
Edge Piece Detection

Michael Smith

April 23, 2022

Abstract

Puzzle solving is an activity that is visually intensive and requires a fine attention to detail.
One part of puzzle solving that can be cumbersome is sorting each piece into a category of whether
or not it is an edge piece or not. This is the typical order of procedures for most puzzles as the
pieces must be taken out of the box, flipped over, and separated into like categories.

In an attempt to remove this fickle task that gets in the way of enjoyable puzzle solving, a
method for detecting edge puzzle pieces has been developed using computer vision. The method
has been implemented in python using Open-CV and linear algebra applications to determine
whether or not a puzzle piece is an edge piece or not an edge piece.

1 Introduction

Solutions for edge detection in computer vision are
widely used to determine the locations of lines.
Straight lines, in the case of determining the lo-
cation of edge pieces, was the obvious target of
detection for this method. Because of this, the
Hough transform implemented in Open-CV was
used to detect the edges of the puzzle pieces. This
implementation however did not accurately detect
the locations of straight edges in the image O.-C.
Developers n.d.

Because of the lack of results from the Hough
transform, a different approach was used to de-
tect the location of edge pieces. Rather than de-
tecting straight edges on the image, which can be
challenging given the resolution and quality of the
image, the distance from a bounding box edge of
a particular puzzle piece was taken. If the max-
imum distance for one of these sides on a puzzle
piece was below a certain threshold, then the piece
was highlighted as an edge piece. This general ap-
proach was inspired by the following stackoverflow
reference rikyeah n.d.

2 Image Manipulation

From the input image, some manipulation must be
performed on the original image to acquire more
pertinent data about the image.

2.1 Thresholding

The first step in finding the location of edge pieces
was to find the location of puzzle pieces in the im-
age. This required a filter that forced everything

below a certain gray-scale value to be black and ev-
erything above that value to be white. This func-
tion was used from the Open-CV library to make
the locations of puzzle pieces clear and set up the
image for the next step in image manipulation

Figure 1: Threshold of input image M. Developers
n.d.

2.2 Contours

After the threshold image was created, the black
and white image was passed to the Open-CV con-
tours function that outlined each puzzle piece with
coordinates marking the perimeter of each puzzle
piece. Once this operation was performed, a list of
coordinates for each piece was obtained and used
for functions in the rest of the method

One issue that arose was the additional con-
tours that were detected by the contours function
call even though those contours did not indicated
puzzle pieces. These were typically caused by par-

1



ticles on the white background that the picture
was taken. To prevent these contours from being
counted as puzzle pieces, an area check was per-
formed on each piece to ensure that the are of the
contour was above a certain margin.

3 Segmentation

Once the contours of each puzzle piece is obtained,
it is important to understand the relative direction
of each puzzle piece and how each puzzle piece
must be segmented.

3.1 Bounding Box

To get some idea of the direction and additional
useful data of each puzzle piece, the minimum
rectangle that can be created around each puz-
zle piece was created to bound each piece with
a rectangle that encompasses the minimum area
that the contours of the puzzle piece could take
up. The coordinates of these boxes proved benefi-
cial when testing each side for its feature.

3.2 Contour Division

Once the box was created, the puzzle piece had
to be divided into sides in some way. One method
that was originally approached was the Harris cor-
ner detector implemented in Open-CV. Like the
issue with the Hough transform, the Harris cor-
ner detector implemented in Open-CV was too
dependent on the quality of the image and strug-
gled with detecting the correct corners. Because of
this issue, the problem was generalized by drawing
lines that connect the corners of each bounding
box. These intersecting lines were used in seg-
menting the existing contour on the basis of each
point’s orientation to the lines created.

The cross product of each contour was taken
with respect to the two vectors defining the diag-
onal line created in the previous step. This calcu-
lation was given by the following.

