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Abstract

Characterizing the location and extent of a viewer’s interest, in

terms of eye movement recordings, informs a range of investi-

gations in image and scene viewing. We present an automatic

data-driven method for accomplishing this, which clusters visual

point-of-regard (POR) measurements into gazes and regions-of-

interest using the mean shift procedure. Clusters produced using

this method form a structured representation of viewer interest, and

at the same time are replicable and not heavily influenced by noise

or outliers. Thus, they are useful in answering fine-grained ques-

tions about where and how a viewer examined an image.

Keywords: eye movement analysis, measures of visual interest,

clustering, mean shift

1 Introduction

Human eye movements provide strong evidence about the loca-

tion of meaningful content in an image or scene [Mackworth and

Morandi 1967; Just and Carpenter 1976; Henderson and Holling-

worth 1998]. And while the location of the meaningful content

changes based on the viewer’s task, so do their eye movements

[Yarbus 1967; Just and Carpenter 1976]. This fundamental fact

about human vision explains and motivates the need for algorithms

that concisely quantify areas of a viewer’s focus, so called regions-

of-interest, in terms of a recording of their eye movements. Such

methods are effective and time-saving tools for conducting psycho-

logical research on eye movements, and are a necessary ingredient

in human-machine interfaces that use eye tracking technology.

This paper describes a clustering algorithm that processes point-

of-regard (POR) measurements from an eye-tracker into collections

that are either:

• grouped spatially as in Figure 1(d), indicating the viewer’s

regions-of-interest; or

• grouped spatially and temporally—ranging from individual

fixations as in Figure 1(b), to gazes—sets of sequential fixa-

tions in a confined part of the viewing area [Just and Carpenter

1980], as in Figure 1(c).

These clusters can inform investigations into higher-level questions

about how an image is examined. The analysis is based upon

an existing algorithm that can be used for robust clustering—the

mean shift procedure [Fukunaga and Hostetler 1975; Comaniciu

and Meer 2002]—adapted for eye movement data. This procedure

decides the number and arrangement of clusters deterministically,

and hence is entirely data-driven. It is robust because the results

are not adversely affected by noise or outliers. We compare this

approach to methods based on other clustering algorithms.

A wealth of different measurements of eye movements are possi-

ble [Inhoff and Radach 1998]. Measuring the location of particular

objects or features that attracted the viewer’s focus is among the

more common objectives. Hand-coding of eye movement data to

realize such measurements produces sound results (i.e. [Harris et al.

1988]); a trained observer easily parses eye movement recordings

into fixations, gazes, or regions-of-interest (in the context of a par-

ticular experiment). The time-consuming nature of manual coding,

however, has led to the development of automated approaches.

The most common automatic techniques simply extract fixations

by removing saccades from a set of point-of-regard measurements.

The constrained nature of eye movements invites simple algorithms

based on applying velocity thresholds and enforcing lower-bounds

on fixation durations. These algorithms are quite effective in many

situations—see [Salvucci and Goldberg 2000] for a thorough de-

scription and comparative evaluation. Careful modeling of the pro-

cesses involved can lead to more robust estimation procedures. For

instance, modeling eye movements using a state variable that de-

clares each moment as either a fixation or saccade leads to the use

of Hidden Markov models (HMMs) as an estimation tool [Salvucci

and Goldberg 2000]. The success of all of these algorithms comes

from their dependence on the structure of fixations and saccades;

but this dependence is also what prevents their more general appli-

cation in detecting higher-level features like regions-of-interest.

Higher-level measurements of viewer interest have remained, on

the whole, relatively simple. This hasn’t been a serious limitation—

the design of psychological experiments is often guided by the need

to take simple measurements. For instance, one methodology di-

vides the viewing area into a regular grid, and tallies the time spent

inside each square [Mackworth and Morandi 1967]. Another com-

mon technique defines rectangular target regions (also described in

[Salvucci and Goldberg 2000]), and records the fixations by the

viewer inside each region. Such a method is well suited to situa-

tions such as reading, where each word is bounded by a rectangle

[Just and Carpenter 1980]. (Several commercial eye tracking sys-

tems provide this functionality.)

