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Speeded Up Detection of Squared Fiducial Markers

Francisco J. Romero-Ramirez1, Rafael Muñoz-Salinas1,2,∗, Rafael Medina-Carnicer1,2

Abstract

Squared planar markers have become a popular method for pose estimation in applications such as autonomous robots,

unmanned vehicles or virtual trainers. The markers allow estimating the position of a monocular camera with minimal

cost, high robustness, and speed. One only needs to create markers with a regular printer, place them in the desired

environment so as to cover the working area, and then registering their location from a set of images.

Nevertheless, marker detection is a time-consuming process, especially as the image dimensions grows. Modern cameras

are able to acquire high resolutions images, but fiducial marker systems are not adapted in terms of computing speed.

This paper proposes a multi-scale strategy for speeding up marker detection in video sequences by wisely selecting the

most appropriate scale for detection, identification and corner estimation. The experiments conducted show that the

proposed approach outperforms the state-of-the-art methods without sacrificing accuracy or robustness. Our method is

up to 40 times faster than the state-of-the-art method, achieving over 1000 fps in 4K images without any parallelization.

Keywords: Fiducial Markers, Marker Mapping, SLAM.

1. Introduction1

Pose estimation is a common task for many applications2

such as autonomous robots [1, 2, 3], unmanned vehicles3

[4, 5, 6, 7, 8] and virtual assistants [9, 10, 11, 12], among4

other.5

Cameras are cheap sensors that can be effectively used6

for this task. In the ideal case, natural features such as7

keypoints or texture [13, 14, 15, 16] are be employed to8

create a map of the environment. Although some of the9

traditional problems of previous methods for this task have10

been solved in the last few years, other problems remain.11

For instance, they are subject to filter stability issues or12

significant computational requirements.13

In any case, artificial landmarks are a popular approach14

for camera pose estimation. Square fiducial markers, com-15

prised by an external squared black border and an internal16

identification code, are especially attractive because the17

camera pose can be estimated from the four corners of a18

single marker [17, 18, 19, 20]. The recent work of [21] is19
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a step forward the use of this type of markers in large- 20

scale problems. One only need to print the set of markers 21

with a regular printer, place them in the area under which 22

the camera must move, and take a set of pictures of the 23

markers. The pictures are then analyzed and the three- 24

dimensional marker locations automatically obtained. Af- 25

terward, a single image spotting a marker is enough to 26

estimate the camera pose. 27

Despite the recent advances, marker detection can be a 28

time-consuming process. Considering that the systems re- 29

quiring localization have in many cases limited resources, 30

such as mobile phones or aerial vehicles, the computational 31

effort of localization should be kept to a minimum. The 32

computing time employed in marker detection is a func- 33

tion of the image size employed: the larger the images, the 34

slower the process. On the other hand, high-resolution im- 35

ages are preferable since markers can be detected, even 36

if far from the camera, with high accuracy. The con- 37

tinuous reduction in the cost of the cameras, along with 38

the increase of their resolution, makes necessary to de- 39

velop methods able to reliably detect the markers in high- 40

resolution images. 41

The main contribution of this paper is a novel method 42

for detecting square fiducial markers in video sequences. 43

The proposed method relies on the idea that markers can 44

be detected in smaller versions of the image, and employs a 45

multi-scale approach to speed up computation while main- 46

taining the precision and accuracy. In addition, the sys- 47

tem is able to dynamically adapt its parameters in order 48
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to achieve maximum performance in the analyzed video49

