
Distraction Detection using Pose Estimation with
OpenCV and TensorFlow

Jacob Augustus Mellichamp∗
jakemellichamp@gmail.com

Clemson University
Clemson, SC, USA

Figure 1. Facial Detection and Rotation with OpenCV and TensorFlow

Abstract
Recently our society has been thrust into a work-from-home
centric workforce because of the COVID-19 pandemic. Soci-
ety transformed from working on job sites, learning in class-
rooms, and sweating-out projects in the library to computing
all these tasks on a centralized workstation from home. It has
thrown a wrench in work-life balance and I hypothesize that
∗Undergraduate Computer Scientist

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
, ,
© 2021 Association for Computing Machinery.
ACM ISBN . . . $
https://doi.org/

most people are suffering form copious distractions while do-
ing work remotely. This hypothesis inspired me to create an
application that could quantifiably measure an individual’s
attentive vs inattentive behavior while working remotely.
By using Python’s Tensor flow library for face detection and
OpenCV for facial rotation an application was developed to
test whether someone is engaging with their workstation.

CCS Concepts: • Computer Vision; • Pose Estimation; •
TensorFlow; • OpenCV;

Keywords: Python, neural networks, gaze detection, PnP

ACM Reference Format:
Jacob Augustus Mellichamp. 2021. Distraction Detection using Pose
Estimation with OpenCV and TensorFlow. In Proceedings of . ACM,
New York, NY, USA, 3 pages. https://doi.org/

https://doi.org/
https://doi.org/

, , Jacob Augustus Mellichamp

1 Introduction
1.1 TensorFlow Facial Detection
TensorFlow is an end-to-end open-source python library for
machine learning. That is, it contains the tools necessary to
create and train robust machine learning models. This soft-
ware has been available since late 2015 and is responsible for
developing thousands of machine learning models. Instead
of reinventing the wheel and training my own face detection
algorithm, I decided to utilize a pre-trained model for facial
detection. This model was published by Yin Guobing on
GitHub and detects 68 facial landmarks that can be utilized
in defining a face object[2].

Figure 2. Facial Detection implementation using CNN Clas-
sifier

2 OpenCV Pose Estimation
This is where the project deviates from supplied code to
experimental code. The Pose Estimation problem boils down
too calculating the relative rotation/orientation of the facial
object detected. Our class was assigned to solve this problem
in one of our previous Computer Vision assignments with
the use of Aruco Markers.
This is a notorious mathematical problem within Com-

puter Vision known as the Perspective-n-point problem (PnP).
[1] The “n” represents the number of known and identified
points in the image plain. The PnP problem is special because
it gives us away of solving the extrinsic camera properties
given predefined 2D coordinates, Realtime 3D coordi-
nates, and the intrinsic camera parameters from the cur-
rent camera.

Figure 3. Perspective-n-point problem equation

Therefore, when comparing a current image-frame to a
previously defined face detection model, the mathematical
function will be able to solve the Extrinsic Camera Properties
defined in Matrix R and T.
For this project I will only be concerned with the Ro-

tational Matrix R which can be computed with openCV’s
solvePNP() function.

2.1 Implementation Initial Short Coming
After finding the rotational matrix I thought my project was
finished, boom, easy. I simply converted the radian values
returned from the solvePnP function into degrees and dis-
played the information. However, although the rotational
matrix was solved and seemed to currently illustrate the
current rotation of my face. The actual roll, pitch, and yaw
values were extremely skewed about the camera.

Figure 4. Demonstrating Minimal Change to the Camera
Matrix and Skewness

Distraction Detection using Pose Estimation with OpenCV and TensorFlow , ,

For example, simply looking straight into the camera
yields an X rotation of -155 o when in reality it should be
0 or 180 degrees. A slight inconvenience, but something I
could fix with adding weights to rotated axis values.

After adding weights, I then added timers and calculated
whether the user was paying attention to the camera by
examining whether or not the face was rotated within a
bound of (-15, 15) degrees for the Y- axis (head tilt) and (-10,
10) degrees for the X-axis (head turn).