Data-driven algorithms work in terms of the point-of-regard lo-

cations themselves to define the regions-of-interest; these are more

flexible than measurements performed using a pre-defined grid or

box, and hence admit fine-grained analysis. Data-driven algorithms

have seen little deployment in the analysis of eye movements. But

they are required when there is no a priori structure that describes

the stimulus. In these cases, they can be used to simultaneously

locate areas of importance and quantify interest in them.
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(a) (b)

(c) (d)

Figure 1: Clustering example (a) original image with recorded point-of-regard (POR) locations; (b) with estimated fixation locations (con-

nected by lines); (c) with gazes (with lines connecting POR locations within each gaze); (d) with regions-of-interest (with POR)

One common data-driven method of clustering uses a distance

threshold, and considers two points to be in the same cluster when

they are closer than this distance. A specific number of clusters is

obtained by simply choosing the appropriate distance threshold that

realizes it. For purposes of comparing real and simulated fixation

sequences, Privitera and Stark [2000] use such a method, choos-

ing their threshold via k-means clustering [Duda et al. 2001]. The

clusters provide a means to relate the real and simulated fixations.

[Turano et al. 2003] proceeds similarly, but clusters quantities that

measure performance of salience models for purposes of compari-

son (and not the fixation locations themselves). While this simple

clustering algorithm is sufficient in situations where the clusters are

clearly delineated, its performance in more general settings would

be quite poor. Distance thresholds fail to resolve two dense but sep-

arate clusters if only two of their points happen to be close. As a

result, they cannot finely characterize gazes or regions-of-interest.

More intricate algorithms exist that measure the regions-of-

interest. Latimer [1988] partitions data by forming a histogram of

fixation durations over the viewing area, and finds clusters of that

histogram using k-means. This approach is less sensitive to noise.

Latimer also presents an more intricate approach based on an in-

formation theoretic criterion. Latimer notes the difficulty in pro-

ducing consistent results automatically with k-means and similar

algorithms. (We discuss this further in Section 3.1.)

Clustering methods have also been used to extract gazes: spa-

tial clusters of successive fixations. This is an easier problem, akin

to identifying fixations, so simpler techniques are reasonably effec-

tive. Successive fixations can be added to a cluster until the next

is too distant [Scinto and Barnette 1986]. Applying a threshold

on the distance between the next fixation location and the mean

of fixation points already in the cluster is more effective [Nodine

et al. 1992]. This technique tolerates points leading away from

the cluster (which was one difficulty with using simple thresholds).

One might imagine adapting this method for regions-of-interest by

choosing the spatially, rather than temporally closest neighbor as

the next candidate for addition. However, this would introduce a

dependence on the order of the fixations—an undesirable property

for data analysis.
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Other techniques provide visualizations of regions-of-interest by

adapting the original imagery. Latimer [1988] plots the distribu-

tion of fixations over stimuli. Wooding [2002] presents a technique

which darkens the image in uninteresting areas with a function de-

fined using a mixture of Gaussians, each centered at a fixation.

Other systems create stylized transformations of images by mod-

ulating the level-of-detail in the image based on where the viewer

looked [DeCarlo and Santella 2002]. Indeed, such notions form

the basis of gaze-contingent displays that omit unnoticeable detail

[Baudisch et al. 2003].

In the next section, we start by describing our data-driven clus-

tering method. This is followed in Section 3 by a demonstration

of our method, and a comparison of our clustering strategy with

alternative methods.

2 Clustering eye movements

When an expert encodes gazes or regions-of-interest by hand, they

group nearby fixations together—they cluster the data. Although

this is a deceptively easy task for a human observer, it is a difficult

undertaking for a computer. There are many available algorithms

for clustering [Duda et al. 2001] that can automate this process.

A desirable algorithm for clustering eye movement data has three

characteristics:

• it should produce consistent results (and not depend on a ran-

dom initial guess);

• it should not need to know the number of clusters in advance;

• it should be robust (so the presence of outliers does not sig-

nificantly affect distant clusters).

Commonly used techniques such as Expectation-Maximization

(EM) and k-means clustering [Duda et al. 2001] are initialized ran-

domly, and so different runs on the same data can produce differ-

ent local minima. Both EM and k-means also require knowing the

number of clusters in advance. While adaptations to these algo-

rithms exist that aim to address these issues, they can only reduce

the problem. Such arbitrary behavior would detrimentally affect

any experimental analysis, and must be avoided.

Additionally, the technique should be robust. All of the places

a viewer fixates are not really regions-of-interest. Sustained view-

ing will produce clusters of fixations around particularly interest-

ing features, jittered by noise and microsaccades, this is the kind

of noise all clustering methods seek to address. However, brief iso-

lated fixations will also be present. These are outliers of the regions-

of-interest—they are not just noise. They are isolated points that

commanded some focus, perhaps just a distraction of some sort.

