the proposed method with currently used ap-
proaches concludes the whole paper.

FITZGIBBON’S APPROACH TO
LEAST SQUARES FITTING OF
ELLIPSES

This approach was proposed in [Fitzg96b]. The
method works on segmented data (that means that all
data points are assumed to belong to one ellipse) and
it is stated to be the first non-iterative ellipse-specific
fitting. In this section we provide an overview of the
method. Further details and comparisons with an-
other approaches can be found in the technical re-
port [Fitzg96a].

An ellipse is a special case of a general conic which
can be described by an implicit second order polyno-
mial

F(x;y) = ax2+bxy+ cy2+dx+ ey+ f = 0 (1)

with an ellipse-specific constraint

b2
�4ac < 0 (2)

wherea;b;c;d;e; f are coefficients of the ellipse and
(x;y) are coordinates of points lying on it. The poly-
nomialF(x;y) is called thealgebraic distance of the
point(x;y) to the given conic. By introducing vectors

a= [a;b;c;d;e; f ]T

x = [x2
;xy;y2

;x;y;1]
(3)

it can be rewritten to the vector form

Fa(x) = x �a= 0 (4)

The fitting of a general conic to a set of points
(xi;yi); i = 1: : :N may be approached [Haral93] by
minimizing the sum of squared algebraic distances of
the points to the conic which is represented by coeffi-
cientsa:

min
a

N
∑

i=1
F(xi;yi)

2 = min
a

N
∑

i=1

�
Fa(xi)

�2

= min
a

N
∑

i=1
(xi �a)2

(5)

The problem Eq. 5 can be solved directly by the stan-
dard least squares approach, but the result of such fit-
ting is a general conic and it needs not to be an ellipse.

To ensure an ellipse-specificity of the solution, the ap-
propriate constraint Eq. 2 has to be considered. In the
Fitzgibbon’s paper it was shown that such system is
hard to solve in general. However, becauseα �a rep-
resents the same conics asa for anyα 6= 0, we have a
freedom to arbitrarily scale the coefficientsa. Under a
proper scaling, the inequality constraint Eq. 2 can be
changed into an equality constraint

4ac�b2 = 1 (6)

and the ellipse-specific fitting problem can be refor-
mulated as

min
a

kDak2 subject to aTCa= 1 (7)

where thedesign matrix D of the size N�6,

D =

0
BBBBBB@

x2
1 x1y1 y2

1 x1 y1 1
...

...
...

...
...

...
x2

i xiyi y2
i xi yi 1

...
...

...
...

...
...

x2
N xNyN y2

N xN yN 1

1
CCCCCCA

(8)

represents the least squares minimization Eq. 5 and the
constraint matrix C of the size 6�6,

C =

0
BBBBBB@

0 0 2 0 0 0
0 �1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1
CCCCCCA

(9)

express the constraint Eq. 6. The minimization prob-
lem Eq. 7 is ready to be solved by a quadratically
constrained least squares minimization as proposed
in [Gande81]. First, by applying the Lagrange mul-
tipliers we get the following conditions for the optimal
solutiona

Sa= λCa
aTCa= 1

(10)

whereS is thescatter matrix of the size 6�6,

S= DTD

=

0
BBBBBBBB@

Sx4 Sx3y Sx2y2 Sx3 Sx2y Sx2

Sx3y Sx2y2 Sxy3 Sx2y Sxy2 Sxy

Sx2y2 Sxy3 Sy4 Sxy2 Sy3 Sy2

Sx3 Sx2y Sxy2 Sx2 Sxy Sx

Sx2y Sxy2 Sy3 Sxy Sy2 Sy

Sx2 Sxy Sy2 Sx Sy S1

1
CCCCCCCCA

(11)

in which the operatorS denotes the sum

Sxayb =
N

∑
i=1

xa
i yb

i (12)



