
Face Obfuscation
Trevor Nouvel

Clemson University - CPSC 4820

ABSTRACT
Facial recognition is a concept first pioneered in the 1960s . Woody
Bledsoe, Helen Chan Wolf and Charles Bisson attempted to detect
human faces with computers, however they were severely limited
by the technology at the times [1]. Since then, the technology has
evolved substantially and is used in a variety of applications. For
example,

Law enforcement agencies use it as a way to identify suspects or
other persons at the scene of a crime. Most mobile phone cameras
utilize facial recognition to focus on faces to capture better portrait
images. Social media companies are known to use it to identify users
who’s faces appear across multiple posts. Facebook has received
significant backlash as it could present a breach in privacy.

In today’s world, many applications present a dichotomy of
privacy and usefulness to society as a whole. Many still feel that
privacy is the most important aspect to one’s life, however.

KEYWORDS
fogging, censorship, face detection, obfuscation

1 INTRODUCTION
Fogging is a way to censor an object from view in a frame [2]. It
essentially blurs out a a section of a video or photo. This can be
seen in live-action television that blurs out faces or company logos.
Production crews blur out faces of persons who do not give consent
to be on camera. In addition, they will blur out company logos. The
reasoning is to avoid lawsuits as the film could paint a person or
company in a bad light.

It is important to allow people to blur themselves from an image
or video. The photo or video can keep its integrity as well as the
person who may incidentally appear in it.

2 BACKGROUND AND RELATEDWORK
In Section 1, it was mentioned that facial recognition has come a
long way. Modern programming languages can utilize libraries to
assist this process. A popular library is OpenCV. Originally written
in C/C++, it can be imported into Python as well [3]. Developers
have access to a multitude of functions that can be manipulated to
work to a desired effect. For example, the sensitivity of detection
and facial feature to be detected can be changed.

Cascades. OpenCV uses Haar cascade filters. Created by positive
samples of a region of interest (ROI), the cascades are trained to
identify certain properties of the face [4].

2.1 Overview of the design
There are several methods to censor a face from a frame. In Figure 1,
a Gaussian blur is applied to the woman’s face. Gaussian blur is
meant to reduce noise and detail of an image [5]. Another method
of censorship is to pixelate the face.

Figure 1: Facial Fogging

3 METHODOLOGY/DESIGN
Face obfuscation requires a face(s) to be detected then censored.
This requires several steps to properly implement:

First, all faces must be found. Videos will require to be read frame
by frame while tracking each face. OpenCV offers the DNN Mod-
ule (Deep Neural Networking). The module allows a user to load
different models for the deep learning [6]. One useful framework
comes from Berkeley AI Research (BAIR) called Caffe [7]. It takes
in a two files: *.prototxt and .caffemodel. The prototxt defines the
architecture of the model, and the caffemodel holds the weights for
the layers [8]. With the help of the DNN, faces are detected quickly
and effectively.

Users are given an option to censor faces on an image (*.jpg) or
video (*.mp4) in a window. After selection, the user will be prompted
for obfuscation by blur or pixelation. The program also allows the
user to choose the level of censorship by factors.

3.1 Gaussian Blur
A Gaussian filter is executed by convolution of each point in the
region of interest with a Gaussian kernel [9]. The sum of the con-
volutions is returned to the frame over the face. Thus, the face is
blurred. OpenCV has implemented this function.

Figure 2: 2D Gaussian Blur Formula



3.2 Pixelation
In order to pixelate the face, the region of interest must be deter-
mined. The user defines a number of "blocks" to be displays over
the face. Then, the mean RGB values of each block are calculated
and placed in a rectangle. This occurs in the x and y directions.

Figure 3: Mean RGB and Rectangle

4 RESULTS
Overall, the program worked how expected. Faces were easily de-
tected with the help of the Deep Neural Network. I felt that this
was a cleaner way for face detection rather than simply using Haar
cascade filters. It also seemed to offer more reliability for head
movements.

It is important to find the correct region of interest of the face.
This allowed me to easily execute blurring and pixelation. The
implemented Gaussian blur function in OpenCV was very helpful
as well. However, I had to find a way to pixelate the region of
interest which took a little more time.

Unfortunately, I was unable to implement a few features I wished
to. Having the ability to choose a specific face to censor was desired.
This could be done with a face object class with an update function
to "remember" faces. Or, I could train the model myself with a
specific face to be censored if detected.

There are many more applications to using DNNs as well. With
the accuracy and precision of object detection, one could try over-
laying images over the face. Snapchat is a good example of this.

5 CONCLUSION
Overall, this was a satisfying and fun project to implement. Despite
some shortcomings in the addition of some features, the program
runs as expected and censors all faces on a frame. I thought it
was important to give the users options for filetype, choice of file,
obfuscation type, and factor of obfuscation.

With so many cameras around the world, it is important to have
the ability to remove your face from an unwarranted picture or
video. It was very interesting to see how this can be done in code.

6 REFERENCES
[1] A brief history of facial recognition: https://www.nec.co.nz/
market-leadership/publications-media/a-brief-history-of-facial-recognition/
[2] Fogging (censorship): https://en.wikipedia.org/wiki/Fogging_
(censorship)
[3] Face Recognitionwith Python: https://realpython.com/face-recognition-with-python/
[4] Cascade Classification: https://docs.opencv.org/2.4/modules/
objdetect/doc/cascade_classification.html
[5] Gaussian blur: https://en.wikipedia.org/wiki/Gaussian_blur
[6] OpenCVDNNModule: https://learnopencv.com/deep-learning-with-opencvs-dnn-module-a-definitive-guide
[7] Caffe Framework: https://caffe.berkeleyvision.org
[8] FaceDetectionwithOpenCV andDeep Learning: https://pyimagesearch.
com/2018/02/26/face-detection-with-opencv-and-deep-learning
[9] Smoothing Images: https://pyimagesearch.com/2018/02/26/face-detection-with-opencv-and-deep-learning

2

https://www.nec.co.nz/market-leadership/publications-media/a-brief-history-of-facial-recognition/
https://www.nec.co.nz/market-leadership/publications-media/a-brief-history-of-facial-recognition/
https://en.wikipedia.org/wiki/Fogging_(censorship)
https://en.wikipedia.org/wiki/Fogging_(censorship)
https://realpython.com/face-recognition-with-python/
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://en.wikipedia.org/wiki/Gaussian_blur
https://learnopencv.com/deep-learning-with-opencvs-dnn-module-a-definitive-guide
https://caffe.berkeleyvision.org
https://pyimagesearch.com/2018/02/26/face-detection-with-opencv-and-deep-learning
https://pyimagesearch.com/2018/02/26/face-detection-with-opencv-and-deep-learning
https://pyimagesearch.com/2018/02/26/face-detection-with-opencv-and-deep-learning

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Overview of the design

	3 Methodology/Design
	3.1 Gaussian Blur
	3.2 Pixelation

	4 Results
	5 Conclusion
	6 References