2.2 Rotation Testing
Please Refer to Figure 6 at the end of the paper to review test
data.

3 Simple Approach
Looking at 23.9 percent-error from the rotation matrix, to
simply put it, was not impressive. This was a computer vi-
sion inspired project, so I wanted to solve the problem using
a computer vision concept. I could not help but notice how-
ever, there are three facial marks on the nose marked by
Yin Guobing’s facial detector (basically the big-dipper star
constellation). Therefore, we can utilize two of those points
to make a line! Using some algebra and geometry we can
solve to find the slope of the nose-line and then calculate the
angle via an arc-tan function:

3.1 Arc-Tan Testing
Please Refer to Figure 7 at the end of the paper to review test
data.
This means that when a user is facing the camera, the

angle will be small (or 90 degrees if perfectly straight) and as
the user looks away from the camera, the angle will increase!
Let’s compare results:

4 Conclusion
All in all, it was a fun experimental project to predict distrac-
tions via a pose estimation algorithm. It took me down the
rabbit holes of TensorFlow, facial markers, the PnP problem
(and actually understanding it!), as well as some geometric
functions. It also expanded my problem solving skills as I
was initially derailed with the rotation matrix being. . . not
so accurate. The geometric example was clearly the more ac-
curate of the two functions but failed if the user was looking
downward at a phone screen. With more time and patience,
a better Pose Estimation algorithm could probably be devel-
oped to detect when a user is distracted or not.

As I was creating this problem, I realized that pose estima-
tion in general can not determine if a user is currently being
distracted or not. Will it work most of the time? Yes, how-
ever this problem could be easily solved with an eye-tracking
algorithm instead of a pose estimation algorithm.

As a final note on performance, I was also experimenting
with fps times to minimize CPU usage when the algorithm

Figure 5. Theoretical image to show tangent line with noses

was running. By utilizing a 0.2 FPS (or one frame ever five
seconds) a 2.25 Ghz i5 intel processor was able to successfully
keep track of distractions with as little as 5% CPU usage
throughout the duration of the tracking without an external
graphics card!

References
[1] Satya Mallick. 2016. Head Pose Estimation using OpenCV and Dlib.

Retrieved April, 15 2021 from https://learnopencv.com/head-pose-
estimation-using-opencv-and-dlib/

[2] Ying Veytsman. [n.d.]. HeadPose Estimation. Retrieved April, 10 2021
from https://github.com/yinguobing/head-pose-estimation

https://learnopencv.com/head-pose-estimation-using-opencv-and-dlib/
https://learnopencv.com/head-pose-estimation-using-opencv-and-dlib/
https://github.com/yinguobing/head-pose-estimation

Test

Purpose Attentive Distracted Expected
Att.

Expected
Dis.

%
Error

1 Distracted Looking
Right

4.5 secs 55.5 secs 1.0 secs 59 secs 5.9 %
Error

2 Distracted Looking Left 7.2 secs 82.8 secs 2.0 secs 88 secs 5.9%
Error

3 Attentive Straight Face 53.2 secs 8.0 sec 60 secs 1.0 secs 11.3 %
Error

4 Attentive with variable
movement

54.78 secs 18.22sec 72 secs 1.0 secs 23.9 %
Error

Figure 6. Testing Distraction vs attentiveness with rotation matrix

Test

Purpose Attentive Distracted Expected
Att.

Expected
Dis.

%
Error

1 Distracted Looking
Right

5.5 secs 54.5 secs 0.0 secs 60 secs 9.1 %
Error

2 Distracted Looking Left 5.2 secs 54.8 secs 0.0 secs 60 secs 8.6%
Error

3 Attentive Straight Face 59.1 secs 0.9 secs 60 secs 0.0 secs 1.5 %
Error

4 Attentive with variable
movement

57.5 secs 2.5 secs 60 secs 0.0 secs 4.2 %
Error

5 Looking Down at Phone
Screen

50.0 secs 10.secs 0 secs 60.0 secs 83.3%
error

Figure 7. Testing with the Tangent angle

	CPSC_4820_Final
	Abstract
	1 Introduction
	1.1 TensorFlow Facial Detection

	2 OpenCV Pose Estimation
	2.1 Implementation Initial Short Coming
	2.2 Rotation Testing

	3 Simple Approach
	3.1 Arc-Tan Testing

	4 Conclusion
	References

	ref

