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ABSTRACT Squared fiducial markers are a powerful tool for camera pose estimation in applications such as
robots, unmanned vehicles and augmented reality. The four corners of a single marker are enough to estimate
the pose of a calibrated camera. However, they have some limitations. First, the methods proposed for
detection are ineffective under occlusion. A small occlusion in any part of the marker makes it undetectable.
Second, the range at which they can be detected is limited by their size. Very big markers can be detected
from a far distance, but as the camera approaches them, they are not fully visible, and thus they can not be
detected. Small markers, however, can not be detected from large distances. This paper proposes solutions
to the above-mentioned problems. We propose the Fractal Marker, a novel type of marker that is built as an
aggregation of squared markers, one into another, in a recursive manner. Also, we proposed a novel method
for detecting Fractal Markers under severe occlusions. The results of our experiments show that the proposed
method achieves a wider detection range than traditional markers and great robustness to occlusion.

INDEX TERMS Fiducial markers, marker mapping, pose estimation.

I. INTRODUCTION
Camera pose estimation is a common problem in many
applications. Solutions using natural features have attracted
most of the research effort, reaching a high degree of per-
formance [1], [2]. Nevertheless, they have several limitations
in some realistic scenarios. First, when using a single camera,
the obtained pose is not on the real scale. Second, they require
a certain amount of texture, which in some indoor environ-
ments is not available (e.g., labs and corridors). Third, their
detection and identification can be very time-consuming.

In some use cases, it is possible to place artificial land-
marks to ease the pose estimation task and to solve the above-
mentioned problems. In particular, squared fiducial markers
have become very popular for that purpose [3]–[7]. They are
composed by an external black border, that can be easily
detected in the environment, and a inner binary pattern that
uniquely identify them (see Fig 1d). Their main advantages
are three. First the camera pose can be obtained in the correct
scale by using only its four external corners. Second, their
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detection is extremely fast using low CPU usage [8]. Finally,
their detection is robust to light and perspective transforms.

For these reasons, their use has spread in a wide variety
of fields, such as surgery [9]–[11], distributed autonomous
3D printing [12], human-robot interaction [13], autonomous
aerial vehicle landing [14], [15], patient positioning in radio-
therapy treatments [16], study animal behaviour [17], human
cognitive processes [18], 3D body scanning [19], [20], robotic
grasping [21], underwater manipulation [22], etc.

Despite the many advantages of fiducial markers, their
use in pose estimation has three main drawbacks. First, due
to the fixed size of the marker, there is an intrinsic limita-
tion in the range of possible distances at which it can be
detected. We call this the resolution problem and is shown
in Fig. 1(a-c). The second problem is the occlusion problem.
Most marker detection methods are incapable of dealing
with occlusions and those that deal with it are very slow
(see Fig. 1d). Third, estimating the camera pose using only
the four most external corners discard important information
about the inner marker structure that can be exploited to
improve the precision of the pose [23]. This is the rationale
behind another kind of planar structured markers, such as the
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FIGURE 1. Common problems of squared markers: the resolution problem (a-c) and the occlusion problem (d). Fig. (a-c) show a squared marker observed
at the distances 250 cm, 80 cm and 25 cm from the camera and overlaid as red rectangles the ArUco [4] detections (only works in the first case). Under
the same conditions, Fig. (e-g) show the results of our proposal, the Fractal Marker, overlaying in red color the inner marker corners detected. Fig. (d,h)
show the results in case of occlusion of both methods. As can be seen, Fractal Markers can be detected in more cases than regular squared markers.

chessboards patterns commonly used for calibration tasks in
popular tools such as OpenCV [24].

This paper proposes a novel type of marker, the Fractal
Marker (Fig. 1f), designed as the composition of squared
fiducial markers of different sizes, one into another. As shown
in Fig. 1(e-g), the proposed Fractal Marker can be detected
from a wider range of distances than a single marker. Also,
it alleviates the partial occlusion problem, since the pose
can be estimated from any marker even if the most external
one is occluded (Fig. 1(g,h)). Nevertheless, in order to be
fully robust against occlusion, the second contribution of this
paper is a novel method for marker tracking able to find the
marker (and estimate the pose) by detecting and classifying
its inner corners. Therefore, our method is not only capable
of detecting the marker in case of occlusion, but it is also able
to estimate the pose more precisely by taking advantage of all
the corner information available into the marker.

As our experiments show, our approach achieves a wider
detection range than traditional markers and high robustness
to occlusion, while adding little computational cost. The pro-
posed method is a step forward for the use of fiducial markers
that allow expanding their use to applications where only a
partial view of the marker is expected, or it must be detected
from a wide range of distances, such as augmented reality
applications where interaction causes frequent occlusion of
the marker, or drone landing tasks where the marker must be
detected at a very large range of distances.