sequence. Our approach has been extensively tested and50

compared with the state-of-the-art methods for marker de-51

tection. The results show that our method is more than an52

order of magnitude faster than state-of-the-art approaches53

without compromising robustness or accuracy, and with-54

out requiring any type of parallelism.55

The remainder of this paper is structured as follows.56

Section 2 explains the works most related to ours. Sec-57

tion 3 details our proposal for speeding up the detection58

of markers. Finally, Section 4 gives a exhaustive analysis59

of the proposed method and Section 5 draws some conclu-60

sions.61

2. Related works62

Fiducials marker systems are commonly used for camera63

localization and tracking when robustness, precision, and64

speed are required. In the simplest case, points are used65

as fiducial markers, such as LEDs, retroreflective spheres66

or planar dots [22, 23]. However, their main drawback is67

the need of a method to solve the assignment problem, i.e.,68

assigning a unique and consistent identifier to each element69

over time. In order to ease the problem, a common solution70

consists in adding an identifying code into each marker.71

Examples of this are planar circular markers [24, 25], 2D-72

barcodes [26, 27] and even some authors have proposed73

markers designed using evolutionary algorithms [28].74

Amongst all proposed approaches, these based on75

squared planar markers have gained popularity. These76

markers consist of an external black border and an inter-77

nal code (most often binary) that uniquely identifies each78

marker (see Fig 1). Their main advantage is that the pose79

of the camera can be estimated from a single marker.80

ARToolKit [29] is one of the pioneer proposals. They81

employed markers with a custom pattern that is identified82

by template matching. This identification method, how-83

ever, is prone to error and not very robust to illumination84

changes. In addition, the method’s sensitivity degrades85

as the number of markers increases. As a consequence,86

other authors improved that work by using binary BCH87

codes [30] (which allows a more robust error detection) and88

named it ARToolKit+ [31]. The project was halted and89

followed by the Studierstube Tracker project [32], which is90

privative. Similar to the ARToolKit+ project is the dis-91

continued project ARTag [33].92

BinARyID [34] is one of the first systems that proposed93

a method for generating customizable marker codes. In-94

stead of using a predefined set of codes, they proposed95

a method for generating the desired number of codes for96

each particular application. However, they do not consider97

the possibility of error detection and correction. AprilT- 98

ags [18], however, proposed methods for error detection 99

and correction, but their approach was not suitable for a 100

large number of markers. 101

The work ArUco [17] is probably the most popular sys- 102

tem for marker detection nowadays. It adapts to non- 103

uniform illumination, and is very robust, being able to 104

do error detection and correction of the binary codes im- 105

plemented. In addition, the authors proposed a method 106

to obtain optimal binary codes (in terms of intermarker- 107

distance) using Mixed Integer Linear Programming [35]. 108

Chilitags [36] is a variation of ArUco that employs a sim- 109

pler method for decoding the marker binary codes. As we 110

show in the experimental section, the method has a bad 111

behavior in high-resolution images. 112

The recent work [21] is a step towards the applicabil- 113

ity of such methods to large areas, proposing a method 114

for estimating the three-dimensional location of a set of 115

markers freely placed in the environment (Fig 1). Given 116

a set of images taken with a regular camera (such as a 117

mobile phone), the method automatically estimates their 118

location. This is an important step that allows extending 119

the robust localization of fiducial markers to very large 120

areas. 121

Although all fiducial marker systems aim maximum 122

speed in their design, few specific solutions have been pro- 123

posed to speed up the detection process. The work of 124

Johnston et. al. [37] is an interesting example in which 125

the authors propose a method to speed up computation by 126

parallelizing the image segmentation process. Neverthe- 127

less, both speed and computing power is a crucial aspect, 128

especially if the localization system needs to be embedded 129

in devices with limited resources. 130

Our work can be seen as an improvement of the ArUco 131

system, that according to our experience, is one of the most 132

reliable fiducial marker systems nowadays (see Sec 4 for 133

further details). We propose a novel method for marker de- 134

tection and identification that allows to speed up the com- 135

puting time in video sequences by wisely exploiting tempo- 136

ral information and an applying multi-scale approach. In 137

contrast to previous works, no parallelization is required in 138

our method, thus making it especially attractive for mobile 139

devices with limited computational resources. 140

3. Speeded up marker detection 141

This section provides a detailed explanation of the 142

method proposed for speeding up the detection of squared 143

planar markers. First, Sect. 3.1 provides an overview of 144

the pipeline employed in the previous work, ArUco [17], 145

for marker detection and identification, highlighting the 146

parts of the process susceptible to be accelerated. Then, 147
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Figure 1: Detection and identification pipeline of ArUco. (a)

Original image. (b) Image thresholded using an adaptive method.

(c) Contours extracted. (d) Filtered contours that approximate to

four-corner polygons. (e) Canonical image computed for one of the

squared contours detected. (f) Binarization after applying Otsu’s

method.