1 function a = fit_ellipse(x, y)
2 D = [x.*x x.*y y.*y x y ones(size(x))]; % design matrix
3 S = D’ * D; % scatter matrix
4 C(6, 6) = 0; C(1, 3) = 2; C(2, 2) = -1; C(3, 1) = 2; % constraint matrix
5 [gevec, geval] = eig(inv(S) * C); % solve eigensystem
6 [PosR, PosC] = find(geval > 0 & ˜isinf(geval)); % find positive eigenvalue
7 a = gevec(:, PosC); % corresponding eigenvector

Figure 1: MATLAB implementation of the direct ellipse-specific fitting algorithm proposed by Fitzgib-
bonet al. in [Fitzg96b]

Next, the system Eq. 10 is solved by using general-
ized eigenvectors. There exist up to six real solutions
(λ j;aj), but because

kDak2 = aTDTDa= aTSa= λaTCa= λ (13)

we are looking for the eigenvectorak corresponding
to the minimal positive eigenvalueλk. Finally, after a
proper scaling ensuringaT

k Cak = 1, we get a solution
of the minimization problem Eq. 7 which represents
the best-fit ellipse for the given set of points.

Based on this derivation, Fitzgibbon proposed an ef-
fective and robust algorithm for an ellipse-specific fit-
ting of data points. The algorithm was implemented in
MATLAB [Mathw] and it is available as a part of the
package [Fitzg95b]. The appropriate code is presented
in Fig. 1.

IMPROVED LEAST SQUARES
METHOD FOR FITTING ELLIPSES

Apart from its theoretical correctness, the original
Fitzgibbon’s approach described in the previous sec-
tion has several drawbacks. The matrixC (Eq. 9) is
singular and the matrixS (Eq. 11) is also nearly sin-
gular (it is singular if all data points lie exactly on an
ellipse). Regarding that, the computation of the eigen-
values of Eq. 10 is numerically unstable and can pro-
duce wrong results (as infinite or complex numbers).
It should be noted that using of an inverse as proposed
in the original code (see line 5 in Fig. 1) does not solve
this problem.

Another problematic part of the algorithm is a lo-
calization of the optimal solution of the fitting.
In [Fitzg96a] authors proved that Eq. 10 has exactly
one positive eigenvalue and they stated that the corre-
sponding eigenvector is an optimal solution of Eq. 7.
Unfortunately, this is not true. In an ideal case, when
all data points lie exactly on an ellipse, the eigenvalue
is zero. Moreover, regarding a numerical computation
of eigenvalues the optimal eigenvalue can even be a
small negative number. In such situations, the pro-
posed localization (see line 6 in Fig. 1) can produce
non-optimal or completely wrong solutions.

To overcome the drawbacks of the original approach,
we should follow on a theoretical analysis of Eq. 10.
Both matricesS (Eq. 11) andC (Eq. 9) have special
structures which allow a simplification of the problem
of finding the eigenvalues. First, we decompose the
design matrixD (Eq. 8) into its quadratic and linear
parts:

D = (D1 j D2) (14)

where

D1 =

0
BBBBBB@

x2
1 x1y1 y2

1
...

...
...

x2
i xiyi y2

i
...

...
...

x2
N xNyN y2

N

1
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(15)

and

D2 =

0
BBBBBB@

x1 y1 1
...

...
...

xi yi 1
...

