
Decentralized Collision Free Velocities from Depth
Maps using Deep Reinforcement Learning

Alex Day
Clemson University

Clemson, SC
adday@clemson.edu

ABSTRACT
Producing an optimal path for robots in a multi-agent sce-
nario is challenging when the environment is only partially
observable. Current solutions to this problem often work by
assuming near-perfect knowledge of their neighbor’s states.
This work presents a solution to this problem based only
on a point cloud reading of the environment in front of the
scenario, current velocity, and goal position.

1 INTRODUCTION
Calculation of collision-free velocities in a decentralized
manner is a well-studied problem. Previous approaches in-
clude geometric [7] and force [4] based approaches. These
approaches rely on near-perfect knowledge of an agent’s
neighborhood; this is often a problem when applied in the
real world. This problem can be solved using deep reinforce-
ment learning to train agents end-to-end with a sensor, such
as LIDAR, as input [5]. Unfortunately, LIDAR scanners are
normally expensive. Especially when compared to RGB-D
cameras, which capture both a full-color image and a depth
map. Deep reinforcement learning has been applied to depth
maps before, for both general [8] and goal-oriented [5] move-
ment. However, this approach has not yet been applied to
avoiding collisions with other agents in the scene.
The purpose of this work is to apply deep reinforcement

learning to the collision avoidance problem where the agent
can sense its’ local environment through a depth map.

2 REINFORCMENT LEARNING
METHODOLOGY

2.1 Environment
The environment used to train the agents is MiniWorld [2]
which has been modified with better support for both multi-
agent scenarios and depth-based interpretations of the envi-
ronment. Agents within this scenario are modeled as cylin-
ders with proportions, camera locations, and camera specifics
based on the Turtlebot 2 1 equipped with a Microsoft Kinect
2. There was only one scenario used in training. Each agent

1https://clearpathrobotics.com/turtlebot-2-open-source-robot/
2https://docs.depthkit.tv/docs/kinect-for-windows-v2

was positioned near the midpoint of each side of a 10×10
meter square with a goal on the center of the opposite wall.
This scenario can be seen in Figure 1.

Figure 1: Square scenario used in training

The agent can observe this environment through three
separate inputs. The first is a history of the last ten depth
maps from a Kinect-like camera with a 60-degree field of
view and a resolution of 800×640, which is downsampled to
80×64. An example of this depth map with an agent within
the field of view can be seen in Figure 2. The agent is given
the history rather than the most recent image to increase
its knowledge about agents that might be nearby but out of
the most recent field of view. Along with the depth map, the
agent also has access to its’ velocity from the previous frame
and the offset from the current position to the goal, both in
polar coordinates.

Agents can move within the environment through a linear,
𝑙 , and rotational 𝜔 velocity. The linear velocity is bound
between 0 and 1 𝑚/𝑠 , so the agent cannot move into the
unobservable space behind them, and the rotation is bound
between −𝜋/2 and 𝜋/2.
The reward function, Equation 1, consists of three sepa-

rate functions to motivate goal-oriented, collision-free, and
efficient movement, respectfully.

https://clearpathrobotics.com/turtlebot-2-open-source-robot/
https://docs.depthkit.tv/docs/kinect-for-windows-v2

A. Day

Figure 2: Sample of a depth observation used in train-
ing

𝑅(𝑎) = 𝑅𝑔 (𝑎) + 𝑅𝑟 (𝑎) + 𝑅𝑐 (𝑎) (1)
The first function, Equation 2, consists of a large terminal

reward and a small driving force derived from the distance
towards the goal that the agent covers due to the new veloc-
ity.

𝑅𝑔 (𝑎) =
{
15 if ∥ ®𝑎𝑝𝑜𝑠 − ®𝑎𝑔𝑜𝑎𝑙 ∥ < 0.1
∥ ®𝑎′𝑝𝑜𝑠 − ®𝑎𝑝𝑜𝑠 ∥ else

(2)

The second function, Equation 3, deters the agent from col-
liding with other agents in the scenario with a large negative
reward, as well as ending the current simulation.

𝑅𝑐 (𝑎) =
{
−15 if collision
0 else

(3)

The final function, Equation 4, deters the agent from ex-
cessive rotational movement. Lacking this, agents learn to
large rotational velocities in efforts to maximize 𝑅𝑔 (𝑎).

𝑅𝑟 (𝑎) = −1 · |𝑎𝜔 | (4)

2.2 Proximal Policy Optimization
The agents are trained using the policy gradient-based ap-
proach Proximal Policy Optimization (PPO) [6]. Each agent
draws from a central policy but and executes the given action
in the scenario. The policy network is optimized using the
trajectories gathered by all robots, which results in 4 times as
many experiences per environment time step. The training
algorithm is summarized in 1.
The neural network architecture comprises two heads,

one convolutional for the depth images and two linear layers
for the velocity and goal position; this can be seen in Figure
3. The architecture is copied from [3] with the idea that the
network is learning a similar task. The network outputs a
mean for both linear and rotational actions for the agent.