The remainder of this work is organized as follow.
Section II reviews the related works, while Section III
explains the design of Fractal Markers and Section IV
describes the proposed method for pose estimation using
them. Finally, Section V shows the experimentation carried
out and Section VI draws some conclusions.

II. RELATED WORKS
As previously indicated, fiducial markers are a very popular
method for pose estimation, and several approaches have
been proposed. ARToolKit [25] is one of the first square-
based fiducial markers systems. It is composed by a set of
valid image patterns inside a wide black square. Despite
its success, it presents several limitations. Their matching
method presents both high false positive rates and inter-
marker confusion rates. ARToolKit Plus [26] tries to solve
its deficiencies by employing a binary BCH code [27] that
provides a robust detection and correction. Nevertheless,
the project was finally halted and followed by Studierstube
project [28].

BinARyID [29] uses a method to generate customizable
binary-coded markers instead of using a pre-defined dataset.
However, the system does not consider possible errors in
the detection and correction. Nevertheless, these aspects are
considered by AprilTags [5] which introduces methods for
correction.

ArUco [4] proposes a robust method for markers detection.
It uses an adaptive thresholding method which is robust to
different illumination conditions and performs error detection
and correction of the binary codes implemented. Also, ArUco
presents a method to generate markers that maximizes the
inter-marker distance and the number of bit transitions, using
Mixed Integer Linear Programming [30].

A recent work [8] introduces improvements allowing to
speed up the computing time in video sequences by wisely
exploiting temporal information and an applying a multiscale
approach.

Despite the significant advances achieved so far, fiducial
markers have some limitations. First, if the marker is partially
occluded, pose estimation cannot be done. Second, the fixed
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size of the marker makes it impossible to detect them under a
wide range of distances.

Some authors have proposed alternatives to overcome the
above problems. TheArUco library partially solves the occlu-
sion problem by using multiple markers creating what they
call board. A board is a pattern composed ofmultiplemarkers
and all of them referred to the same reference system.

On the other hand, ARTag [3] handles the partial occlusion
using an edge based method. Edge pixels are thresholded and
connected in segments, which are grouped into sets and used
to create a mapping homography. Nevertheless, markers can
not be detected when more than one edge is occluded and
their is very slow.

Another approach to alleviate the occlusion problem is
proposed by Alvarez et al. [31]. The authors propose a type of
markers with textured and coloured borders. The system has a
database of descriptors of the patterns, which are used in case
of occlusion. Their approach have several limitations though.
First, marker generation is a complex process requiring an
offline process to create a database of SIFT keypoint descrip-
tors. Second, they do not deal with the problem of detecting
the marker under a wide range of distances.

Another very popular library is Apriltag3 [32], which intro-
duces a new configurable marker concept that allows employ-
ing recursive patterns. Although in theory their system could
be adapted to solve the same problems we are solving in this
paper, they do not show deal with them in their publication.

Finally, HArCo [33] is the work most the related to ours.
The authors propose a new hierarchical marker structure.
Assuming that small pixel changes in the cells of a tradi-
tional marker do not change the detection and identification
of markers, white cells are replaced by new layers of sub-
markers. HArCo system uses the same methodology pro-
posed by ArUco for the individualized detection of the mark-
ers that compose the hierarchical marker, and the final pose
estimation is given by the mean of the positions provided by
all the markers correctly detected. Unfortunately the HArCo
system is not available for public use and consequently it is
not possible to compare against it.

This work proposes the Fractal Marker as an alternative
to overcome the occlusion and resolution problems. Multiple
markers are used sharing the same reference point. Unlike
the marker board where the markers are displaced at different
distances from the common center, our method proposes
that there is no displacement. For this it is necessary to use
markers of different sizes that can be configured, giving the
appearance of a recursive marker.

III. FRACTAL MARKER DESIGN
Let us define a FractalMarkerF as a set ofm squaredmarkers
(f 1, f 2, . . . , f m), placed one into the another in a recur-
sive manner (see Fig. 2). In a Fractal Marker, each squared
marker f i is comprised by an external black border (for fast
detection), a region reserved for bit identification (shown in
grey), and a white region surrounding its inner marker f i+1.
This white band is necessary to ease the detection of the

FIGURE 2. Generic structure of Fractal Marker F , in which each marker is
composed of a set of cells that can be grouped into three categories. The
black band correspond to the marker border, the gray cells configure and
uniquely determine the marker, and finally, the white band facilitate the
detection of the inner marker.

inner marker black border. This section explains the proposed
design to generate Fractal Markers.