...
...

xN yN 1

1
CCCCCCA

(16)

Next, the scatter matrixS (Eq. 11) can be split as fol-
lows:

S=

0
@ S1 S2

ST
2 S3

1
A where

S1 = DT
1D1

S2 = DT
1D2

S3 = DT
2D2

(17)

Similarly, the constraint matrixC (Eq. 9) can be ex-
pressed as

C =

0
@ C1 0

0 0

1
A whereC1 =

0
@

0 0 2
0 �1 0
2 0 0

1
A (18)

Finally, we split the vector of coefficientsa (Eq. 3) into

a=

0
@a1

a2

1
A wherea1 =

0
@

a
b
c

1
A anda2 =

0
@

d
e
f

1
A (19)

Based on these decompositions, the first condition



1 function a = fit_ellipse(x, y)
2 D1 = [x .ˆ 2, x .* y, y .ˆ 2]; % quadratic part of the design matrix
3 D2 = [x, y, ones(size(x))]; % linear part of the design matrix
4 S1 = D1’ * D1; % quadratic part of the scatter matrix
5 S2 = D1’ * D2; % combined part of the scatter matrix
6 S3 = D2’ * D2; % linear part of the scatter matrix
7 T = - inv(S3) * S2’; % for getting a2 from a1
8 M = S1 + S2 * T; % reduced scatter matrix
9 M = [M(3, :) ./ 2; - M(2, :); M(1, :) ./ 2]; % premultiply by inv(C1)

10 [evec, eval] = eig(M); % solve eigensystem
11 cond = 4 * evec(1, :) .* evec(3, :) - evec(2, :) .ˆ 2; % evaluate a’Ca
12 a1 = evec(:, find(cond > 0)); % eigenvector for min. pos. eigenvalue
13 a = [a1; T * a1]; % ellipse coefficients

Figure 2: MATLAB implementation of the improved ellipse-specific fitting algorithm proposed by the au-
thors

of Eq. 10 can be rewritten as
0
@ S1 S2

ST
2 S3

1
A �

0
@a1

a2

1
A= λ �

0
@ C1 0

0 0

1
A �

0
@a1

a2

1
A(20)

which is equivalent to the following two equations:

S1a1+S2a2 = λC1a1 (21)

ST
2a1+S3a2 = 0 (22)

The matrixS3,

S3 = DT
2D2 =

0
@

Sx2 Sxy Sx

Sxy Sy2 Sy

Sx Sy S1

1
A (23)

is exactly a scatter matrix of the task of a fitting a line
through a set of data points. It is known [Haral93] that
this matrix is singular only if all the points lie on a line.
In such situations there is no real solution of the task
of a fitting an ellipse through these points. In all other
cases the matrixS3 is regular. Regarding that,a2 can
be expressed from Eq. 22 as

a2 =�S�1
3 ST

2a1 (24)

Including Eq. 24 into Eq. 21 yields
�
S1�S2S�1

3 ST
2

�
a1 = λC1a1 (25)

Matrix C1 (Eq. 18) is regular, thus Eq. 25 can be
rewritten as

C�1
1

�
S1�S2S�1

3 ST
2

�
a1 = λa1 (26)

The second condition of Eq. 10 can also be reformu-
lated by using the decomposition principle. Due to the
special shape of matrixC (Eq. 18) we simply get

aT
1C1a1 = 1 (27)

Regarding all the decomposition steps (Eq. 14–27), the
conditions Eq. 10 can be finally expressed as the fol-

lowing set of equations:

Ma1 = λa1

aT
1C1a1 = 1

a2 =�S�1
3 ST

2a1

a=

0
@a1

a2

1
A

(28)

whereM is thereduced scatter matrix of the size 3�3,

M = C�1
1

�
S1�S2S�1

3 ST
2

�
(29)

Now we can return back to the task of a fitting an el-
lipse through a set of points. As we saw before, the
task can be expressed as the constrained minimization
problem (Eq. 7) whose optimal solution corresponds
to the eigenvectora of Eq. 10 which yields a minimal
non-negative valueλ. Eq. 10 is equivalent with Eq. 28,
thus it is enough to find the appropriate eigenvectora1

of the matrixM .