Algorithm 1: PPO Algorithm
Initialize policy networks 𝜋\𝑜𝑙𝑑 and 𝜋\ and set
Hyperparameters as shown in Table 1

Trajectory Buffer← []
for epoch = 1, 2, . . . , 𝐸 do

for agent = 1, 2, . . . , 𝑁 do
Run policy 𝜋\𝑜𝑙𝑑 with standard deviation 𝜎 for
𝑇 timesteps
Add trajectory to Trajectory Buffer
if ∥Trajectory Buffer∥ > 𝑀 then

Calculate Monte-Carlo Estimate of
Rewards

Optimize loss 𝐿 wrt 𝜋\ for 𝐾 epochs
𝜋\𝑜𝑙𝑑 = 𝜋\
Clear Trajectory Buffer

end
end

end

Hyperparameter Value

Epochs, 𝐸 250
Max Timesteps, 𝑁 1000
Clip, 𝜖 0.2
Action Standard Deviation, 𝜎 0.1
Learning Rate, 𝛼 0.0003
Reward Discount, 𝛾 0.99
Update Timesteps,𝑀 100
Agents, 𝑁 4
Table 1: Training Hyperparameters

These values are passed through sigmoid and tanh activation
functions, and then the rotation mean is multiplied by 𝜋/2
to scale to the actual domain of the rotation action.

3 RESULTS
The agents were trained for around 10 hours on a system
with an 8-core AMD processor and an Nvidia GTX 970. The
agent’s cumulative rewards for each episode can be seen
in Figure 4 and the length of each episode can be seen in
5. The agents struggle to break 0 reward, although, they
do approach 0 as training goes on. Theoretically if training
were allowed to progress such that the agents had multiple
trajectories where they reached the goal they would be able
to break 0.
Agents did learn faster velocities, as seen in the distribu-

tion of the agent’s speeds after training can be seen in Figure
6. The agents favor a higher speed that is around the max
speed of 1𝑚/𝑠 .

Decentralized Collision Free Velocities from Depth Maps using Deep Reinforcement Learning

10x80x64 Input

4x4 Kernel, Stride=2, Padding=1 Convolution

10x40x32

1x1 Kernel Convolution

64x40x32

2x2 Kernel Max Pool

20480 Image Features 4 Velocity and Goal

20484 Linear

800 Linear

600 Linear

Sigmoid Tanh

Linear Mean Rotational Mean

Figure 3: Policy Network Architecture

Figure 4: Rewards accumulated during training

However, it does not seem that the agents learn efficient
paths to their goals. The trajectory that the trained agents
take is shown in Figure 7. It seems that the agents do learn
to move, but they learn large angular trajetories which cause
them to move in circles of varying radii.
The agents were able to reach the goal at around 20,000

steps. However they were not able to repeat this feat for the

Figure 5: Length of each epoisode during training

Figure 6: Distribution of agent speeds at the end of
training

Figure 7: Visualization of the last trajectory in train-
ing

rest of the training. It is possible this could be repeated if the
training were allowed to progress for long enough.

A. Day

Figure 8: Visualization of an early trajectory that
moves the agents close to their goals

4 FUTUREWORK
The agents struggled to reach the goal and avoid collisions
to receive the significant incentive that would motivate them
in future trajectories. To rectify this hindsight experience
replay [1] could be utilized to move the goal and modify the
agent’s state space after the trajectory is completed.

On top of modifying the training, the environment could
also be modified to remove dependencies that make the code
unusable on headless machines. Without this limitation, the
agents could train on better hardware for a more extended
amount of time.

Currently, the reward function does not dissuade the agent
from learning large rotational velocities, drastically slowing
progress. These rotational velocities can be seen in Figure 7.
This issue may be caused by naive reward function shaping,
so more time should be spent testing the reward function on
different proposed actions.
Finally, more stochasticity should be added to the sce-

nario. Due to this project’s time constraints, it was assumed
it would be easier to train the agents in a single scenario with
no noise in the starting or goal positions. For this work to gen-
eralize to the real world or even more complex simulations,
the agents should be trained on either random scenarios,
fixed complex scenes, or a combination of both.

5 CONCLUSION
In this work, a new end-to-end collision avoidance method
was proposed utilizing deep reinforcement learning and
depth maps. While the method, in its’ current state, does
not produce optimal paths to the agent’s goal, this lays a
promising foundation for future work.

REFERENCES
[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel

Fong, Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and
Wojciech Zaremba. 2017. Hindsight experience replay. In Proceedings
of the 31st International Conference on Neural Information Processing
Systems. 5055–5065.

[2] Maxime Chevalier-Boisvert. 2018. gym-miniworld environment for
OpenAI Gym. https://github.com/maximecb/gym-miniworld.

[3] Reinis Cimurs, Jin Han Lee, and Il Hong Suh. 2020. Goal-oriented
obstacle avoidance with deep reinforcement learning in continuous
action space. Electronics 9, 3 (2020), 411.

[4] Ioannis Karamouzas, Brian Skinner, and Stephen J Guy. 2014. Universal
power law governing pedestrian interactions. Physical review letters
113, 23 (2014), 238701.

[5] Pinxin Long, Tingxiang Fanl, Xinyi Liao, Wenxi Liu, Hao Zhang, and
Jia Pan. 2018. Towards optimally decentralized multi-robot collision
avoidance via deep reinforcement learning. In 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 6252–6259.

[6] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. 2017. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347 (2017).

[7] Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha. 2011.
Reciprocal n-body collision avoidance. In Robotics research. Springer,
3–19.

[8] Keyu Wu, Mahdi Abolfazli Esfahani, Shenghai Yuan, and Han Wang.
2018. Learn to steer through deep reinforcement learning. Sensors 18,
11 (2018), 3650.

https://github.com/maximecb/gym-miniworld

	Abstract
	1 Introduction
	2 Reinforcment Learning Methodology
	2.1 Environment
	2.2 Proximal Policy Optimization

	3 Results
	4 Future Work
	5 Conclusion
	References