Characterizing them might be valuable in particular situations. We

want results for the major clusters to be unaffected by their pres-

ence, but also we want to describe these outliers, in order to ana-

lyze or discard them. Here again, EM and k-means are not robust.

While their global solution characterizes outliers correctly, the lo-

cal solutions provided by these algorithms in practice can include

outliers inside larger clusters, which distorts their statistics.

2.1 Mean shift

Clustering based on the mean shift procedure meets the require-

ments above—it proceeds deterministically, does not require know-

ing the number of clusters in advance, and is robust to outliers. It

has its origins in the pattern recognition community [Fukunaga and

Hostetler 1975], but has only seen recent use—particularly in ro-

bust computer vision systems [Comaniciu and Meer 2002].

In general, a clustering process starts from a set of N points:

{x j | j ∈ 1..N},
and assigns one of K labels to each point:

{c j ∈ 1..K | j ∈ 1..N}.
Some algorithms produce fuzzy labelings, and may also provide

coarse descriptions such as means and covariances.

Perhaps the simplest clustering algorithm employs a distance

threshold d, and considers any two points to be part of the same

cluster when they are within distance d of each other. While this

algorithm has the desirable property of not requiring the number

of clusters to be known in advance, it is very fragile; any noise in

the data causes apparently distinct groups of points to be clustered

together.

Even so, this algorithm is salvageable. Mean shift clustering is

a robust version of distance-based clustering that includes a pre-

processing stage. The entire process involves two steps:

1. move the points into denser configurations until they can be

easily separated into clusters

2. apply a clustering algorithm that employs a distance threshold

The first stage—known as the mean shift procedure—is crucial, as

it makes the entire process robust. It proceeds by repeatedly moving

a point xi to a new location s(xi)—the weighted mean of nearby

points based on the kernel function k:

s(x) =
∑ j k

(
x−x j

)
x j

∑ j k
(

x−x j

) (1)

The kernel k is typically a multivariate Gaussian with zero mean

and covariance σ 2I [Comaniciu and Meer 2002]. (Note that this

description of the kernel has been streamlined from [Comaniciu and

Meer 2002].) Robustness to extreme outliers is achieved by simply

limiting the support of the kernel, for instance by setting it to zero

for distances greater than 2σ .

The parameter σ describes the spatial extent of the weighted

mean computed by s: it provides a scale control for the algorithm.

For example, increasing the value of σ results in fewer, larger clus-

ters which describe coarser structures in the data. Like the method

using a simple distance threshold, the mean shift method is non-

parametric: it make no assumptions about the global shape of the

distribution of the data. This is typically an advantage, as such as-

sumptions lead to garbled results when they do not apply.

The mean shift procedure proceeds as follows:

INITIALIZATION for j ∈ 1..N
y0

j = x j

ITERATION n repeat until convergence

for j ∈ 1..N
yn

j = s(yn−1
j )

It works by interpreting the points x j as samples from a distribution.

The mean shift property, established in [Fukunaga and Hostetler

1975], estimates the gradient of the density of these samples at x
as s(x)− x. Hence, the mean shift procedure iteratively moves all

points simultaneously towards locations of higher density (in the

gradient direction): towards the eventual points of convergence,

which are the modes of the distribution. (Proofs concerning con-

vergence behavior are in [Comaniciu and Meer 2002].)

With all of the points collected at modes, a clustering method

that uses a distance threshold is both safe and successful. In this
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Viewer 1:

Viewer 2:

POR data Gaze clusters with σs = 100, σt = 1
3 Regions-of-interest with σs = 100

Figure 2: Gaze and region-of-interest clusters for two different viewers

case, a distance threshold of σ is used—the scale parameter used to

specify the kernel. Finally, clusters containing a very small fraction

of the data are optionally discarded, as they are typically outliers.

2.2 Formulations for POR data

Eye-trackers provide the location of a point on a particular pla-

nar surface (calibrated in advance), such as the pixel location on

a screen, and the time the measurement was taken. In this case,

xi =
(
xi,yi,ti

)
. Clustering data spatially and temporally produces

clusters that describe fixations, or gaze points (groups of nearby,

sequential fixations), while spatial clustering produces regions-of-

interest. Both easily fit within the framework described in Sec-

tion 2.1—the kernel function k from (1) enables this control.