PRACTICAL REALIZATION OF THE
ELLIPSE SPECIFIC FITTING
ALGORITHM

The improved fitting algorithm proposed in the previ-
ous section was implemented in the same straightfor-
ward way as the original Fitzgibbon’s method. The
appropriate MATLAB code is presented in Fig. 2. In
the code, two tricks which improve numerical stabil-
ity of the computation are used. First, due to the
special structure of the matrixC1 (Eq. 9) the pre-
multiplication byC�1

1 as requested in Eq. 29 is done
directly as can be seen at line 9.

The second trick gets rid of the problem of the lo-
calization of the minimal non-negative eigenvalue of
the reduced scatter matrixM . The matrix has three
real eigenvalues, typically two negative and one posi-
tive. Unfortunately, we cannot simply find the positive
eigenvalue. WhenM is close to a singular matrix (i.e.
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Figure 3: Results of the fitting algorithm on different data sets of 20 points which represent the same el-
liptical arc of the ellipse with the center(4;3), semiaxes(4;2) and tilt 30 degrees, but with an increasing
amount of Gaussian noise added. The appropriate signal-to-noise ratio (snr) is given above each figure.
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Figure 4: Results of the fitting algorithm for data sets of 20 points which represent different elliptical arcs
of the same ellipse with the center(4;3), semiaxes(4;2) and tilt 30 degrees. The data sets are blurred by
Gaussian noise with snr 0.025. The appropriate arc section interval (in degrees) is given above each figure.

when the data points lie exactly on an ellipse), the op-
timal value can be zero or even a small negative num-
ber. Instead of the localization of such eigenvalue, we
evaluate the condition Eq. 27 for all eigenvectors of
the matrixM (line 11 in Fig. 2). It can be proven that
there exists only one eigenvector which gives a posi-
tive value — the one which corresponds to the optimal
solution of our fitting problem. That eigenvector is lo-
calized at line 12. Finally, at line 13 the rest of the
ellipse coefficients are computed and the complete so-
lution is provided.

EXPERIMENTAL RESULTS

The proposed algorithm was evaluated in many exper-
iments. Being an improvement of the original Fitzgib-
bon’s method, our approach preserves its favorable
properties such as guaranteed ellipse specific solution,

robustness against noise, and invariance of the solu-
tion to an affine transformation of the data points. In
addition, the proposed method brings numerical sta-
bility and removes ambiguity in the localization of the
optimal solution.

The properties of the fitting algorithm were verified
on synthetic data sets in the same way as was done
in [Fitzg96a]. Some results of these experiments are
presented in Fig. 3 and Fig. 4. The first experiment
(Fig. 3) illustrates the stability of the fitting algorithm
against noise. All the data sets were generated by
adding an increasing amount of Gaussian noise to syn-
thetic points which represent the same ellipse. These
noisy points were fitted by the proposed algorithm
with results shown in the figures. You can see that
even for higher noise level the fitted conic is an ellipse
with parameters conforming to the original elliptical
arc. You can also note the tendency of the algorithm to
shrink the solution with an increasing amount of noise.
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Figure 5: Diameter estimation of archaeological pottery from fragments: (a) fragment from which the diam-
eter of the original pot should be estimated in positions (a) and (b); (b) the fragment illuminated by the light
plane in the position (a); (c) result of the estimation obtained by an ellipse fitting of the detected intersection.
See the text for the description of the estimation method.

This bias is caused by the use of the algebraic distance
of points (Eq. 1) instead of the geometric one in the
minimization function Eq. 5 and cannot be simply cor-
rected [Kanat94].

The second experiment (Fig. 4) depicts the stability of
our fitting algorithm with respect to different data sets
which represent the same ellipse. Note that the fitted
ellipses have the same characteristics even if only a
limited number of noisy points (20 in our case) which
represent only a small portion of the ellipse (60 de-
grees) are available.