Sect. 3.2 explains the proposed method to speed up the148

process.149

3.1. Marker detection and identification in ArUco150

The main steps for marker detection and identification151

proposed in ArUco [17] are depicted in Figure 1. Given the152

input image I (Figure 1a), the following steps are taken:153

• Image segmentation (Figure 1b). Since the designed154

markers have an external black border surrounded by155

a white space, the borders can be found by segmen-156

tation. In their approach, a local adaptive method is157

employed: the mean intensity value m of each pixel158

is computed using a window size wt. The pixel is set159

to zero if its intensity is greater than m − c, where c160

is a constant value. This method is robust and ob-161

tains good results for a wide range of values of its162

parameters wt and c.163

• Contour extraction and filtering (Figures 1(c,d)). The164

contour following algorithm of Suzuki and Abe [38]165

is employed to obtain the set of contours from the166

thresholded image. Since most of the contours ex-167

tracted correspond to irrelevant background elements,168

a filtering step is required. First, contours too small169

are discarded. Second, the remaining contours are170

approximated to its most similar polygon using the171

Douglas and Peucker algorithm [39]. Those that do172

not approximate well to a four-corner convex polygon173

are discarded from further processing.174

• Marker code extraction (Figures 1(e,f)). The next175

step consists in analyzing the inner region of the re-176

maining contours to determine which of them are valid 177

markers. To do so, perspective projection is first re- 178

moved by computing the homography matrix, and the 179

resulting canonical image (Fig. 1e) is thresholded us- 180

ing the Otsu’s method [40]. The binarized image 181

(Fig. 1f) is divided into a regular grid and each ele- 182

ment is assigned a binary value according to the ma- 183

jority of the pixels in the cell. For each marker candi- 184

date, it is necessary to determine whether it belongs 185

to the set of valid markers or if it is a background el- 186

ement. Four possible identifiers are obtained for each 187

candidate, corresponding to the four possible rota- 188

tions of the canonical image. If any of the identifiers 189

belong to the set of valid markers, then it is accepted. 190

• Subpixel corner refinement. The last step consists in 191

estimating the location of the corners with subpixel 192

accuracy. To do so, the method employs a linear 193

regression of the marker’s contour pixels. In other 194

words, it estimates the lines of the marker sides em- 195

ploying all the contour pixels and computes the in- 196

tersections. This method, however, is not reliable for 197

uncalibrated cameras with small focal lenses (such as 198

fisheye cameras) since they usually exhibit high dis- 199

tortion. 200

When analyzing the computing times of this pipeline, 201

it can be observed that the Image segmentation and the 202

Marker code extraction steps are consuming most of the 203

computing time. The time employed in the image segmen- 204

tation step is proportional to the image size, that also in- 205

fluences the length of the contours extracted and thus the 206

computing time employed in the Contour extraction and 207

filtering step. The extraction of the canonical image (in 208

the Marker code extraction step) involves two operations. 209

First, computing the homography matrix, which is cheap. 210

But then, the inner region of each contour must be warped 211

to create the canonical image. This step requires access to 212

the image pixels of the contour region performing an inter- 213

polation in order to obtain the canonical image. The main 214

problem is that the time required to obtain the canonical 215

image depends on the size of the observed contour. The 216

larger a contour in the original image, the more time it is 217

required to obtain the canonical image. Moreover, since 218

most of the contours obtained do not belong to markers, 219

the system may employ a large amount of time computing 220

canonical images that will be later rejected. 221

A simpler approach to solving that problem would be to 222

directly sample a few sets of pixels from the inner region 223

of the marker. This is the method employed in ChiliTags. 224

However, as it will be shown in the experimental section, 225

it is prone to many false negatives. 226

3



Figure 2: Process pipeline Main steps for fast detection and identification of squared planar markers.(a) Original input image. (b) Resized

image for marker search. (c) Thresholded image. (d) Rectangles found (pink). (e) Markers detected with its corresponding identification.

The image pyramid is used to speed up homography computation. (f) The corners obtained in (e) are upsampled to find their location in the

original image with subpixel precision.

3.2. Proposed method227

The key ideas of our proposal in order to speed up the228

computation are explained below. First, while the adap-229

tive thresholding method employed in ArUco is robust to230

many illumination conditions without altering its param-231

eters, it is a time-consuming process that requires a con-232

volution. By taking advantage of temporal information,233

the adaptive thresholding method is replaced by a global234

thresholding approach.235

Second, instead of using the original input image, a236

smaller version is employed. This is based on the fact237

that, in most cases, the useful markers for camera pose238

estimation must have a minimum size. Imagine an image239

of dimensions 1920× 1080 pixels, in which a marker is de-240

tected as a small square with a side length of 10 pixels.241

Indeed, the estimation of the camera pose is not reliable242

at such small resolution. Thus, one might want to set a243

minimum length to the markers employed for camera pose244

estimation. For instance, let say that we only use markers245

with a minimum side length of τ̇i = 100 pixels, i.e., with a246

total area of 10.000 pixels. Another situation in which we247

can set a limit to the length of markers is when processing248

video sequences. It is clear that the length of a marker249

must be similar to its length in the previous frame.250

Now, let us also think about the size of the canonical251

images employed (Figure 1e). The smaller the image, the252

faster the detection process but the poorer the image qual-253

ity. Our experience, however, indicates that very reliable254

detection of the binary code can be obtained from very255

small canonical images, such 32×32 pixels. In other words,256

all the rectangles detected in the image, no matter their257

side length, are reduced to canonical images of side length258

τc = 32 pixels, for the purpose of identification.259

Our idea, then, is to employ a reduced version of the 260

input image, using the scale factor τc
τ̇i

, so as to speed up 261

the segmentation step. In the reduced image, the smallest 262

allowed markers, with a side length of 100 pixels in the 263

original image, appears as rectangles with a side length of 264

32 pixels. As a consequence, there will be no loss of quality 265

when they are converted into the canonical image. 266

This idea has one drawback: the location of the corners 267

extracted in the low resolution image is not as good esti- 268

mations as the ones that can be obtained in the original 269

image. Thus, the pose estimated with them will have a 270

higher error. To solve that problem, a corner upsampling 271

step is included, in which the precision of the corners is re- 272

fined up to subpixel accuracy in the original input image 273

by employing an image pyramid. 274

Finally, it must be considered that the generation of 275

the canonical image is a very time-consuming operation 276

(even if the process is done in the reduced image) that 277

proportional to the contour length. We propose a method 278

to perform the extraction of the canonical images in almost 279

constant time (independently of the contour length) by 280

wisely employing the image pyramid. 281

Below, there is a detailed explanation of the main steps 282

of the proposed method, using Figure 2 to ease the expla- 283

nation. 284

1. Image Resize: Given the input image I (Fig 2a), the

first step consists in obtaining a resized version Ir

(Fig 2b) that will be employed for segmentation. As

previously pointed out, the size of the reduced image

is calculated as:

Irw =

⌊
τc
τ̇i
Iw

⌋
; Irh =

⌊
τc
τ̇i
Ih

⌋
, (1)

where the subscripts w and h denotes width and height

4



Figure 3: Pyramidal Warping. Scene showing tree marker at

different resolutions. The left column shows the canonical images

warped from the pyramid of images. Larger markers are warped

from smaller images. For each marker, the image of the pyramid

that minimizes the warping time while preserving the resolution is

selected.

respectively. In order to decouple the desired mini-

mum marker size from the input image dimensions,

we define τ̇i as:

τ̇i = τc +max(Iw, Ih)τi | τi ∈ [0, 1], (2)

where the normalized parameter τi indicates the min-285

imum marker size as a value in the range [0, 1]. When286

τi = 0, the reduced image will be the same size as the287

original image. As τi tends to one, the image Ir be-288

comes smaller, and consequently, the computational289

time required for the following step is reduced. The290

impact of this parameter in the final speed up is mea-291

sured in the experimental section.292

2. Image Segmentation: As already indicated, a global293

threshold method is employed using the following pol-294

icy. If no markers were detected in the previous frame,295

a random threshold search is performed. The random296

process is repeated up to three times using the range297

of threshold values [10, 240]. For each tested thresh-298

old value, the whole pipeline explained below is per-299

formed. If after a number of attempts, no marker is300

found, it is assumed that no markers are visible in the301

frame. If at least one marker is detected, a histogram302

is created using the pixel values of all detected mark-303

ers. Then, Otsu’s algorithm [40] is employed to select304

the optimal threshold for the next frame. The calcu-305

lated threshold is applied to Ir in order to obtain It 306

(Fig 2c). As we show experimentally, the proposed 307

method can adapt to smooth and abrupt illumination 308

changes. 309

3. Contour Extraction and Filtering: First, contours are 310

extracted from the image It using Suzuki and Abe al- 311

gorithm [38], then small contours are removed. Since 312

the extracted contours will rarely be squared (due to 313

perspective projection), their perimeter is employed 314

for rejection purposes: those with a perimeter smaller 315

than P (τc) = 4 × τc pixels are rejected. For the re- 316

maining contours, a polygonal approximation is per- 317

formed using Douglas and Peucker algorithm [39], and 318

those that do not approximate to a convex polygon of 319

four corners are also rejected. Finally, the remaining 320

contours are the candidates to be markers (Fig 2d). 321

4. Image Pyramid Creation: An image pyramid

I = (I0, . . . , In)

with a set of resized versions of I, is created. I0 de- 322

notes the original image and the subsequent images 323

Ii are created by subsampling Ii−1 by a factor of two. 324

The number n of images in the pyramid is such that

the smallest image dimensions is close to τc× τc, i.e.,

n = argmin
v| Iv∈I

|(IvwIvh)− τ2c |. (3)

5. Marker Code Extraction: In this step the canonical 325

images of the remaining contours must be extracted 326

and then binarized. Our method uses the pyramid 327

of images I previously computed to ensure that the 328

process is performed in constant time, independently 329

of the input image and contour sizes. The key princi- 330

ple is selecting, for each contour, the image from the 331

pyramid in which the contour length is most similar 332

to the canonical image length P (τc). In this manner, 333

warping is faster. 334

Let us consider a detected contour ϑ ∈ Ir, and denote

by P (ϑ)j its perimeter in the image Ij ∈ I. Then,

the best image Ih ∈ I for homography computation

is selected as:

Ih | h = argmin
j∈{0,1,...n}

|P (ϑ)j − P (τc)|. (4)

335

The pyramidal warping method employed can be bet- 336

ter understood in Fig. 3, which shows a scene with 337

three markers at different distances. The left im- 338

ages represent the canonical images obtained while 339

the right images show the pyramid of images. In our 340

method, the canonical image of the smallest marker is 341

extracted from the largest image in the pyramid (top 342
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Figure 4: Test sequences. (a) The set of 16 markers employed for evaluation. There are four markers from each method tested: ArUco,

AprilTags, ArToolKit+ and ChiliTags. (b-e) Images from the video sequences used for testing. The markers are seen as small as in (b), and

as big as in (e), where the marker represents the 40% of the total image area.

row of Fig 3). As the length of the marker increases,343

smaller images of the pyramid are employed to obtain344

the canonical view. This guarantees that the canon-345

ical image is obtained in almost constant time using346

the minimum possible computation.347

Finally, for each canonical image, the Otsu’s method348

[40] for binarization is employed, and the inner code349

analyzed to determine whether it is a valid marker or350

not. This is a very cheap operation.351

6. Corner Upsampling: So far, markers have been de-352

tected in the image Ir. However, it is required to353

precisely localize their corners in the original image354

I. As previously indicated, the precision of the esti-355

mated camera pose is directly influenced by the pre-356

cision in the corner localization. Since the difference357

in size between the images I and Ir can be very large,358

a direct upsampling can lead to errors. Instead, we359

proceed in incremental steps looking for the corners360

in larger versions of the image Ir until the image I is361

reached.362

For the corner upsampling task, the image Ii ∈ I of363

the pyramid with the most similar size to Ir is selected364

in the first place, i.e.,365

Ii = argmin
Iv∈I

|(IvwIvh)− (IrwI
r
h)|. (5)

