
Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Augmented Reality Chess Using OpenCV and OpenGL
Jay Skrobola

jskrobo@clemson.edu

Figure 1: Chess pieces being superimposed onto a real-world chessboard

ABSTRACT
The goal of this project was to provide users with a unique version
of chess presented in an augmented reality format. The potential of
applications using augmented reality are nearly endless, and this
project is meant to as an introduction to what I see to be a beyond
exciting field. My lack of experience in OpenGL going into this
project added a large amount of complexity to the project, how-
ever I feel that, besides learning a new skillset, I have a newfound
appreciation for professionals in computer graphics.
ACM Reference Format:
Jay Skrobola. 2021. Augmented Reality Chess Using OpenCV and OpenGL.
In Proceedings of CPSC 4820: Final Project (CPSC 4820). ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The entirety of this project was completed using OpenCV and
OpenGL, all written in Python. In order to provide a medium for
users to move pieces, as well as a way to track each pieces loca-
tion and pose, 32 individual ArUco markers were utilized. Since
ArUco markers provide IDs, it was simple to discern which marker
belonged to which piece. OpenCV was used to track each ArUco
marker and provide pose estimation. These rotation and transi-
tion matrices were then used by the OpenGL module to draw each
model. OpenGL includes a steep learning curve, so while I was able
to successfully draw the objects for the most part, I believe this

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CPSC 4820, April 20, 2021, Clemson, SC
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

portion of the project could be significantly improved with more
experience.

Figure 2: Overview of the chessboard and ArUco markers

2 ARUCO TRACKING
As noted in the introduction, OpenCV was the primary library
used for tracking and pose estimation in this project. However,
before the ArUco markers could be utilized, the program needed
to receive the camera matrix and distortion coefficients in order

2021-04-19 05:56. Page 1 of 1–3.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

CPSC 4820, April 20, 2021, Clemson, SC Skrobola

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

to account for variations with each user’s camera. I chose to solve
this by providing a separate program that must be run once before
the user ever runs the main program. This program simply looks
at the user’s empty chessboard and is able to calibrate using the
information it gathers (OpenCV provides very useful findChess-
boardCorners and getOptimalCameraMatrix function). Once the
calibration values are created, they are stored locally in a yaml
file to be read by the main program from that point forward. The
detection of markers is extremely simple using OpenCV, as a single
function call returns the location of all markers found in a frame,
and a subsequent call provides the rotation and translation vectors
needed in OpenGL. OpenCV also provides a simple way to draw
frames around each detected marker, which was extremely useful
for debugging purposes.

Figure 3: ArUco markers detected using OpenCV

3 LEARNING OPENGL
Coming into this project, I had no experience with OpenGL what-
soever. This provided a pretty extreme hurdle that I needed to over-
come with this project. While documentation on using OpenGL
in an augmented reality application was sparse, I was able to find
some resources that used the library in a context similar to my own.
A quick reading of the base OpenGL documentation also gave me a
much better idea of how the library is used, and what the important
concepts are. OpenGL is far different than any other library I have
ever used, so getting used to using it was a challenge, but once I
understood the base methodology, the rest was not too bad.

3.1 Pose Estimation in OpenGL
While learning the concepts of OpenGL and configuring all the
settings correctly was challenging, the pose estimation portion of
OpenGL was actually extremely easy, mostly because I barely had
to use it. With the vectors returned from the ArUco markers, I was
able to call OpenCV’s Rodrigues function to create a matrix. This
matrix was converted into a projection matrix that could simply
be loaded into OpenGL before each model was drawn. Any other
adjustments that I wanted to make could also be achieved with
some simple matrix math.

4 3D MODELS
The next step was to implement the 3D models for each of the
chess pieces into the program. While OpenGL provides a few 3D
models, unfortunately none of them look like chess pieces, so I had
to figure out how to bring my own models into my application.
I was fortunate to find a script included in the PyGame library
that was able to translate an Obj file from blender into a series of
OpenGL calls necessary to draw each model. Some slight changes

to this script made it extremely easy to import any 3D model into
my program, and I was lucky enough to find plenty of free models
for all of the chess pieces. The calls created by this object loading
could be organized into OpenGL call lists so that each object could
be drawn on command without having to repeat the entirety of the
calls. Textures for these objects were also easy to implement. Using
a single function call, either a white or black texture could be loaded
into OpenGL to specify what the color of the next object should be.
Both the color and piece type of each marker is determined by the
marker’s ID, and are arranged in a specific manner.

Figure 4: 3D Chess Models being drawn in real-time

5 FUTURE POSSIBILITIES
Unfortunately there were some features that I wanted to include in
this application that I was not able to get to work correctly, so they
were not included in the final program. I had previously wished to
have the application track the location of each piece in the context
of the game. In other words, I would have like the application to
know when the game was in check or checkmate. I attempted to
achieve this by using OpenCV’s chessboard function and looping
through each individual square to look for a marker. However, I
could not get the function to work correctly on the entirety of the
board, nor would it work if there were markers on the board. My
next attempt was to use point projection to try and check each
square in relation to a piece and where it could possibly go. Using
this method, I was able to draw lines on the image showing each
piece’s range of motion, however this feature could not account
for the rotation of the piece, the location other pieces, nor for the
size of the board, so I chose to comment it out. I believe all of these
features are feasible with enough time, but my lack of experience
using these made it very difficult.

6 OTHER DOWNFALLS
The result of drawing the models left a lot to be desired from what I
wanted out of my final product. For an unknown reason, the models
like to shake around. They also like to stray from their ArUco

2021-04-19 05:56. Page 2 of 1–3.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Augmented Reality Chess Using OpenCV and OpenGL CPSC 4820, April 20, 2021, Clemson, SC

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 5: Jumbled Mess that is the range-of-motion feature

markers depending on where they are in the frame. I tried many
methods to solve these issues, from re-calibrating the camera, to

double checking the projection matrix process, but nothing seemed
to resolve them. Once again I feel this is more than likely just a
result of my lack of experience with OpenGL, but even searching
on the internet for similar problem produced little to no results.
Hopefully this is something I can fix in the future.

7 CONCLUSION
This program gave me a tremendous insight into artificial reality
and computer graphics, two topics that I had great interest in, but
very little experience with leading up to this application. I have
a newfound respect for those who produce these applications on
the consumer scale, as it can be very difficult to interface the real
and virtual worlds through a camera. Overall, I thoroughly enjoyed
working on this project, and I plan to continue working to become
more familiar with OpenCV and OpenGL, so that hopefully I will
be able to come back and complete this project to the point that I
had initially envisioned.

2021-04-19 05:56. Page 3 of 1–3.

	Abstract
	1 Introduction
	2 ArUco Tracking
	3 Learning OpenGL
	3.1 Pose Estimation in OpenGL

	4 3D Models
	5 Future Possibilities
	6 Other Downfalls
	7 Conclusion

