
Aruco Marker Synthesizer
Alexander Tedrow
atedrow@clemson.edu

CPSC 4820

Figure 1: Sample output as viewed in Audacity

ABSTRACT
My goal with this project is to create a Synthesizer or
wave form like effect from the detection of Aruco mark-
ers. This is accomplished by generating wave forms
based off of detected Aruco marker Ids and then modu-
lating those wave forms based on positional data gath-
ered from the Aruco markers. The wave forms are gen-
erated and played as audio in real time and saved for
replay in an audio file.

KEYWORDS
Aruco Marker, Wave form, Frequency, Phase

ACM Reference Format:
Alexander Tedrow. 2022. Aruco Marker Synthesizer. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 2 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Aurcomarker detection has awide range of applications
in the world of computer vision. Most of these applica-
tions fall into the visual domain and use Aruco mark-
ers to manipulate some visual output. For my project
I am taking a different approach by applying Aruco
marker detection to the audio domain. By using Aruco
marker detection to manipulate the output of audio

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

I have created an Aruco marker synthesizer or wave
form generator.
To detect the Aruco markers I am using the OpenCV

library with python, and I am using the SciPy, numpy,
wave and simpleaudio libraries for generating wave
forms and outputting audio in real-time and writing to
a .wav file.

2 ARUCO MARKER DETECTION
Before detecting any Aruco markers the camera intrin-
sics and distortion matrix must be obtained. I accom-
plish this by feeding the program a short calibration
video of a calibration chessboard, and get the matrices
needed from the first several frames of the calibration
video.
After the camera intrinsics and distortion matrix are

obtained the program can parse through each frame
fed to it by the camera and detect any Aruco mark-
ers using OpenCV. The positional information of the
Aruco markers can be gained from the corners ob-
ject that is returned when calling detectMarkers()
with the X and Y positions for each detected marker
being given by corners[markerID][0][0][0] and cor-
ners[markerID][0][0][1] respectively. Once the posi-
tional data has been obtained and displayed it can be
used to generate and modulate an audio wave.

3 WAVE FORM GENERATION
Once all Aruco markers are detected within a frame
and I have obtained their positional information, I can
use the marker’s positional information to generate
a unique wave form. The type of wave is determined
by the Aruco markers ID with an ID of 0 producing a

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Alexander Tedrow

Figure 2: Example display of Aruco Marker Detection

sine wave, 1 producing a square wave, and 2 producing
a sawtooth wave. However, all Aruco markers in the
given dictionary are valid and will produce a wave form
based off of:

wave_type_ index = a ru co_ i d % 3

Other aspects of the wave forms I alter based on
the Aruco markers are the frequency and phase of the
wave forms. The frequency is modulated based on the
Y positioning of the marker and the phase is modulated
based on the X positioning. Converting the X position
data into a phase between −𝜋/2 and 𝜋/2 is trivial since
they both lie on linear scales. However, frequency is on
a logarithmic scale which makes the conversion from
the linear Y scale more complex. To convert X position
data into the frequency domain I need to perform:

min 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 × 𝑚𝑎𝑥 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑚𝑖𝑛𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑖𝑛𝑑𝑒𝑥
𝑚𝑎𝑥𝑖𝑛𝑑𝑒𝑥−1

Once I have obtained the frequency, phase, and wave
type for each detected they can be passed to my wave
generation method that will generate the wave and
output it directly to audio. While each wave type is gen-
erated differently through SciPy or numpy the general
form for the sinasoid equation goes as follows:

2𝜋 × (𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 𝑝ℎ𝑎𝑠𝑒) × 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡

𝑠𝑎𝑚𝑝𝑙𝑒𝑟𝑎𝑡𝑒

Where the current segment is the current point in the
duration of the waveform being generated, essentially
the time variable t as it is usually represented in the
sinasoid equation. This equation is then passed to its
respective wave type function and the given value is
added to the running value, so that multiple wave forms
can be combined together in real time to produce amore
complex wave form.

4 CONCLUSION
I consider this project to be successful as my program
is able to generate complex wave forms from the detec-
tion of Aruco markers in real time. While detecting the
Aruco markers in real time was fairly straight forward,
generating the wave forms and actually outputting au-
dio in real time proved to be much more of a challenge
with Python3. I found that many popular audio libraries
for Python2 have become depreciated with new ver-
sions of Python3. After trial and error with a few dif-
ferent libraries I found the simpleaudio library to be
both up-to-date and functional. The library is limited
in its functionality, but it allowed me to write a buffer
of data to audio output and worked with .wav file data
which was perfect for how I had set up my program.
There are some remaining issues with the program.

Producing sawtooth waves is particularly slow as SciPy
has to calculate several sinasoids to produce a sawtooth
wave and this significantly slows down the program.
Processing can be slow when there are several Aruco
markers on screen as well, and this leads to poor audio
output during real time operation of the program. This
may be able to be fixed with multi-threading, however I
have never attempted multi-threading with Python and
felt it was outside of my scope for this project. There is
also some slight audio issues with the wave generation.
Not all the waves generated line up exactly with each
frame so there is some slight stuttering on playback.

	Abstract
	1 introduction
	2 Aruco Marker Detection
	3 Wave Form Generation
	4 Conclusion