⃗(p− a)× ⃗(b− a) < 0 (1)

p in this case, represented by p⃗, is the point to
be tested against the lines that are defined by a⃗
and b⃗. When this computes to a value less than
0, and the same segment satisfies the relationship
for the other diagonal, a new segmented contour
is created. This is repeated by inverting the above
relationship for the pair of diagonals manjeet04
n.d. Once all four combinations were used, the con-
tour was properly segmented nikhiltanna33 n.d.

Figure 2: Boxed puzzle piece M. Developers n.d.

Figure 3: Fully boxed puzzle pieces M. Developers
n.d.

4 Normalized Distance

Once the contour was divided into segments of
four, the feature of each side had to be determined.
Specifically, the challenge arose as to how to de-
termine one side of a puzzle piece was an edge, a
hole, or a knob. One way to determine this was
with each coordinates normalized distance away
from a given line.

4.1 Distance Calculation

To calculate the distance between each coordinate
and a given line, the line had to first be defined.
From the bounding box created in the setup phase
of this method, a line could be used from the co-
ordinates of the box. The edges of this box were
then used to obtain the normal distance of each
coordinate to this line. The line chosen for each
segment was the adjacent line of the given contour
segment.

2



The calculation was performed by the follow-
ing.

D =
||A⃗P × d⃗||

||d⃗||
(2)

Where d⃗ is the direction vector that defines the
box line segment and P defines the point being
tested. The output D is the perpendicular dis-
tance that the point is away from the line segment
used for the computation DotPi n.d. These values
were first smoothed and then plotted.

Figure 4: Distance plot of hole feature M. Devel-
opers n.d.

M. Developers n.d.

4.2 Rolling

An issue occurred when computing the distances
from the segments created and the lines defined by
the bounding boxes of the puzzle pieces. Based on
the location that the contours function started in
Open-CV, the segment was occasionally not cre-
ated as one continuous list of coordinates. Because
of this, a rolling operation had to be performed on
the contour to prevent the distance results from
being tarnished by a lack of continuous data N.
Developers n.d.(b).

5 Feature Plots

The smoothed list of distance values for each seg-
ment created a defining relationship for each of
the respective puzzle features. The values needed
to be smoothed by a convolution step, because
the contours obtained represented discrete val-
ues. These discrete values created noise in the
distance output that needed to be reduced to cre-
ate a clear relationship. Based on the shape of
the graph created, a clear decision of whether or

not a segment was a hole, knob, or edge feature
could be determined. This approach was from
the numpy.convolve method N. Developers n.d.(a)
The feature plot for a hole was given above in 4;
the others are given below.

Figure 5: Distance plot of edge feature M. Devel-
opers n.d.

Figure 6: Distance plot of knob feature M. Devel-
opers n.d.

The plots are inverted because the distance is
being calculated from a line outside of contour.
This means that knobs are closer to this line than
holes for example. This gives a clear indication for
the feature detected on each segment.

6 Classification

Despite the fact that holes and knobs could be de-
tected, the main objective of this method was to
determine the presence of edges. To differentiate
between distance data-sets, a defining character-
istic of the edge plot had to be used. The maxi-
mum value of the edge plot is much smaller than
the maximum value from all other plots. This

3



is because the edge features lies completely flat
against the minimum spanning rectangle. This
minimizes the distance between the edge piece and
the bounding box line segment.

While there are far more elegant solutions to
classify each side as an edge piece or not an edge
piece, classifying each piece as an edge piece if it
has a plot maximum below some constant arbi-
trary value that prevented knob and hole pieces
from being detected if they were not edge pieces.

Figure 7: Final detected edge pieces M. Develop-
ers n.d.

The first assumption was to find a value that
clearly would not allow the wrong feature to be
classified, but then the potential for pictures taken
with larger puzzle pieces needed to be considered

as a larger puzzle piece might cause the distance
plotted in a straight edge plot to have a higher
maximum. The only reason that the edge plot
has a maximum larger than 0 in the first place is
because of how the puzzle piece was divided into
segments. In most cases, the segment created in-
cluded the other sides of the puzzle. The assump-
tion made is that the effective limit to segregate
edge pieces from non-edge pieces is some fraction
of the adjacent puzzle edge length. A fraction of
0.1 was used for this implementation as it allowed
for the smallest error.