Let denote s(f i), n(f i) and k(f i) the length side of the black
region, the identification region (shown in gray) and the white
region, respectively, shown Fig. 2, for a squared marker f i.
There is an exception for the most internal marker f m. In this
case, the white region will not be necessary because no
marker will be placed inside it, i.e., k(f m) = 0. Notice that
these values are calculatedwith regard to the reference system
with origin in the bottom left external corner of the internal
marker f i.

Formally speaking, the only restrictions for the values of
s(f i), n(f i) and k(f i) are:

s(f i+1) < k(f i)∀i 6= m,

and

k(f i) < n(f i) < s(f i)∀i.

Each marker f i can have a different number of bits for
region identification depending on the area of its identifica-
tion region (of length n(f i)). Please notice that the number of
bits in the identification region of f i is less than in a traditional
squared fiducial marker.

Then, the size of region codification of internal markers
f i, i ∈ {1, . . . ,m} is (see Fig. 2):

SR(f i) = n(f i)2 − k(f i)2. (1)

Fig. 3 shows two different possible combinations of inter-
nal markers for a Fractal Marker. Fig. 3a shows a Fractal
Marker composed of two internal markers s(f 1) = 12,
n(f 1) = 10, k(f 1) = 6, SR(f 1) = 64 and s(f 2) = 8,
n(f 2) = 6, k(f 2) = 0, SR(f 2) = 36. In Fig. 3b, the Fractal
Marker is composed of three internal markers s(f 1) = 10,
n(f 1) = 8, k(f 1) = 6, SR(f 1) = 28; s(f 2) = 8, n(f 2) = 6,
k(f 2) = 4, SR(f 2) = 20 and s(f 3) = 4, n(f 3) = 2, k(f 3) = 0,
SR(f 3) = 4.
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FIGURE 3. Examples of different configurations of Fractal Marker and
areas of identification region SR (f i ). (a) Fractal Marker composed of two
internal markers F = {f 1, f 2}, whose identification areas are SR (f 1) = 64
and SR (f 2) = 36. (b) Fractal Marker composed of three internal markers
F = {f 1, f 2, f 3}, whose identification areas are SR (f 1) = 28, SR (f 2) = 20,
SR (f 3) = 4.

FIGURE 4. Fractal Marker composed of two internal markers. The inner
corners of marker f 1 and f 2 are shown in red and in green respectively.

The selected configuration depends on the needs of
the application. The more internal markers are employed,
the larger the operating range of the Fractal Marker.

Let us denote

bits(f i) = (bi1, . . . b
i
j, . . . b

i
SR(f i)

), (2)

where bij ∈ {0, 1}, ∀j = 1, . . . , SR(f i), to the information
bits of marker f i. Notice that the bit sequence is created
row by row starting from the top-left bit (see Fig.5). The
inner bits of a Fractal Marker are randomly generated using
a Bernoulli distribution (i.e., bij ∼ Be(1/2)). However, not
any configuration randomly obtained can be considered valid
because some of them are identical under rotation. To avoid
that, a randomly generated marker is considered valid when
the Hamming distance in its three possible rotations is greater

than zero, i.e.:

H (bits(f i), bits(Rj(f i))) > 0, ∀j ∈ {
π

2
, π,

3π
2
}, (3)

where H is the Hamming distance between two markers,
and Rj is a function that rotates the marker matrix f i in the
clockwise direction a total of j degrees (see Fig. 5). If Eq 3 is
not fulfilled, then the marker f i is not valid and the process
of randomly selecting bits is repeated until a valid marker f i

is obtained. A Fractal Marker F is valid when all inner
markers f i are valid.
Marker detection and pose estimation is based on detecting

and analyzing the projection the marker corners in the image.
Let us denote the three-dimensional coordinates of the four
external corners of f i as w.r.t. the marker center as:

ci1 = (s(f i)/2,−s(f i)/2, 0)
ci2 = (s(f i)/2, s(f i)/2, 0)
ci3 = (−s(f i)/2, s(f i)/2, 0)
ci4 = (−s(f i)/2,−s(f i)/2, 0) (4)

We are assumming that the marker is printed on a planar
surface, thus, the third component is zero for all the corners.

In addition to four external corners cij ∈ R3 (Eq. 4) of each
marker f i, there is a set of internal corners (see Fig. 4) that can
be wisely employed for marker tracking in case of occlusion,
and also refine the pose.

