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Augmented Reality Chess Using OpenCV and OpenGL
Jay Skrobola

jskrobo@clemson.edu

Figure 1: Chess pieces being superimposed onto a real-world chessboard

ABSTRACT
The goal of this project was to provide users with a unique version
of chess presented in an augmented reality format. The potential of
applications using augmented reality are nearly endless, and this
project is meant to as an introduction to what I see to be a beyond
exciting field. My lack of experience in OpenGL going into this
project added a large amount of complexity to the project, how-
ever I feel that, besides learning a new skillset, I have a newfound
appreciation for professionals in computer graphics.
ACM Reference Format:
Jay Skrobola. 2021. Augmented Reality Chess Using OpenCV and OpenGL.
In Proceedings of CPSC 4820: Final Project (CPSC 4820). ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The entirety of this project was completed using OpenCV and
OpenGL, all written in Python. In order to provide a medium for
users to move pieces, as well as a way to track each pieces loca-
tion and pose, 32 individual ArUco markers were utilized. Since
ArUco markers provide IDs, it was simple to discern which marker
belonged to which piece. OpenCV was used to track each ArUco
marker and provide pose estimation. These rotation and transi-
tion matrices were then used by the OpenGL module to draw each
model. OpenGL includes a steep learning curve, so while I was able
to successfully draw the objects for the most part, I believe this
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portion of the project could be significantly improved with more
experience.

Figure 2: Overview of the chessboard and ArUco markers

2 ARUCO TRACKING
As noted in the introduction, OpenCV was the primary library
used for tracking and pose estimation in this project. However,
before the ArUco markers could be utilized, the program needed
to receive the camera matrix and distortion coefficients in order
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to account for variations with each user’s camera. I chose to solve
this by providing a separate program that must be run once before
the user ever runs the main program. This program simply looks
at the user’s empty chessboard and is able to calibrate using the
information it gathers (OpenCV provides very useful findChess-
boardCorners and getOptimalCameraMatrix function). Once the
calibration values are created, they are stored locally in a yaml
file to be read by the main program from that point forward. The
detection of markers is extremely simple using OpenCV, as a single
function call returns the location of all markers found in a frame,
and a subsequent call provides the rotation and translation vectors
needed in OpenGL. OpenCV also provides a simple way to draw
frames around each detected marker, which was extremely useful
for debugging purposes.

Figure 3: ArUco markers detected using OpenCV

3 LEARNING OPENGL
Coming into this project, I had no experience with OpenGL what-
soever. This provided a pretty extreme hurdle that I needed to over-
come with this project. While documentation on using OpenGL
in an augmented reality application was sparse, I was able to find
some resources that used the library in a context similar to my own.
A quick reading of the base OpenGL documentation also gave me a
much better idea of how the library is used, and what the important
concepts are. OpenGL is far different than any other library I have
ever used, so getting used to using it was a challenge, but once I
understood the base methodology, the rest was not too bad.

3.1 Pose Estimation in OpenGL
While learning the concepts of OpenGL and configuring all the
settings correctly was challenging, the pose estimation portion of
OpenGL was actually extremely easy, mostly because I barely had
to use it. With the vectors returned from the ArUco markers, I was
able to call OpenCV’s Rodrigues function to create a matrix. This
matrix was converted into a projection matrix that could simply
be loaded into OpenGL before each model was drawn. Any other
adjustments that I wanted to make could also be achieved with
some simple matrix math.

4 3D MODELS
The next step was to implement the 3D models for each of the
chess pieces into the program. While OpenGL provides a few 3D
models, unfortunately none of them look like chess pieces, so I had
to figure out how to bring my own models into my application.
I was fortunate to find a script included in the PyGame library
that was able to translate an Obj file from blender into a series of
OpenGL calls necessary to draw each model. Some slight changes

to this script made it extremely easy to import any 3D model into
my program, and I was lucky enough to find plenty of free models
for all of the chess pieces. The calls created by this object loading
could be organized into OpenGL call lists so that each object could
be drawn on command without having to repeat the entirety of the
calls. Textures for these objects were also easy to implement. Using
a single function call, either a white or black texture could be loaded
into OpenGL to specify what the color of the next object should be.
Both the color and piece type of each marker is determined by the
marker’s ID, and are arranged in a specific manner.

Figure 4: 3D Chess Models being drawn in real-time

5 FUTURE POSSIBILITIES
Unfortunately there were some features that I wanted to include in
this application that I was not able to get to work correctly, so they
were not included in the final program. I had previously wished to
have the application track the location of each piece in the context
of the game. In other words, I would have like the application to
know when the game was in check or checkmate. I attempted to
achieve this by using OpenCV’s chessboard function and looping
through each individual square to look for a marker. However, I
could not get the function to work correctly on the entirety of the
board, nor would it work if there were markers on the board. My
next attempt was to use point projection to try and check each
square in relation to a piece and where it could possibly go. Using
this method, I was able to draw lines on the image showing each
piece’s range of motion, however this feature could not account
for the rotation of the piece, the location other pieces, nor for the
size of the board, so I chose to comment it out. I believe all of these
features are feasible with enough time, but my lack of experience
using these made it very difficult.

6 OTHER DOWNFALLS
The result of drawing the models left a lot to be desired from what I
wanted out of my final product. For an unknown reason, the models
like to shake around. They also like to stray from their ArUco
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Figure 5: Jumbled Mess that is the range-of-motion feature

markers depending on where they are in the frame. I tried many
methods to solve these issues, from re-calibrating the camera, to

double checking the projection matrix process, but nothing seemed
to resolve them. Once again I feel this is more than likely just a
result of my lack of experience with OpenGL, but even searching
on the internet for similar problem produced little to no results.
Hopefully this is something I can fix in the future.

7 CONCLUSION
This program gave me a tremendous insight into artificial reality
and computer graphics, two topics that I had great interest in, but
very little experience with leading up to this application. I have
a newfound respect for those who produce these applications on
the consumer scale, as it can be very difficult to interface the real
and virtual worlds through a camera. Overall, I thoroughly enjoyed
working on this project, and I plan to continue working to become
more familiar with OpenCV and OpenGL, so that hopefully I will
be able to come back and complete this project to the point that I
had initially envisioned.
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