
Augmented Reality with Aruco Marker Tracking in OpenCV and OpenGL
BENJAMIN BUCK, Clemson University, USA

Fig. 1. The Stanford bunny tracked to an Aruco marker using OpenCV and OpenGL.

1 INTRODUCTION
For my project, I aim to use OpenCV and OpenGL to create an
augmented reality application. The main goal is to provide the math
that allows transformation of the camera intrisics and extrinsics
as provided by OpenCV to the View and Projection matrices used
for rendering in OpenGL. As a demonstration that the math is
correct, I have tracked the Stanford bunny, as loaded from a .obj file,
onto an Aruco marker. In this project, I will be using the OpenGL
Compatibility profile for simplicity.

2 OPENCV CAMERA CALIBRATION
Firstly, I needed to calibrate my camera in OpenCV. I used a chess-
board pattern and captured multiple images of the chessboard in
different positions and orientations on the screen. I was careful to
include pictures with the chessboard in each corner of the frame,
as I found this improved the accuracy of the distortion coefficients
near the edges of the screen. OpenCV camera calibration returns a
camera intrisic matrix in the form and a list of distortion coefficients,

Author’s address: Benjamin Buck, bbuck@clemson.edu, Clemson University, Clemson,
South Carolina, USA, 29631.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
XXXX-XXXX/2022/5-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

in the following forms.

camera intrsic matrix =

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

 (1)

distortion coefficients =
[
𝑘1 𝑘2 𝑝1 𝑝2 𝑘3

]
(2)

Camera calibration was performed beforehand in a separate pro-
gram. These matrices were saved in a numpy .npz file to be loaded
into the AR program later.

3 OPENCV ARUCO MARKER DETECTION
In the AR program, I used OpenCV to detect Aruco markers in the
frame and to calculate the camera extrinsic properties with respect
to the markers. OpenCV outputs the camera extrinsic properties as
a translation vector and a rotation vector.

tvec =

𝑡𝑥
𝑡𝑦
𝑡𝑧

 (3)

rvec =

𝑟𝑥
𝑟𝑦
𝑟𝑧

 (4)

4 OPENGL COORDINATE SPACES
OpenGL uses a series of matrix multiplications to transform vertex
locations through a number of coordinate spaces before being ren-
dered to the screen. These matrices are known as the Model, View,
and Projection matrices. The Model matrix is used to transform
vertices from local coordinate space to global coordinate space. An

, Vol. 1, No. 1, Article . Publication date: May 2022.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Buck

example of this type of transform is importing a model into your
scene and translating, rotating, or scaling it to be at the correct
location in your scene. The View matrix is used to transform the
vertices from global coordinate space to camera coordinate space.
This orients the scene around the camera, using translation and
rotations. The Projection matrix transforms from camera space to
screen space. This application uses a perspective projection that
imitates the original camera based on the calibration coefficients.
Screen space is clipped to a cube from (−1,−1,−1) to (1, 1, 1) be-
fore rendering. Note that the Model and View matrices are often
combined into one ModelView matrix in OpenGL.

5 LOADING OBJECTS
I was able to easily load models from .obj files using the pywavefront
library. I also calculated the center of the model’s vertices and the
overall scale of themodel to help compute the translation and scaling
appropriate for the Model matrix. In this demonstration, I used the
classic Stanford bunny model. I translated it so that the center of
the bunny’s base was located at (0, 0, 0) in world coordinate space,
and scaled it so that it appears to fit on the Aruco Marker.