Let us denote as W i the set of internal corners of marker
f i ∈ F :

W i
= (wi1, . . . ,w

i
n),w

i
j ∈ R3

where wij are the three-dimentional coordinates as w.r.t. the
marker center. Fig. 4 shows an example of a Fractal Marker
composed by two markers f 1 and f 2 where their internal
corners have been depicted as red and green coloured circles,
respectively. Please notice that four external corners of mark-
ers are not included as internal corners for any marker.
Finally, let us denote

Ci = {{W i
}, ci1, c

i
2, c

i
3, c

i
4},

to the set of internal and most external corners of each marker
f i ∈ F , and

C(F) = {{Ci}/f i ∈ F}

to the set of all the marker corners of a Fractal Marker F .

FIGURE 5. Four possible rotations of a marker f i .
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FIGURE 6. General workflow of proposed method for marker pose
estimation.

IV. FRACTAL MARKER DETECTION
This section explains the proposed method for detecting and
tracking Fractal Markers under occlusion. Fig. 6 depicts the
workflow of our method. The first step of the process is
to detect markers (Section IV-A). If at least one marker is
detected, the detected corners are used to obtain an initial esti-
mation of the marker pose (Section IV-B), which is employed
to project the expected location of the Fractal Marker
corners C(F) in the image. The projected locations are used as
the starting point for a refinement process to accurately find
their location in the image. The whole set of refined corners
and then used to compute again the marker pose, which now
contains more points and thus obtains a more precise location
(Section IV-C).
If no makers are detected in the initial step, our method

aims at detecting the marker location using the previous
detection as the starting point. To do so, the FAST [34]
corner detector is employed to extract all the relevant corners
in the image. The corners are then classified into the three
categories(explained in Sect. IV-D). Then, a novel method for
matching the observed corners with the marker corners C(F)
using the RANSAC algorithm is employed. As a result, our
method is able to obtain an initial marker pose. At this point,
this branch of the workflow merges to the other one in the
‘‘corner projection’’ step, in order to obtain a refined marker
pose (Section IV-D).
This section provides a detailed explanation of the different

steps involved in the process.

A. MARKERS DETECTION
The first step of the process is trying to detect the markers f i

that compose the Fractal Marker. This process is the same
employed in [4] and is only able to extract the most external
corners cij of a marker f i. To do so, the following steps are
employed :

1) IMAGE SEGMENTATION
A Fractal Marker is composed of several squared-based
markers which have a black border surrounded by a white
space that facilitates its detection. The method uses a local
adaptive threshold which makes a robust detection regardless
of light conditions (Fig. 7b).

2) CONTOUR EXTRACTION AND FILTERING
Contour extraction of each internal marker is performed by
Suzuki and Abe [35] algorithm. It provides a set of contours,

FIGURE 7. Detection and identification of Fractal Markers. (a) Original
image. (b) Thresholded image showing the result of contour extraction
and filtering. (c and e) Canonical images of rectangular contours
containing our markers. (d and f) Binarized versions of the canonical
images.

many of which correspond to unwanted objects. A filter-
ing process is carried out using Douglas and Peucker algo-
rithm [36] which selects only the ones most similar to a
polygon (Fig. 7b).

3) MARKER CODE EXTRACTION
The next step consists in analyzing the inner region of the
remaining contours to determine which of them are valid
markers. First, it is necessary to remove perspective pro-
jection (using a homography transform) and subsequently
thresholded using Otsu’s method [37]. The resulting image
is divided into a regular grid and each element is assigned
the value 0 or 1 depending on the values of the majority of
pixels (Fig. 7(c-f)) Finally, it is necessary to compare the
candidate marker with a set of valid markers. Four possible
comparisons of each candidate are made, corresponding to
the four possible orientations.

As a result of the process, an initial set of external marker
corners C′ belonging to the external black borders is obtained.
An initial pose can be obtained from them as explained later
in Section IV-B.

B. MARKER POSE ESTIMATION
Let us define the pose of a marker θ ∈ R6 by its three
rotational and translational components r = (rx , ry, rz) and
t = (tx , ty, tz):

θ = (r, t) | r, t ∈ R3 (5)

Using Rodrigues’ rotation formula, the rotation matrix R can
be obtained from r .
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FIGURE 8. (a) Detection of markers and external corners in original image. (b) Initial estimation of the position using external corners of the detected
markers. (c) Refinement of the pose estimation: the green points represent the estimate of the previous step (b), in red the new estimation.

A point p ∈ R3 projects into the camera plane into a pixel
u ∈ R2. Assuming that the camera parameters are known,
the projection can be obtained as a function:

u = 9(δ, θ, p), (6)

where

δ = (fx , fy, cx , cy, k1, . . . , kn),

refers to the camera intrinsic parameters, comprised by the
focal distances (fx , fy), optical center (cx , cy) and distortion
parameters (k1, . . . , kn) [24].
Then, marker pose estimation is the problem ofminimizing

the reprojection error of the observed marker corners:

θ̂ = argmin
θ

∑
p∈D

[9(δ, θ, p)− O(p)]2 (7)

where O(p) ∈ R2 is the observed position in the camera
image of corner p ∈ D. The corner set D can have any type
of corners ( i.e., external and internal corners).