Then, the position of each contour corner in the image366

Ii is computed by simply upsampling the corner lo-367

cations. This is, however, an approximate estimation368

that does not precisely indicate the corner position369

in the image Ii. Thus, a corner refinement process is370

done in the vicinity of each corner so as to find its best371

location in the selected image Ii. For that purpose, 372

the method implemented in the OpenCV library [41] 373

has been employed. Once the search is done in Ii for 374

all corners, the operation is repeated for the image 375

Ii−1, until I0 is reached. In contrast to the ArUco 376

approach, this one is not affected by lens distortions. 377

7. Estimation of τi: The parameter τi has a direct influ- 378

ence in the computation time. The higher it is, the 379

faster the computation. A naive approach consists 380

in setting a fixed value for this parameter. However, 381

when processing video sequences, the parameter can 382

be automatically adjusted at the end of each frame. 383

In the first image of the sequence, the parameter τi is 384

set to zero. Thus, markers of any size are detected. 385

Then, for the next frame, τi is set to a value slightly 386

smaller than the size of the smallest marker detected 387

in the previous frame. In this way, markers could be 388

detected even if the camera moves away from them. 389

Therefore, the parameter τi can be dynamically up- 390

dated as: 391

τi = (1− τs)P (ϑs)/4 (6)

where ϑs is the marker with the smallest perimeter 392

found in the image, and τs is a factor in the range 393

(0, 1] that accounts for the camera motion speed. For 394

instance, when τs = 0.1, it means that in the next 395

frame, τi is such that markers 10% smaller than the 396

smallest marker in the current image will be sought. 397

If no markers are detected in a frame, τi is set to zero 398

so that in the next frame markers of any size can be 399

detected. 400
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Figure 5: SpeedUp of ArUco3 compared to ArUco, ArToolKit+, ChiliTags and AprilTags for resolutions: 4K (3840 × 2160), 1080p

(1920 × 1080), 720p (1280 × 720), 600p (800 × 600) and 480p (640 × 480). The horizontal axis represents the percentage of area occupied by

the markers in each frame, and the vertical axis one indicates how many times ArUco3 is faster.

As can be observed, the proposed pipeline includes a401

number of differences with respect to the original ArUco402

pipeline that allows increasing significantly the processing403

speed as we show next.404

4. Experiments and results405

This section shows the results obtained to validate the406

methodology proposed for the detection of fiducial mark-407

ers.408

First, in Sect 4.1, the computing times of our proposal409

are compared to the best alternatives found in the liter-410

ature: AprilTags [18], ChiliTags [36], ArToolKit+ [31],411

as well as ArUco [17] which is included in the OpenCV412

library3. Then, Sect. 4.2 analyses and compares the sensi-413

tivity of the proposed method with the above-mentioned414

methods. The main goal is to demonstrate that our ap-415

proach is able to reliably detect the markers with a very416

high true positive ratio, under a wide range of marker reso-417

lutions, while keeping the false positive rate to zero. After-418

ward, Sect. 4.3 studies the impact of the different system419

parameters on the speed and sensitivity, while Sect. 4.4420

evaluates the precision in the estimation of the corners.421

Finally, Sect. 4.5 shows the performance of the proposed422

method in a realistic video sequence with occlusions, illu-423

mination, and scale changes.424

To carry out the first three experiments, several videos425

have been recorded in our laboratory. Figure 4(b-e) shows426

some images of the video sequences employed. For these427

tests, a panel with a total of 16 markers was printed (Fig-428

ure 4a), four from each one of the fiducial markers em-429

ployed. The sequences were recorded at different distances430

at a frame rate of 30 fps using an Honor 5 mobile phone at431

4K resolution. The videos employed are publicly available432

4 for evaluation purposes.433

3https://opencv.org/
4https://mega.nz/#F!DnA1wIAQ!6f6owb81G0E7Sw3EfddUXQ

In the video, there are frames in which the markers ap- 434

pear as small as can be observed in Figure 4b, where 435

the area of each marker occupies only 0.5% of the image, 436

and frames in which the marker is observed as big as in 437

Figure 4e, where the marker occupies 40% of total im- 438

age area. In total, the video sequences recorded sum up 439

to 10.666 frames. The video frames have been processed 440

at different resolutions so that the impact of the image 441

resolution in the computing time can be analyzed. In par- 442

ticular, the following the standard image resolutions have 443

been employed: 4K (3840 × 2160), 1080p (1920 × 1080), 444

720p (1280× 720), 600p (800× 600) and 480p (640× 480). 445

All tests were performed using an Intel R© Core TM i7- 446

4700HQ 8-core processor with 8 GB RAM and Ubuntu 447

16.04 as the operating system. However, only one execu- 448

tion thread was employed in the tests performed. 449

It must be indicated that the code generated as part of 450

this work has been publicly released as the version 3 of the 451

popular ArUco library5. So, in the experiments section, 452

the method proposed in this paper will be referred to as 453

ArUco3. 454

4.1. Speedup 455

This section compares the computing times of the pro-

posed method with the most commonly used alternatives

AprilTags, ArToolKit+, ChiliTags, and ArUco. To do so,

we compute the speedup of our approach as the ratio be-

tween the computing time of an alternative (t1) and the

computing time of ArUco3 (t2) in processing the same im-

age:

SpeedUp = t1/t2 (7)

In our method, the value τc = 32 was employed in all the 456

sequences, while τi and the segmentation threshold where 457

automatically computed as explained in the Steps 2 and 7 458

of the proposed method (Sect. 3.2). 459

5http://www.uco.es/grupos/ava/node/25
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Table 1: Mean computing times (milliseconds) of the different steps

of the proposed method for different resolutions.
Resolution

480p 600p 720p 1080p 2160p

Step 1:Image Resize 0.037 0.050 0.057 0.068 0.101

Step 2:Image Segmentation 0.044 0.048 0.059 0.084 0.351

Step 3:Contour Extraction and Filtering 0.219 0.250 0.301 0.403 1.109

Step 4:Image Pyramid Creation 0.037 0.076 0.096 0.186 0.476

Step 5:Marker code extraction 0.510 0.519 0.542 0.547 0.583

Step 6:Corner Upsampling 0.058 0.065 0.079 0.096 0.134

Time (ms) 0.903 1.009 1.133 1.384 2.755

Fig. 5 shows the speedup of our approach for different460

image resolutions. The horizontal axis represents the rel-461

ative area occupied by the marker in the image, while the462

vertical axis represents the speedup. A total of 30 speed463

measurements were performed for each image, taking the464

median computing time for our evaluation. In the tests,465

the speedup is evaluated as a function of the observed466

marker area in order to better understand the behavior467

of our approach.468

The tests conducted clearly show that the proposed469

method (ArUco3) is faster than the rest of the methods470

and that the speedup increases with the image resolu-471

tion and with the observed marker area. Compared to472

ArUco implementation in the OpenCV library, the pro-473

posed method is significantly faster, achieving a minimum474

speedup of 17 in 4K resolutions, up to 40 in the best case.475

In order to properly analyze the computing times of the476

different steps of the proposed method (Sect. 3.2), Table 1477

shows a summary for different image resolutions. Likewise,478

Fig. 6 shows the percentage of the total time required by479

each step. Please notice that Step 7 (Eq. 6) has been480

omitted because its computing time is negligible.481

As can be seen, the two most time-consuming opera-482

tions are Step 3 and 5. In particular, Step 5 requires spe-483

cial attention, since it proves the validity of the multi-scale484

method proposed for marker warping. It can be observed485

in the table, that the amount of time employed by Step 5486

is constant across all resolutions. In other words, the com-487

puting time does not increase significantly with the image488

resolution. Also notice how the time of Step 3 increases489

in 2160p. It is because this step involves operations that490

depend on the image dimensions, which grow quadrati-491

cally. An interesting future work is to develop methods492

reducing the time for contour extraction and filtering in493

high-resolution images.494

In any case, considering the average total computing495

time, the proposed method achieves in average more than496

360 fps in 4K resolutions and more than 1000 fps in the497

lowest resolution, without any parallelism.498

Figure 6: Main steps ArUco3 times. Percentage of time of the

global computation required by each of the steps for resolutions: 4K,

1080p, 720p, 600p and 480p.

4.2. Sensitivity analysis 499

Correct detection of markers is a critical aspect that 500

must be analyzed to verify that the proposed algorithm is 501

able to obviate redundant information present in the scene, 502

extracting exclusively marker information. Fig. 7 shows 503

the True Positive Rate (TPR) of the proposed method as 504

a function of the area occupied by the marker in the image 505

for different image resolutions. 506

As can be observed, below certain marker area, the de- 507

tection is not reliable. This is because the observed marker 508

area is very small, making it difficult to distinguish the 509

different bits of the inner binary code. Once the observed 510

area of the marker reaches a certain limit, the proposed 511

method achieves perfect detection in all resolutions. It 512

must be remarked, that the False Positive Rate is zero in 513

all cases tested. Since it is a binary problem, the True 514

Negative Rate is one (TNR=1-FPR). 515

For a comparative evaluation performance between 516

ArUco3 and the other methods, the TPR has been an- 517

alyzed individually and the results are shown in Fig. 7. 518

As can be observed, ArUco behaves exactly like ArUco3. 519

AprilTags, however, has very poor behavior in all resolu- 520

tions, especially as the marker or the image sizes increases. 521

As we already commented in Sect. 2, AprilTags does not 522

rely on warping the marker image but instead does a sub- 523

sampling of a few pixels on the image in order to obtain 524

the binary code. This may be one of the reasons for its 525

poor performance. ArToolKit+ behaves reasonably well 526

across all the image resolutions and marker areas, while 527

Chilitags shows a somewhat unreliable behavior in all res- 528

olutions but 480p. 529

In conclusion, the proposed approach behaves similar to 530

the previous version of ArUco. 531
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Figure 7: True Positive Ratio. Mean true positive ratio (TPR) for ArUco3, Chilitags, ArUco, ArToolKit+ and AprilTags for resolutions:

4K, 1080p, 720p, 600p and 480p), as function of the observed area for the set of markers.