A zero-mean Gaussian kernel is specified using a covariance

matrix—this matrix encodes the relative weighting of the dimen-

sions when measuring distances. Diagonal matrices provide suffi-

cient flexibility here, but independent control over the relative scale

between spatial and temporal dimensions is important. A small

temporal scale is called for when clustering points temporally (so

as not to cluster across non-consecutive fixations), but the spatial

scale is really application dependent. Using a spatial scale of σs
and temporal scale of σt , the kernel k is:

kspatiotemporal
(
[xi,yi,ti]

)
= exp

(
−x2

i +y2
i

σ2
s

− t2
i

σ2
t

)

(Note that the kernel does not need to be normalized given the de-

nominator in (1).) For an analysis that ignores temporal informa-

tion, we can simply exclude the temporal dimension (effectively

setting σt to infinity):

kspatial
(
[xi,yi]

)
= exp

(
−x2

i +y2
i

σ2
s

)

The spatial scale parameter σs can be varied to produce pre-

dictable clusters on coarser or finer scales. For instance, one can de-

termine if a viewer looked at the eye of a person, or merely whether

they looked at the entire face. A particular spatial scale choice does

not control the size of the cluster itself, it ensures that no clusters

exist which are closer than σs. Normally a σs below the distance

between two image features will resolve them into separate clusters,

assuming there is a drop-off in density in the space between them.

If both features are part of a unimodal blob of interest it will be im-

possible to resolve them. Given a particular experimental setup and

scale of question being posed, a single scale value will most likely

be sufficient for all data across a set of stimuli.

The value of the temporal scale σt has more to do with the av-

erage time separating fixations (we use a value of 1/3 second).

When clustering spatially and temporally, it is possible for non-

consecutive POR data to be clustered together. Although we have

seen no instances where this has occurred, these anomalies can eas-

ily be corrected during the second stage of mean shift clustering.

Given the choice of scale, the results of this algorithm are very

intuitive and predictable. Distant outliers (where distant is defined

by the scale choice) will become small clusters. Large regions of

uniform density will collapse to one cluster. Where density is lo-

cally bimodal, one cluster will result if the modes are within the

chosen scale of each other, and otherwise two clusters will result. (It

is worth contrasting this behavior which depends on the distance of

modes, with distance thresholding as in [Privitera and Stark 2000;

Turano et al. 2003] which will collapse the clusters if any of their

points are within the threshold distance of each other.) Mean shift
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provides clusters of interest that are robust to both measurement

noise and small outlying points-of-regard, and provides a consis-

tent and interpretable estimate of the regions-of-interest. The re-

sults are replicable, and similar shaped distributions of POR data

will produce similar clusters, making direct comparison possible.

This method should be particularly useful in characterizing the

regions-of-interest in aggregate data from a number of viewers

(over the same image). This is an interesting approach for trying to

capture general, viewer independent patterns of interest over an im-

age. In this case, data from multiple subjects is collapsed together.

Robust clustering will extract patterns in the presence of noise and

variations in calibration. In Section 3 we show some results of our

method both on individual eye tracks and aggregate data, and argue

their value as a quantitative measure.

2.3 Computational concerns

For off-line analysis of data, computation time is not critical. How-

ever this technique could be useful for identifying ROI in interactive

systems—for example, in computer assisted examination of radiol-

ogy slides [Mello-Thoms et al. 2002]. Here, computational con-

cerns are more important. Though mean shift clustering is some-

what expensive, it is possible to adapt it to perform in near real-time

on eye movement data, under a range of circumstances.

One iteration of the mean shift procedure takes O(N2). Although

the precise behavior depends on the data, we have empirically de-

termined that 5 to 10 iterations of the mean shift procedure are suf-

ficient for convergence to within a 0.1% change across iterations.

In this case, one minute of POR data (N = 3600) is processed in

about 3 seconds on a 2.4GHz Pentium 4 PC. Full convergence is

not necessary, however. What matters is that slightly overlapping

clusters are sufficiently separated. This should be tuned for a par-

ticular application.

The limits on the spatial and temporal extents of the kernel (dis-

cussed in Section 2.1) suggest that only the closest points are re-

quired for the computation of s; the use of a spatial hierarchy, or the

use of spatial coherence across iterations would reduce the running

time by a sizable constant.