When all the points lay in the same plane, it is a special
case that can be solved using specific methods such as the
Infinitesimal Plane-Based Pose Estimation (IPPE) [38].

C. CORNER PROJECTION AND REFINEMENT
Once an initial estimation of the marker pose is obtained
from a reduced set of corners C′, it is possible to find all
the visible corners and use them to refine the pose even
further. To do so, first, all the marker in C(F) are pro-
jected (Eq. 6) on the camera image. Then their location is
refined up to subpixel accuracy. Finally, the refined corner
locations are employed then to obtain a refined pose using
again Eq. 7.

Subpixel corner refinement consists in analyzing a small
squared region of length smin around the corner location to
find the maxima of the derivative within the region. In smaller
images, the region of analysis becomes smaller and thus the
computing time is greatly reduced. Consequently, the corner
refinement process is done as a multiscale process using an
image pyramid of the original image. We start by finding,
for each corner, the smaller image of the pyramid at which
the corner can be first refined. After an initial refinement, its

location is refined again in the next (and larger) image of the
pyramid. The process is repeated until the corner is finally
refined in the original image.

Let us denote I = (I0, I2, . . . , Ip) as the image pyramid,
where I0 is the original image, which is scaled using a scale
factor of two. For each marker, we select the initial image in
the pyramid I j ∈ I for refinement as:

I j = argmin
I i∈I

|P(f )− τ (f )2| (8)

where P(f ) is the projected area of the marker f in the
image I i and τ (f ) the optimum marker length for refinement.
Please notice that in order to refine the corners, there must
be a minimum separation of smin pixels between them. Thus,
we define τ (f ) = smin×s(f ). For instance, if smin = 10, for a
marker f such that s(f ) = 12, then we have that τ (f ) = 120.
Finally, let us point out that if a marker looks very small in
the original image I0 (i.e., P(f ) < τ (f )), its corners are not
refined neither used for pose estimation.

Fig. 8 shows the result of the proposed method. In Fig. 8a
we show an input image where the two internal mark-
ers (shown in green) have been detected using the method
described in Section IV-A. Fig. 8b shows the projected inner
corners after the first pose estimation. Finally, Fig. 8c shows
in red the refined corner locations with the proposed method.
As can be observed, the initially projected corners (green)
are not as precisely located as the refined ones. The refined
corners are employed later to obtain amore precise estimation
of the marker pose.

The corner refinement process must also consider the pos-
sibility of occlusion, i.e., the refinement process cannot be
done for markers that are occluded in the image. In order
to account for that possibility, a couple of conditions are
analyzed for each corner during the refinement process. First,
it is analyzed if the region around the corner has low contrast.
Since we are dealing with black and white markers, we can
expect a corner to be in a region of high contrast, thus, if
the difference between the brightest and darkest pixels within
the corner region is smaller than τc, the corner is considered
occluded and discarded from the process. Second, we discard
corners that undergo large displacements during the refine-
ment process.
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FIGURE 9. (a) Original image showing the region of interest. (b) Results of applying the FAST detector (blue dots). (c) Examples of corner classification (d)
Filtered and classified keypoints. Each color (blue, green and red dots) represent a different keypoint class.

FIGURE 10. The three categories a keypoint can belong to. Each keypoint
will be assigned to one of these three categories, or discarded.

D. KEYPOINT-BASED MARKER DETECTION
In case that after the marker detection step (Section IV-A)
no marker has been detected, our method aims at finding the
FractalMarker using the previously available detection. To do
so, our method searches for the marker corners around their
last observed location using a keypoint-based approach that
can be enunciated as follows.

1) REGION OF INTEREST ESTIMATION
If the movement of the marker (or the camera) is not very fast,
the marker should appear in the next frame near to its location
in the previous one. In order to speed up the process, a region
of interest is defined to limit the area for corner detection
(next step). The region is defined around the center of the
previous marker detection, with an area slightly larger than
the previously observed marker area (Fig. 9a). Indeed, in case
of large camera movements between frames, the region of
interest may not cover the new marker position and thus the
marker may not be found. In that case, it will be necessary to
wait until a marker is detected using the previously explained
method (Section IV-A).

