
Eye Tracking with Phone Cameras
John Xue

Clemson University
Clemson, South Carolina, USA

zheyuax@g.clemson.edu

(a) Source (b) Grayscale (c) Gaussian blur (d) Thresholding (e) Openingmorphol-
ogy filter

Figure 1: Image preprocessing pipeline to isolate the pupil region.

ABSTRACT
We implement an inexpensive, post-processing eye-tracking sys-
tem that calibrates, models, and predicts gaze location on a screen
based on fixed position camera input. We also show the variety of
techniques employed to achieve these results.
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1 INTRODUCTION
Eye tracking and gaze detection has been used in a plethora of
applications and systems, from detecting driver drowsiness in real-
time [3] to evaluating learning and performance efficacy in educa-
tion [6]. With these applications comes a wide variety of hardware
configurations. As the need for reasonably-cost, accurate gaze track-
ing increases, limitations of expensivemodern eye-tracking systems
become more and more self-evident. Here we take advantage of
high-resolution cameras in smartphones, hardware that is widely
available, to do gaze tracking.

2 BACKGROUND
As mentioned earlier, gaze tracking takes place on many types of
hardware and eye-tracking systems. However, a lot of the research
uses expensive technologies, such as high-resolution images for
medical purposes and infrared LED lights to illuminate and increase
contrast of the pupil. Although these systems do accurately track
eye movement, they do so at the cost of availability.

Of the literature that utilizes mobile devices for gaze tracking,
most limit their scope to applying gaze tracking on the onboard
device screen with the front-facing camera. Krafka et al. took advan-
tage of the large audience of smartphone users by crowdsourcing
and generating a large dataset of head poses and training on that
dataset with multiple convolutional neural networks (CNN) for
robust gaze prediction [2]. Our system takes footage from phone
cameras and applies gaze prediction to an adjacent computer moni-
tor.

Figure 2: Obtaining facial landmarks from image with Dlib.

3 METHODOLOGY AND DESIGN
3.1 Getting Eye Region of Interest
There are many approaches to getting ROIs of facial features. How-
ever, some methods were better than other in terms of accuracy and
stability. Although Haar cascades are generally performant, both
the face and eye ROIs can move around drastically between frames.
We eventually settled upon the Dlib implementation of Histogram
of Oriented Gradients (HOG) linear classifiers and regression tree
ensembles [1] for face and facial landmark detection, respectively.
We find that their pretrained models gave us more stable results
from frame to frame compared to Haar cascades.

This model gives us 68 facial landmarks, corresponding to the
68 landmarks used in the iBUG 300-W dataset [4] that the model
trained on (see Fig. 2). We use points 37–48 to determine the left
and right pupil ROIs, making sure they are the same dimensions
and are anchored in the same position to help us in future image
transformations.

3.2 Detecting Pupil Location
Before determining the pupil location, we must reject all images
in where the subject has their eyes closed. We use the Eye Aspect
Ratio (EAR) metric [5] to determine the state of the eye, rejecting
the image if the EAR is below 0.25.

Otherwise, with our eye ROIs calculated, we apply preprocessing
on the image (see Fig. 1). We convert the image to grayscale, blur
the image with a 5 × 5 Gaussian kernel, isolate the darkest parts of
the eye with thresholding, and finally apply morphological filters
(erosion followed by dilation) with a 5 × 5 circular kernel. We find
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Figure 3: Combining the left and right pupil regions reduces
noise and results in an overall cleaner image.

Figure 4: Rendered pupil location using our pupil detection
process with respect to the corners of the eye.

this isolates most of the pupil region, while minimizing some extra
noise from other dark regions of the eye, such as the eyelashes.

However, we can exploit the symmetry of our eyes to effectively
keep only the pupils. The typical pair of eyes move synchronously
in the same direction when gazing at a particular point, making the
pupils roughly in the same location when overlayed one on top of
another. Since our left and right pupil ROIs are binary images and
are of the same dimensions, anchored to the same position relative
to the ROI, isolating the pupils is as simple as creating a composite
image of the two pupils through a pixel-wise logical-and operation
(see Fig. 3).
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Where 𝐿 and 𝑅 are the left and right pupil image intensities,
respectively. We then calculate the centroid of the composite image
using raw moments and consider that the approximate location of
the pupil.
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However, we also need a stable point that the pupil location can
be based with respect to. Fortunately we can use the existing facial
landmarks we have already found (using the corner of the right eye

Figure 5: Image used to calibrate gaze tracking system.
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Figure 6: Gaze prediction in action. The green circle repre-
sents the predicted gaze location, with the subject accord-
ingly looking at the center of the screen.

in this case) to create a vector that is the metric for our dataset (see
Fig. 4).

3.3 Creating the Dataset and Model
We create 25 video clips of a subject looking a particular calibration
point (see Fig. 5). Each of these clips are tagged and associated
with a pixel location on the screen ((1, 1), (1080, 1920), etc.). We
then calculate the corner-pupil vectors for all of the clips, with the
resulting pupil vector, screen vector relationship being our training
data.

With this data, we use least-squares regression to train a model
that contains quadratic features of the dataset ([𝑥2, 𝑦2, 𝑥𝑦, 𝑥,𝑦, 1]),
giving us a 2 × 6 matrix that is our model for predicting screen
pixel location based on the pupil offset. We decided use nonlinear
regression since gaze distance increases as the eyes look more
towards the sides.

3.4 Extracting Gaze Location
After obtaining the model, predicting gaze location of very straight-
forward; simply detect the pupil location relative to the corner of
the eye and run the model (see Fig. 6). However, despite the robust-
ness of the Dlib landmark detector, the corner-pupil vector will
still jitter and slip at a pixel level from frame to frame, which will
affect the stability of our gaze prediction. Fortunately, we apply a
Savitzky-Golay smoothing filter in both the 𝑥 and 𝑦-dimensions of
the input, giving us a stabler prediction path.
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4 RESULTS
The gaze system generally produces acceptable gaze predictions in
plausible pixel locations after calibration. Much of the variability
in the input data is mitigated by smoothing filters at the expense
of some accuracy in the outer extremes of the screen, where the
model tended to undershoot predictions.

5 CONCLUSIONS AND FUTUREWORK
Overall, our system provides a decent gaze tracking result given the
restrictions of resolution and hardware and runs in a reasonable
amount of time.

One limitation of this system, however, is that the user must
keep their head still in order to maintain accuracy of the model. A
direction to extend this system would be to implement head pose
estimation and integrate the direction and orientation the head is
pointing in into fitting the model, possibly using something more
sophisticated than a least-square regression, like a convolutional
neural network (CNN).

Another hurdle with the usability of the system is the process of
collecting calibration points. Currently, the user needs to manually

record and edit videos into video clips for each calibration point. An
improvement would be a way to automate the calibration process
with the computer and mobile device communicating with each
other.
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