But the structure of POR data lends itself to a particular opti-

mization: the fixations are grouped quite tightly together. When

determining gaze points or regions-of-interest, one approximation

replaces each cluster of POR data representing a fixation, with a sin-

gle point that is located at the mode of the cluster (the convergence

point), weighted by the number of points contained in that fixation.

This produces a set of fixations f j and weights w j, resulting in a

weighted version of (1):

sfix(f) =
∑ j w jk

(
f− f j

)
f j

∑ j w jk
(

f− f j

) (2)

Iterating over fixations makes N effectively much smaller, and the

quadratic complexity becomes more manageable. In this case, one

minute of fixation data (with Nfix = 190) is processed in a under one

tenth of a second. For region-of-interest detection, this approxima-

tion is exact when the original POR points within fixations are per-

fectly aligned. Noise and drift in fixation location measurements,

as well as the temporal averaging that takes place for gaze detection

are the sources of error.

3 Results

This section demonstrates the clustering algorithm from Section 2

on a set of images viewed by either a single viewer or a group of

viewers. The data was picked at random from recordings of naive

subjects who viewed the images as part of a larger experiment. The

eye movement recordings were performed using an ISCAN ETL-

500 table-top eye-tracker (with a RK-464 pan/tilt camera). The re-

sulting point-of-regard data is expressed in pixel coordinates (the

images measure 1024 units horizontally; the forthcoming values

of σs are therefore expressed in pixel units). First, the POR data

was pre-processed to remove saccades using the dispersion-based

method of Widdel [1984] (also see [Salvucci and Goldberg 2000]).

We have also successfully used a threshold on velocity between

point samples to perform this filtering.

The examples here are representative of typical results of the pro-

posed algorithm. The images in Figure 2 demonstrate gaze and

region-of-interest clustering for two different viewers of the same

image. On the left is the POR data superimposed on the image

(recorded for 8 seconds). At center are gaze clusters, and at the

right are regions-of-interest for this image. These locations, on the

whole, correspond to objects and groups of objects in the image.

The value of σt was 1/3 second for the each of these examples.

Figure 3: The image viewed by the tracking subjects

The next set of examples involve viewings of the image in Fig-

ure 3, and demonstrate region-of-interest clustering. The cluster-

ing results are presented by drawing each cluster using a different

color. (In examples with many clusters, there will be color re-use;

and there is no color correspondence across related examples.) As

some of the colors may appear similar on different displays, we ad-

ditionally overlay covariance ellipses on large clusters (one for each

cluster that contains more than 2.5% of the total data); they are cen-

tered at the mean of the cluster, and mark 99% of the variance. Data

points in small clusters are colored grey. To show alignment with

the viewed image, the clusters are drawn over a set of linear fea-

tures that were extracted (semi-automatically) from the photograph

in Figure 3.

The analysis demonstrates the algorithm on data from two in-

dividual viewers, as well as on data combined from six separate

viewers (all were 8 second recordings). Figure 4 shows the regions-

of-interest gathered from two viewers, processed at three different

spatial resolutions (σs). Small values of σs correspond largely to

isolated fixations, grouping together only fixations that overlapped

due to re-fixations of a particular feature. Clusters produced using

larger values of σs capture coherent regions that the viewer exam-

ined repeatedly (and not necessarily sequentially, as with gaze clus-

ters). Comparisons between viewers seem quite reasonable with the

coarser scale clusters.

Similar behavior of the algorithm is seen for data collected to-

gether from six different viewers, which is displayed in Figure 5.
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As expected, the patterns of information in the image become

apparent—especially as σs is increased. Major clusters correspond

to both salient features in the POR data, to features in the single

user data in Figure 4, and for the most part, to features in the im-

age. (This can be confirmed by comparing the cluster locations with

the original image in Figure 3.)

It should be noted that not all clusters correspond to regions of

significant interest. Particularly when data from multiple viewers

is combined, it is the clusters that hold the largest percentage of

the data that define the most important allocation of interest. This

is because important features are likely to be viewed longer, and

by more of the viewers. Very small clusters (colored in grey in

the examples) are outliers: they represent brief fixations of some

isolated feature. In some contexts, these may be of interest (in a

study of distracting features, for instance). In others, they can be

discarded. In either case, they are easily identified by the fact that

they contain a tiny proportion of the data.

Figure 6 repeats the computations from Figure 5, but using the

approximate solution from Section 2.3 that uses weighted fixations

in place of the raw POR data. The similarity in the output between

the approximation and full solution suggests this approximation

holds up well in these conditions.