4.3. Analysis of parameters532

The computing time and robustness of the proposed533

method depend mainly on two parameters, namely τi534

which indicates the minimum size of the markers detected,535

and τc, the size of the canonical image.536

The parameter τi has an influence on the computing537

time, since it determines the size of the resized image Ir538

(Eq. 1). We have analyzed the speed as a function of539

this parameter and the results are shown in Fig. 8. The540

figure represents the horizontal axis the value τi, and in the541

vertical axis, the average speed (measured as frames per542

second) in the sequences analyzed, independently of the543

observed marker area. A different line has been depicted544

for each image resolution. In this case, we have set fixed545

the parameter τc = 32.546

It can be observed that the curves follow a similar pat-547

tern in the five cases analyzed. In general, the maxi-548

mum increase in speed is obtained in the range of values549

τi = (0, 0.2). Beyond that point, the improvement be-550

comes marginal. To better understand the impact of this551

parameter, Table 2 shows the reduction of the input im-552

age size I for different values of τi. For instance, when553

τi = 0.02, the resized image Ir is 48% smaller than the554

original input image I (see Eq. 1). Beyond τi = 0.2, the555

resized image is so small that it has not a big impact in the556

speedup because there are other steps with a fixed com-557

puting time such as the Step 5 (Marker Code Extraction). 558

Table 2: Image size reduction for different values of τi.

τi 0.01 0.015 0.02 0.1 0.2

Size reduction 0% 31% 48% 82% 90%

In any case, it must be noticed that the proposed 559

method is able to achieve 1000 fps in 4K resolutions when 560

detecting markers larger than 10% (τi = 0.1) of the image 561

area, and the same limit of 1000 fps is achieved for 1080p 562

resolutions for τi = 0.05. 563

With regards to the parameter τc, it indirectly influences 564

the speed since it determines the size of the resized images 565

(Eq 1). The smaller it is, the smaller the resized image Ir. 566

Nevertheless, this parameter also has an influence on the 567

correct detection of the markers. The parameter indicates 568

the size of the canonical images used to identify the bi- 569

nary code of markers. If the canonical image is very small, 570

pixels are mixed up, and identification is not robust. Con- 571

sequently, the goal is to determine the minimum value of 572

τc that achieves the best TPR. Fig. 9 shows the TPR ob- 573

tained for different configurations of the parameter τc. As 574

can be seen, for low values of the parameter τc (between 575

8 and 32) the system shows problems in the detection of 576

markers. However, for τc ≥ 32 there is no improvement in 577

the TPR. Thus, we conclude that the value τc = 32 is the 578
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Figure 8: Parameter τi. Speed of

method as a function of the parameter τi
for the different resolutions tested.

Figure 9: Parameter τc. True positive

rate obtained by different configurations of

parameter τc

Figure 10: Vertex jitter measured for

the different marker systems.

best choice.579

4.4. Precision of corner detection580

An important aspect to consider in the detection of the581

markers is vertex jitter, which refers to the noise in the582

estimation of the corners’ location. These errors are prob-583

lematic because they propagate to the estimation of the584

camera pose. In our method, a corner upsampling step585

(Step 6 in Sect. 3.2) is proposed to refine the corners’ esti-586

mations from the reduced image Ir to the original image587

I. This section analyzes the proposed method comparing588

the results with the other marker systems.589

In order to perform the experiments, the camera has590

been placed at a fixed position recording the set of mark-591

ers already presented in Fig. 4a. Since the camera is not592

moving, the average location estimated for each corner can593

be considered to be the correct one (i.e., a Gaussian error594

distribution is assumed). Then, the standard deviation is595

an error measure for the localization of the corners. The596

process has been repeated a total of six times at varying597

distances and the results obtained are shown in Fig. 10 as598

box plots. In Table 3, the average error of each method599

has been indicated.

Table 3: Vertex jitter analysis: Standard deviations of the different

methods in estimating the marker corners.
Method ArUco ArUco3 Chilitags AprilTags ArToolKit+

