
Simple Augmented Reality in OpenCV
Daniel Finger

CPSC 4820, Clemson University, Clemson SC, USA

E-mail: dzfinge@g.clemson.edu

Abstract:

Over the past few weeks in this course, we have worked on object detection (using aruco markers), camera

calibration and facial detection; while working on these topics I became intrigued by the wide variety of

usages they have, specifically augmented reality. This paper is aimed in attempting to demonstrate a simple

creation of augmented reality aided by aruco markers.

Introduction

Coming into this class I had no prior knowledge on what an Aruco marker was, how to operate OpenCV,

nor did I have any experience in facial detection, camera calibration or image manipulation. My goal for

this project was to successfully track an aruco marker, determine its location and rotation on an image plane

and use this data to attach an object to these boundaries to create an image that acted like it was in the

image however its existence would be completely virtual. Initially I wanted my 3d object to be a high

quality render (reminiscent of an actual real life item: bench, chair, dog, person etc); however upon starting

the project I found I lacked the experience to implement a multi-level render with detail and mesh similar

to what I described above. After making this realization I decided to keep my same goals in tact but

reevaluate the detail in my rendered object, instead I would be rendering a bunch of 2d OpenCV draw

functions to create a 3d object reminiscent of a cube, sphere or cone. By implementing it this was I would

still be able to attach my object to the aruco marker but would be able to work with functions similar to

what I’d explored in previous assignments.

Using OpenCV to detect Aruco Marker Corners

To create a 3d image from the aruco marker I would first need

its boundary points so I could create a dynamic base for my

image to lie on. OpenCV has functions that allow one to detect

an Aruco Marker and return the X and Y coordinates for each

of its corners in an matrix. After calling this function and

extracting each x and y coordinate for all corners I was able to

produce a video that followed the aruco marker and highlighted

each corner in real time.

Single frame of the video shown to the right.

Each corner is color coated differently to make sure each

corner contains its correct coordinate value.

Creating a Boundary

After detecting each corner, I now had the information needed to draw a boundary around the entire aruco

marker. Each corner would be a start and endpoint of a line that together would encapsule the aruco

marker entirely.

mailto:dzfinge@g.clemson.edu

Detecting a Midpoint

At this point in the project, I decided my 3d object would be a triangular prism since there seemed to be a

plethora of cubes on the internet, I wanted to try something new. In order to create a triangular prism

though I would need the midpoint of the aruco marker. This was a fairly simple task to perform. I called

all 4 x values and averaged them to get a “midpoint x” and then did the same for the y values. After

creating a midpoint x and midpoint y value I could now use this coordinate pair to plot my midpoint on to

the video.

Determining Rotation

The most demanding task of this assignment was trying to determine my rotation coefficient so I could

show depth in my object by bringing it to the 3rd dimension. One way to solve this would be to use our

rvects (object containing our rotational values relative to the camera screen), however, I was curious if I

would be able to solve the rotation by hand since I had quite a few data points. I realized that when the

aruco marker was directly centered and straight to the camera its local rotation would be 0 degrees. With

that knowledge I could find its x dist and y dist to find its full dimensions. With the initial x and y dist

values I could extract new x dist and y dist values every frame and compare them to the original and

performing a few short math functions I could solve for the aruco markers local rotation. Since the aruco

markers local rotation on the x and y axis would be identical to that of the object I was rendering I would

be able to create an arrow protruding perpendicular to the center of the aruco marker.

Prism Creation

Now that I had an arrow perpendicular to the

midpoint of the aruco marker I could set that

arrow length to the height I wanted the

triangular prism to be. I would then just need

to gather the coordinates of the endpoint of

the arrow every frame and create a line

between it and all 4 corners to create a

triangular prism.

One Frame of the prism shown to the right:

With this implemented I now had a fully

augmented reality triangular prism in my

video that moves and rotates with the aruco marker.