3.1 Comparison of clustering methods

Eye movement data is complex and noisy, both in terms of measure-

ment and individual behavior. Other clustering algorithms such as

k-means clustering or EM [Duda et al. 2001] tend to produce erratic

results in this case. The sources of such irregular behavior include

the choice of the number of clusters (K), randomization in the initial

guess, and statistical properties of the data. Strategies for determin-

ing an optimal K exist, and may involve running EM many times

(across a range of K values), and selecting the best fit. However,

many difficulties remain. These are algorithms with a significant

random component which makes the clusters difficult to reproduce:

running the algorithm multiple times on the same data can produce

significantly different results. To combat this, these algorithms are

in practice always run multiple times with different random initial-

izations and the best result selected. This encourages convergence

to a global minimum, though it provides no guarantees.

Figure 7 shows three different results from such an EM based

algorithm (which tested a range of values of K, using 5 different

initializations for each, and selected the best result): it produced

K = 6 once and K = 7 twice. The randomness inherent in the al-

gorithm clearly shows through—different runs produced quite dif-

ferent answers. More initializations would make the results more

consistent at increasing expense, with no principled way of know-

ing how many are sufficient.

We can compare the output from Expectation-Maximization,

shown in Figure 7, with the mean shift clustering (of the same

data) in Figure 5 (specifically, when σs = 75). Because these EM

estimates represent local minima, the clusters do not always cor-

respond to features or regions in the image as consistently as the

mean shifted clusters do. Similar effects are observed when using

k-means clustering. The most obvious failure in the EM results is

robustness. This can be seen in the leftmost cluster in Figure 7 in

both the K = 6 result and the second K = 7 result. Such clusters

contain distant fixations (outliers), and are substantially distorted.

Again, more random initializations may improve the results, but

there are no guarantees.

All of this seriously impairs the interpretability and the usability

of the EM clusters. More consistent and robust clusters are neces-

sary to answer fine-grained questions, such as whether two viewers

had similar interest in some set of image features.

4 Discussion and Conclusion

The clustering method presented here draws upon robust methods

that have deterministic behavior. It is simple to understand and im-

plement. As a result, we expect it will become a useful tool for

detecting and analyzing the regions-of-interest of a viewer; both

for use in experimental analysis, and to automate content decisions

in interactive systems using eye trackers. This approach applies

most in situations involving unconstrained image or scene viewing.

More traditional approaches are still in order for specific domains,

such as reading (which successfully employs boxes around words).

We have not performed a formal evaluation of this algorithm as

it applies to analyzing eye movement recordings. Comparing the

results to hand-labeled data (using a range of algorithms, includ-

ing mean-shift) is the most obvious course of action. Alternatively,

validation can proceed by replicating known effects established by

other means. In this case, the benefits of robustness and order-

independence would be demonstrated should lower variances be

seen in measuring these effects (when compared to analyses using

algorithms such as EM).

Improvements to the proposed clustering algorithm can come on

a number of fronts. Automatic methods for scale-selection [Linde-

berg 1994] would choose optimal values of σs—the extracted clus-

ters would be very stable under a range of scale values around the

selected value. Varying σs over the extent of the viewing area could

accommodate stimuli containing varying scales. Formulating an

on-line approximate version of the mean shift procedure, perhaps

taking advantage of the structure in POR data, would further facili-

tate its introduction into interactive systems.

Perhaps most interesting are the new experimental protocols and

interactive systems that will become possible with such an auto-

mated technique. The method seems to have the sensitivity and ro-

bustness to be applied to a wide variety of problems. The locations

and properties of the estimated clusters can be used to compare

the similarity of interest across viewers, tasks, or different versions

of images. This could be done spatially by comparing the cluster

centroids produced by different viewers or groups of viewers. Or,

clusters could be used to label fixations for a string matching com-

parison [Privitera and Stark 2000]. The clusters themselves can

also be analyzed further. The relative number of data points inside

a cluster indicates its importance. We can examine the percentages

of different viewers POR samples which are included in a cluster,

and so determine if the location is of general interest or only inter-

esting to one or a few idiosyncratic viewers. Alternatively the time

stamps of gazes can be used to determine the percentage of inter-

est that represents initial or reoccurring fixations. This flexibility

should make the method a useful technique for quantifying visual

interest.
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