2) CORNER DETECTION AND CLASSIFICATION
The FAST keypoint detection algorithm [34] is applied in the
region of interest (Fig. 9b) and a couple of controls are estab-
lished for each detected keypoint in order to remove these
unlikely to belong to marker corners. First, keypoints with
a low response of the FAST detector are removed, retaining
only these above the 20th percentile. Second, a keypoint is

removed if the contrast in a squared neighborhood region of
l×l pixels, is below τc. We have experimentally observed that
the value l = 10 provides good results. For the remaining
keypoints, we apply a novel algorithm that analyzes if it
belongs to one of the three possible categories K ∈ 1, 2, 3
shown in Fig. 10. Please notice, that these are the three types
of corners that a marker can have. It can be seen as a very
simple keypoint descriptor with only three different values.

The proposed method for keypoint classification is
explained in Algorithm 1. First, the region around the
keypoint is binarized using the average pixel intensity as
threshold. Then, connected components are computed and the
simple rules shown in lines 5-13 are applied for classification.
The classification result of keypoints in Fig. 9b is shown in
Fig. 9(c-d), where the keypoint K = 1 are shown in green
color, K = 2 in red color and K = 3 in blue color.

Algorithm 1 Keypoint Classification
1: R← roi(I , k, l) # Region of interest for image I, centered
in the keypoint k with region size l × l

2: Rb← thresholdAvrg(R) # Binarize R using the average
pixel intensity as threshold

3: C ← connectedComponents(Rb) # Determine the num-
ber of connected components of Rb

4: K ← 0 # Init class
5: if C = 2 then
6: if countNonZero(Rb) > countZero(Rb) then
7: K ← 1; # Set k as class 1
8: else
9: K ← 2; # Set k as class 2
10: end if
11: else if C > 2 then
12: K ← 3; # Set k as class 3
13: end if
14: return K

3) RANSAC KEYPOINT MATCHING
Once the keypoints have been classified, the next step consists
in determining to which internal marker corner (W i) each
keypoint corresponds to. Although the classification helps to
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drastically reduce the number of candidates, it is not enough
to uniquely match it. Using the previous Fractal Marker
detection, it is possible to reduce even further the possible
matches by setting a radius search r , which is automati-
cally calculated based on the visible area occupied by the
marker. Assuming that the camera/marker movement is not
very large, the detected keypoint must correspond to any of
the inner corners observed within the search region in the
previous image. Even so, more than one inner corner of the
same class can be assigned to each keypoint. Thus, a method
to robustly match each keypoint to its corresponding inner
corner is proposed using a RANSAC approach.

The basic idea is that there exists a homography that relates
the inner cornersW i to the observed keypoints in the camera
image. Theminimum number of correspondences to compute
such homography is four, and if the correspondences are
correct, then, the homography will project the inner corner
very near to a detected keypoint of the appropriate class.
In that case, we have an inlier, and if the homography com-
puted using these four points is good, then, it must produce
a lot of inliers. Using these ideas, a RANSAC algorithm is
employed to compute the correspondences. The algorithm
will stop when a maximum number of iterations (nit ) is
reached, or if the percentage of inliers is above a percentage of
the total number of inner corners α. If the maximum number
of iterations is reached, the obtained solution is considered
valid if the number of inliers is greater than a percentage β.

As a result of the previous steps, an initial set of inner
marker corners is obtained that is used to obtain an initial
camera pose. The reader is referred to the Fig. 6, where the
general workflow is explained.

V. EXPERIMENTS AND RESULTS
This section explains the experiments conducted to validate
our proposal. A total of five experiments have been carried
out in order to compare the performance of the proposed
Fractal Markers versus traditional markers. Our experiments
aims at evaluating the range detection capability, the robust-
ness to partial occlusion, the precision in the estimation of the
pose and the speed of the proposed method. For comparison,
the ArUco library [4] has been used as the traditional markers
system.

The experiments have been performed using an iphone SE
using an image resolution of 3840× 2160 and all the images
and videos employed for experiments are publicly available.1

The experiments have been conducted using a single CPU
of an IntelrCoreTM i7-7500U 2.70GHz x 4-core processor
with 8GB RAM running Ubuntu 18.04. The values for the
parameters of our method employed in the tests are shown
in Table 1.

A. DETECTION RANGE ANALYSIS
This experiment aims at comparing the detection ranges of the
proposed method with traditional markers. We have printed a

1https://mega.nz/#F!qyA1QAhR!BqwdzE-tqJI2BrbzDZRcag

TABLE 1. Parameters values used in our experimentation.

Fractal Marker comprised of three internal markers f 1, f 2, f 3

with side lengths of 41.3 cm, 17.5 cm and 5.9 cm, respec-
tively. Five video sequences (a total of 10445 frames) have
been recorded starting from a very distant location from the
marker (so that it can not be detected) and approaching to
the marker until the camera autofocus is no longer able to
obtain a clear image. Fig. 11(b-d) show images from one
of the video sequences at different distances. The colored
lines enclosing the markers (blue, red and yellow) have
been overlaid on the images to ease the explanation of the
figure.