The proposed fitting algorithm was also tested on real
data sets. As an example let us present its application
in a method for the diameter estimation of archaeolog-
ical pottery from fragments. Having only a small part
of an original pot, we want to estimate the diameter of
the pot in some given positions. Based on an assump-
tion that the original pot is rotationally symmetric, the
task can be accomplished by an active vision method
as proposed in [Hal´ıř96]. In that method, the fragment
is manually oriented in the measurement area and illu-
minated by a light plane. The intersection of the light
plane with a surface of the fragment is observed by a
camera. If the fragment is properly oriented, the in-
tersection forms a a circular arc which can be seen as
an elliptical arc in the image. Regarding the fact that
there exists a linear relation between the diameter of
the circle and the length of the main axis of the ellipse,
the diameter of the original pot is estimated by fitting
an ellipse to the detected intersection and measuring
its main axis.

The whole estimation process is depicted in Fig. 5.
Figure (a) presents a fragment on which the estima-
tion should be performed in the positions (a) and (b).
In figure (b) we can see the fragment illuminated by

the light plane in the position (a). Note that the in-
tersection is observed as an elliptical arc. Finally, in
figure (c) the intersection is fitted by an ellipse and
the diameter of the original pot is estimated from the
length of its main axis.

From a theoretical point of view, our algorithm is lin-
ear in both time and space complexities. The im-
plementation presented in Fig. 2 requires about 5.7
floating operations per one data point1 and it can fit
250,000 points in time less than two seconds2. The
original Fitzgibbon’s code (presented in Fig. 1) re-
quires about 7.5 flops per point, thus in addition to the
improved numerical stability our code is also reason-
ably faster.

CONCLUSION

In this paper we propose a numerically stable non-
iterative algorithm for a fitting an ellipse to a set of
data points. The method is based on a reformulation of
the fitting task as an linear optimization problem with
a quadratic constraint. Such problem can be solved di-
rectly by a standard least squares minimization. This
leads to simplicity, stability and robustness of the fit-
ting.

In our approach we started with the ideas proposed by
Fitzgibbonet al. in [Fitzg96b]. The original method
guarantees an ellipse-specific solution, but due to its
bad practical realization their algorithm can produce
unoptimal or even completely wrong results. Regard-
ing that, we made further theoretical analysis of the
problem and found an alternative formulation of the
original task based on the block decomposition of ma-
trices. We also proposed a more robust method for

1measured by the commandflops in MATLAB
2MATLAB v5.0 on one-processor SPARC Ultra-1 running at
167MHz with 64MB of RAM



the localization of the optimal solution. The new al-
gorithm has no computational ambiguity and it can be
implemented in a numerically stable manner.

When compared with another methods for fitting el-
lipses, our approach has the following advantages:
simplicity, stability and robustness. The solution of the
fitting is guaranteed to be an ellipse even for a limited
number of noisy data points. This feature can play an
important role in all applications where a strictly ellip-
tical solution is required. Many other approaches can
produce a general conic such as hyperbola or parabola
instead of an ellipse, thus an additional check and re-
jection of non elliptical solutions is required in them.
Sometimes these method even cannot produce any el-
liptical fit. Using our approach, no such problems
arise.

The proposed fitting method is direct, with no iterative
steps and problems with local minima and numerical
stability of the computation. Regarding that, the whole
fitting is very fast. On the other hand, due to the use of
algebraic distances of points instead of the geometric
ones, the solutions are biased towards smaller ellipses.
The algebraic distance “prefers” the points lying inside
an ellipse, thus the algorithm tends to produce ellipses
smaller as they should be. Unfortunately, this bias de-
pends on the parameters of the fitted ellipse and cannot
be simply corrected.

Due to its systematic bias, the proposed fitting algo-
rithm cannot be used directly in applications where ex-
cellent accuracy of the fitting is required. But even in
that applications our method can be useful as a fast and
robust estimator of a good initial solution of the fitting
problem. The optimal solution is then found by ap-
plying some more sophisticated method based on ge-
ometrical distances of points. These methods are typ-
ically iterative and their behavior depends strongly on
the initial estimate. Regarding that, our method can
help even in these problems.
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