Average error (pix) 0.140 0.161 0.174 0.225 0.432

600

As can be observed, the ArUco system obtains the best601

results, followed by our proposal ArUco3. However, it can602

be seen that the difference between both methods is of603

only 0.02 pixels, which is very small to consider it rele-604

vant. Chilitags shows a similar behavior than ArUco and605

ArUco3, but AprilTags and ArToolKit+ exhibit worse per-606

formance.607

4.5. Video sequence analysis 608

This section aims at showing the behavior of the pro- 609

posed system in a realistic scenario. For that purpose, four 610

markers have been placed in an environment with irregular 611

lighting and a video sequence has been recorded using a 612

4K mobile phone camera. Figure 11(a-e) show the frames 613

1, 665, 1300, 1700 and 2100 of the video sequence. At the 614

start of the sequence, the camera is around five meters 615

away from the markers. The camera approaches the mark- 616

ers and then moves away again. As can be seen, around 617

frame 650 (Figure 11b), the user occludes the markers tem- 618

porarily. 619

Figure 11f shows the values of the parameter τi auto- 620

matically calculated along the sequence and Figure 11g 621

the processing speed. As can be observed, the system is 622

able to automatically adapt the value of τi according to the 623

observed marker area, thus adapting the computing speed 624

of the system. The maximum speed is obtained around 625

the frame 1300 when the camera is closest to the markers. 626

It can also be observed that around frame 650 when 627

the user occludes the markers with his hand, the system is 628

unable to detect any marker. Thus, the system searches for 629

the full resolution image (τi = 0) and the speed decreases. 630

However, when the markers are observed again, the system 631

recovers its speed. 632

Finally, Figure 11h shows the threshold values employed 633

for segmentation in each frame. As can be seen, the system 634

adapts to the illumination changes. Along the sequence, 635

the system does not produce any false negative nor posi- 636

tives. 637

5. Conclusions and future work 638

This paper has proposed a novel approach for detect- 639

ing fiducial markers aimed at maximizing speed while pre- 640

serving accuracy and robustness. The proposed method 641

10



Figure 11: Video Sequence in a realistic scenario. (a-e) Frames of the video sequence. The camera approaches the marker and then moves

away. The user occludes the camera temporarily. (f) Evolution of the parameter τi automatically computed. (g) Speed of the proposed

method in each frame of the sequence. (h) Thresholds automatically computed for each frame. The system adapts to illumination changes.

is specially designed to take advantage of the increasing642

camera resolutions available nowadays. Instead of detect-643

ing markers in the original image, a smaller version of the644

image is employed, in which the detection can be done645

at higher speed. By wisely employing a multi-scale image646

representation, the proposed method is able to find the po-647

sition of the marker corners with subpixel accuracy in the648

original image. The size of the processed image, as well649

as the threshold employed for segmentation, are dynam-650

ically adapted in each frame considering the information651

of the previous one. As a consequence, the system speed652

dynamically adapts in order to achieve the maximum per-653

formance.654

As shown experimentally, the proposed method outper-655

forms the state-of-the-art systems in terms of computing656

speed, without compromising the sensitivity or the preci-657

sion. Our method is between 17 and 40 times faster than658

the ArUco approach implemented in the OpenCV library.659

When compared to other approaches such as Chilitags,660

AprilTags, and ArToolKit+, our method achieves even661

higher speedups. 662

We consider as possible future works to investigate the 663

use of the proposed method in fish-eye cameras. The idea 664

is to compare the method with the rectified images if there 665

is analyze the method’s performance in presence of high 666

distortion. Also, we as well as to characterize the perfor- 667

mance when multiple fiducial markers with significantly 668

different scales are present in the same image. 669

Our system, which is publicly available as open source 670

code6, is a cost-effective tool for fast and precise self- 671

localization in applications such as robotics, unmanned 672

vehicles or augmented reality applications. 673
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[6] D. González, J. Pérez, V. Milanés, Parametric-based path gen-699

eration for automated vehicles at roundabouts, Expert Systems700

with Applications 71 (2017) 332 – 341.701

[7] J. L. Sanchez-Lopez, J. Pestana, P. de la Puente, P. Campoy, A702

reliable open-source system architecture for the fast designing703

and prototyping of autonomous multi-uav systems: Simulation704

and experimentation, Journal of Intelligent & Robotic Systems705

(2015) 1–19.706

[8] M. Olivares-Mendez, S. Kannan, H. Voos, Vision based fuzzy707

control autonomous landing with uavs: From v-rep to real708

experiments, in: Control and Automation (MED), 2015 23th709

Mediterranean Conference on, 2015, pp. 14–21.710

[9] S. Pflugi, R. Vasireddy, T. Lerch, T. M. Ecker, M. Tannast,711

N. Boemke, K. Siebenrock, G. Zheng, Augmented marker track-712

ing for peri-acetabular osteotomy surgery, in: 2017 39th Annual713

International Conference of the IEEE Engineering in Medicine714

and Biology Society (EMBC), 2017, pp. 937–941.715

[10] J. P. Lima, R. Roberto, F. Simões, M. Almeida, L. Figueiredo,716

J. M. Teixeira, V. Teichrieb, Markerless tracking system for717

augmented reality in the automotive industry, Expert Systems718

with Applications 82 (2017) 100 – 114.719

[11] P. Chen, Z. Peng, D. Li, L. Yang, An improved augmented re-720

ality system based on andar, Journal of Visual Communication721

and Image Representation 37 (2016) 63 – 69, weakly supervised722

learning and its applications.723

[12] S. Khattak, B. Cowan, I. Chepurna, A. Hogue, A real-time724

reconstructed 3d environment augmented with virtual objects725

rendered with correct occlusion, in: Games Media Entertain-726

ment (GEM), 2014 IEEE, 2014, pp. 1–8.727
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