The video sequences have been processed using both our
method and the ArUco library. For that purpose, ArUco has
been appropriately adapted to detect the inner markers of the
Fractal Marker by ignoring the bits in the central region of
side length k(f i). In this way, we can compare the results
of ArUco and our method in the same video sequence (and
thus the same conditions). Fig. 11a shows the True Positive
Rate (TPR) of both methods as a function of the distance to
the marker. While the colored lines show the TPR for each
individual marker using ArUco, the grey area corresponds to
our fractal approach. Please notice that the horizontal axis is
in logarithmic scale. As can be observed, the proposed Fractal
Marker can be detected within a large range of distances, i.e.
[7, 2000] cm, while each individual marker has a much more
reduced detection range.
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FIGURE 11. (a) True positive detection rates as a function of the distance
to the markers. Each coloured line correspond to one of the inner
markers that compose the Fractal Marker. The grey area correspond to
the detection range of the complete Fractal Marker. (b-d) Different views
of the Fractal Marker employed for the experiments.

FIGURE 12. Vertex jitter before and after the proposed corner refinement.
The proposed method improves accuracy.

B. VERTEX JITTER ANALYSIS
Vertex jitter refers to the standard deviation in the estimation
of the corners that a method obtains in a sequence of images
where neither the marker nor the camera moves. The stan-
dard deviation from the central position is an indication of
the method precision. Please notice that error in the corners
estimation is propagated to the pose (Eq. 7). This experiment
aims at analyzing the impact of the proposed method for
corner projection and refinement (Section IV-C) in the vertex
jitter. A total of seven video sequences have been recorded
pointing at a Fractal Marker (with three inner markers of
side lengths 15 cm, 6.4 cm and 2.1cm) at different distances
between 49 cm and 2.74 m, having both the camera and the
marker static.

Fig. 12 shows the vertex jitter of the original ArUcomarker
detection method (i.e., the output of Markers Detection
(see Fig. 6), and after applying the whole proposed workflow
(i.e., after Corner projection and refinement). As can be

TABLE 2. Average Computing times (in milliseconds) of the different
steps involved in Fractal Marker detection and tracking.

observed, the proposed method for corner refinement allows
reducing the vertex jitter. As a consequence, a more stable
and precise camera pose estimation can be expected.

C. COMPUTING TIMES
The goal of this section is to show the computing times
of each one of the components of our system. Indeed, our
method requires more computing time than a system that
detect only markers, since we perform a series of addi-
tional steps. Table 2 shows the average computing times
employed by the different step shown in Fig. 6 using a total
of 1037 images of resolution 3840 × 2160. For our tests,
ArUco [4] library has been used for marker detection using
the DM_NORMAL mode.

As can be seen, the steps proposed in this work adds
relatively small overload to the total computing time. The
initial step ‘‘Marker Detection’’, which is the same as in
traditional marker detection, is the most time-consuming pro-
cess. It must be remarked, though, that the number of internal
markers of the Fractal Marker has no meaningful impact on
the computing time of this step. Also, please notice that the
‘‘Keypoint-basedmarker detection’’ process is only necessary
when none of the internal markers are detected in the first
step. Thus, in most of the cases, our method will only add a
negligible amount of time to the total computation.

D. FRACTAL MARKER DETECTION WITH OCCLUSION
The goal of the following experiment is to analyze the robust-
ness and precision of the proposed method in detecting Frac-
tal Markers under several degrees of occlusion. Please notice
that the tracking capabilities of our method are not tested in
this experiment but in the next Section.

A total of 60 images have been taken showing three differ-
ent Fractal Markers from different viewpoints and distances
(ranging from 10 cm to 1.5 m) under controlled indoor illu-
mination. The first Fractal Marker has two inner markers of
side lengths 29.0 cm and 7.2 cm, the second Fractal Marker
has three inner markers of side lengths 29.0 cm, 11.5 cm and
2.9 cm, and the third Fractal Marker has four inner markers
of side lengths 29.0 cm, 14.5 cm, 3.6 cm and 0.9 cm.

To produce systematic occlusion, [39] proposes the use of
a white paper template on the marker located in the bottom
corner of the marker so that the surface of the marker was
gradually overlapped. In our experiments, to know exactly
the percentage of the occluded area, circles of random radius
have been overlaid at random locations into the marker,
as shown in Fig. 13. The color of a circle is randomly selected
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FIGURE 13. Some of the images employed to test detection under occlusion. Different levels of occlusion are synthetically added to the images:
(a) 11.29%, (b) 33.19%, (c) 53.92%, (d) 73.37%.