6 CALCULATING THE PROJECTION MATRIX
The most difficult bit of math to figure out was how to calculate
the Projection matrix to imitate the original camera’s projection. I
found some equations describing how to leverage OpenGL’s glFrus-
tum method to reproduce the projection matrix from the OpenCV
parameters. [1] However, these equations contain some order of
operations errors which I had to correct. The following equations
define how I used the OpenCV camera instrinsic parameters to cal-
culate the top, bottom, left, and right bounds for the frustum to
mimic the original camera.

left = 𝑛𝑒𝑎𝑟 · −𝑐𝑥
𝑓𝑥

(5)

right = 𝑛𝑒𝑎𝑟 · 𝑤 − 𝑐𝑥

𝑓𝑥
(6)

top = 𝑛𝑒𝑎𝑟 ·
−𝑐𝑦
𝑓𝑦

(7)

bottom = 𝑛𝑒𝑎𝑟 ·
ℎ − 𝑐𝑦

𝑓𝑦
(8)

Note that𝑤 and ℎ here are the width and height of the camera frame
in pixels. For the frustum, near and far clipping planes must be
defined. These may vary based on your scene, but I got good results
with 𝑛𝑒𝑎𝑟 = 0.001 and 𝑓 𝑎𝑟 = 1. Using these values in glFrustum
produces a fairly accurate reproduction of the camera’s projection.

7 CALCULATING THE VIEW MATRIX
The view matrix can be easily calculated from the camera extrinsics,
as provided in rvec and tvec by OpenCV. The first step is to load a
4𝑥4 identity matrix into for the ModelView matrix. Then, to convert
between the coordinate space, you must negate the z component of
both rvec and tvec.

tvec′ =

𝑡𝑥
𝑡𝑦
−𝑡𝑧

 (9)

rvec′ =

𝑟𝑥
𝑟𝑦
−𝑟𝑧

 (10)

Next, glTranslate can be used to directly apply the translation of
tvec to the view. Note that these operations are not commutative,
and the translation must be done first. Then, cv2.Rodrigues is used
to convert the rvec into a Rodrigues rotation matrix, which then
needs to be extended into a 4𝑥4 matrix, as follows.

𝑅00 𝑅01 𝑅02 0
𝑅10 𝑅11 𝑅12 0
𝑅20 𝑅21 𝑅22 0
0 0 0 1

 (11)

This extended rotation matrix can then be multiplied into the exist-
ing ModelView matrix using glMultMatrix.

8 MODEL TRANSFORMATIONS
Model transformations can be made to the ModelView matrix after
the View matrix has been created using glTranslate, glRotate, and
glScale. Especially in the case where multiple objects must be ren-
dered to the screen, you can use glMatrixPush and glMatrixPop to
keep these transformations separate, and you can "undo" them.

9 RENDERING OVER THE CAMERA FRAME
The easiest way to render the camera frame to the screen with
OpenGL is to temporarily set the Projection and ModelView ma-
trices to the identity, and then render a plane with 2D coordinates
(−1,−1), (1,−1), (1, 1), (−1, 1). These points must be given their re-
spective texture coordinates (0, 0), (1, 0), (1, 1), (0, 1). Flipping the
frame image vertically and binding it to a texture on this plane will
render it correctly behind all of the 3D objects in the scene.

10 FURTHER WORK
There are many good ways to further extend this work into a more
fleshed out application. Firstly, this application does not take the
distortion coefficients into account. This did not pose a problem
for me, but two solutions would be to undistort the camera frame
in OpenCV before rendering or actually implementing distortions
on the 3D models with a more complex vertex shader, using the
OpenGL Core profile. Another avenue of further work would be to
add animated models which could be tracked to the Aruco markers.

REFERENCES
[1] Kyle Simek. 2013. Calibrated cameras in opengl without glFrustum. http://ksimek.

github.io/2013/06/03/calibrated_cameras_in_opengl/

, Vol. 1, No. 1, Article . Publication date: May 2022.

http://ksimek.github.io/2013/06/03/calibrated_cameras_in_opengl/
http://ksimek.github.io/2013/06/03/calibrated_cameras_in_opengl/

	1 introduction
	2 OpenCV Camera Calibration
	3 OpenCV Aruco Marker Detection
	4 OpenGL Coordinate Spaces
	5 Loading Objects
	6 Calculating the Projection Matrix
	7 Calculating the View Matrix
	8 Model Transformations
	9 Rendering Over the Camera Frame
	10 Further Work
	References