7 Conclusion

The implementation of this method was challeng-
ing at first to identify the pieces and gather some
sort of object that was associated with each puzzle,
but it became easier when the method of thresh-
olding was used in conjunction with the Open-CV
contours function. This helped gain access to the
geometry of each puzzle piece and allowed the per-
formance of more linear algebra techniques to find
the distance between each bounding side and the
contours of each puzzle piece. Once it became
clear that an approach of taking the max of each
data set and determining if that number was less
than some preset number based on the size of the
input puzzle pieces, it was quick and easy to iden-
tify each puzzle piece as an edge piece. Now to
find the edge pieces in a puzzle, all one needs to
do is take a picture.

References

Developers, Matplotlib (n.d.).Matplotlib: Visualization with Python. url: https://matplotlib.org/.
(accessed: 04.22.2022).

Developers, Numpy (n.d.[a]). numpy.convolve. url: https://numpy.org/doc/stable/reference/
generated/numpy.convolve.html. (accessed: 04.22.2022).

— (n.d.[b]). numpy.roll. url: https://numpy.org/doc/stable/reference/generated/numpy.
roll.html. (accessed: 04.22.2022).

Developers, Open-CV (n.d.). Hough Line Transform. url: https://docs.opencv.org/3.4/d9/db0/
tutorial_hough_lines.html. (accessed: 04.22.2022).

DotPi (n.d.). Distance between point and a line (from two points). url: https://stackoverflow.com/
questions/39840030/distance-between-point-and-a-line-from-two-points. (accessed:
04.22.2022).

manjeet04 (n.d.). Python — Filter list by Boolean list. url: https://www.geeksforgeeks.org/
python-filter-list-by-boolean-list/. (accessed: 04.22.2022).

nikhiltanna33 (n.d.). How to invert the elements of a boolean array in Python? url: https://www.
geeksforgeeks.org/how- to- invert- the- elements- of- a- boolean- array- in- python/.
(accessed: 04.22.2022).

rikyeah (n.d.). Want to detect edge and corner parts in a jigsaw puzzle, but can’t find the 4 corners of
each piece. url: https://stackoverflow.com/questions/36703964/want-to-detect-edge-
and-corner-parts-in-a-jigsaw-puzzle-but-cant-find-the-4-co. (accessed: 04.22.2022).

4

https://matplotlib.org/
https://numpy.org/doc/stable/reference/generated/numpy.convolve.html
https://numpy.org/doc/stable/reference/generated/numpy.convolve.html
https://numpy.org/doc/stable/reference/generated/numpy.roll.html
https://numpy.org/doc/stable/reference/generated/numpy.roll.html
https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html
https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html
https://stackoverflow.com/questions/39840030/distance-between-point-and-a-line-from-two-points
https://stackoverflow.com/questions/39840030/distance-between-point-and-a-line-from-two-points
https://www.geeksforgeeks.org/python-filter-list-by-boolean-list/
https://www.geeksforgeeks.org/python-filter-list-by-boolean-list/
https://www.geeksforgeeks.org/how-to-invert-the-elements-of-a-boolean-array-in-python/
https://www.geeksforgeeks.org/how-to-invert-the-elements-of-a-boolean-array-in-python/
https://stackoverflow.com/questions/36703964/want-to-detect-edge-and-corner-parts-in-a-jigsaw-puzzle-but-cant-find-the-4-co
https://stackoverflow.com/questions/36703964/want-to-detect-edge-and-corner-parts-in-a-jigsaw-puzzle-but-cant-find-the-4-co

	Introduction
	Image Manipulation
	Thresholding
	Contours

	Segmentation
	Bounding Box
	Contour Division

	Normalized Distance
	Distance Calculation
	Rolling

	Feature Plots
	Classification
	Conclusion