FIGURE 14. Average (red) and Standard deviation (blue) of the
normalized error for different occlusion levels. See text for details.

as white or black. Since it is a synthetic occlusion, we know
exactly the percentage of the marker that is occluded. For
each marker, we have generated a total of 1000 synthetic
images (3000 in total), so that the resulting occlusion levels
are equally distributed in the range [1, 85]%. Above 85%
detection becomes almost impossible.

The ground truth of an image are the locations of the
four most external corners of f 1 obtained without occlusion.
Then, for each image with occlusion, the error is measured
as the average distance between the ground truth locations
and the estimated using our method. Please notice that the
distance is measured in pixels, and thus the error is inversely
proportional to the distance to the marker (or to the area
occupied by the marker in the image). In order to correct this
effect and being able to compare the results of images taken
at different distances, the error is normalized dividing by the
area of the marker in the image.

The results obtained are shown in Fig. 14 as box plots
(average and standard deviation). The results obtained show
that when the occlusion level is below 50%, it has a negligible
impact on the error. For larger values of occlusion, the pre-
cision starts to be affected. In contrast to traditional marker
detectors such as ArUco or AprilTag that are not robust to
occlusion, our method exhibits a very robust behavior.

E. ANALYSIS OF KEYPOINT-BASED MARKER DETECTION
Our proposal includes a method to detect a Fractal Marker
even when no internal markers have been detected. Our pro-
posal for detection in these situations relies on a novel type of
keypoint descriptor combined with the RANSAC algorithm.
This section aims at analyzing the precision and robustness
of the Keypoint-based marker detection. To do so, we have
employed a video sequence of 1037 frames where a Fractal
Marker composed by three inner markers of side lengths
15 cm, 6.4 cm and 2.1 cm was recorded at different distances
(ranging from 28 cm to 1.44 m) and under controlled indoor
illumination.

If we process the video sequence using the proposed work-
flow (Fig. 6), the keypoint-basedmarker detector would never
be applied since at least one marker is detected in every
frame. In order to be able to analyze the Keypoint-based
marker detection, we force the system to follow that path,
i.e., assuming that no markers have been detected except for
the first frame.

The ground truth of each frame consists in the four corners
of the most external marker of the Fractal Marker, computed
with our method using the regular workflow. Then, the result
is compared to the location estimated following the Keypoint-
based marker detection path, and the error normalized divid-
ing by the marker area observed in the frame. The results are
shown in Fig. 15a. The highest values are observer around
frame 800 because the camera is nearer to the camera. Nev-
ertheless, it can be observed that the differences with the
standard method are negligible.

The impact of occlusion in the error has been analyzed
by synthetically adding it as in the previous experiment.
For each frame, random circles have been drawn on the
marker, simulating occlusions of 30% and 60%. A total
of 20 synthetic images were used for each frame and occlu-
sion percentage. The average errors obtained are shown
in Fig. 15(b-c). As can be seen, the errors for a 30% occlusion
are similar to these when there is no occlusion. Neverthe-
less, for occlusion of 60%, we can see an increase in the
error.

As a conclusion, we can indicate that the proposed
method for Fractal Marker Detection is reliable under
occlusion.
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FIGURE 15. Normalized pixel error of the Keypoint-based marker detection method for one video sequence using different levels of synthetic occlusion:
(a) 0%, (b) 30%, (c) 60%.

VI. CONCLUSION
This paper has proposed the Fractal Marker, a novel type of
marker that can be detected in a wider range of distances that
traditional fiducial markers. FractalMarkers are comprised of
a set of rectangular markers, one into another, in a recursive
manner. We propose a method to design Fractal Markers with
an arbitrary number of inner markers so that its detection
range can be increased by adding more levels.

In addition, this paper proposes a method for detecting
Fractal Markers under severe occlusions. In contrast to tradi-
tional markers that are very sensitive to occlusion, ourmethod
can detect highly occluded markers at a minimum computing
cost. Even if no markers can be detected in the first stage
of the process, our proposed method is capable of detecting
the marker by a novel keypoint-based method. We propose a
very basic type of keypoint that distinguishes the three type
of corners that a marker can have and a novel RANSAC-
based algorithm to detect the Fractal Marker based on these
keypoints.

The experiments conducted show that the proposedmethod
is reliable and accurate, adding little computation time to
the traditional marker detection step. Finally, we would like
to indicate that the proposed method has been integrated as
part of the ArUco library,2 and is publicly available for other
researchers to use it.

As possible future work, we point out the possibility of
generatingmultiple FractalMakers for those applications that
need more than one.
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