Introduction to Computer Vision

Week 3, Fall 2010 Instructor: Prof. Ko Nishino

Last Week

Image Sensing

- □ Our eyes: rods and cones...
- □ CCD, CMOS, Rolling Shutter
- Sensing brightness and sensing color
- Projective Geometry/Camera Calibration
 - Projection models: perspective, orthographic, weakperspective, and affine
 - □ Homogeneous coordinates (to and from)
 - □ Camera parameters: intrinsic and extrinsic
 - Camera calibration
 - Direct Linear Calibration: Total Least Square
 - □ Non-linear calibration

Measurements on Planes

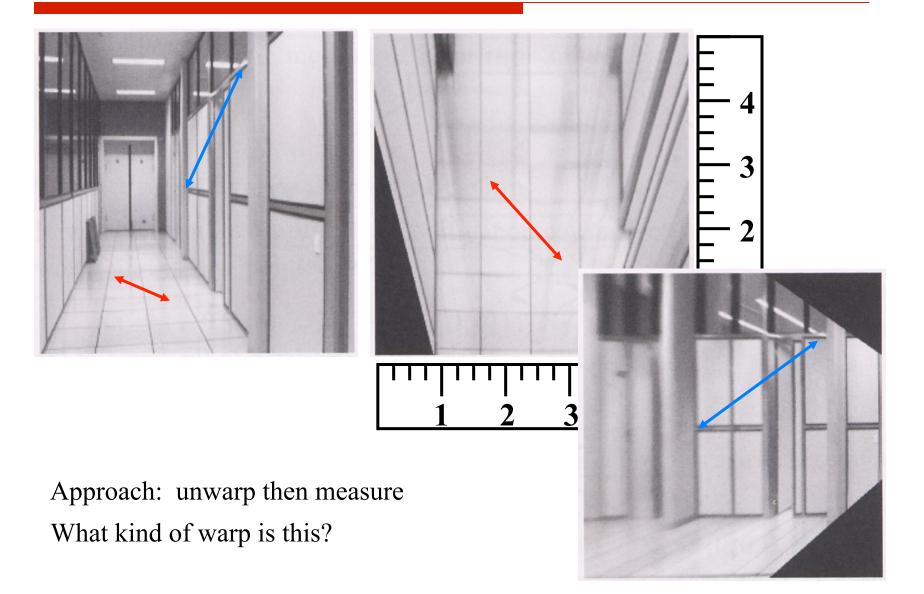


Image Rectification



To unwarp (rectify) an image

- solve for homography **H** given **p** and **p**'
- solve equations of the form: wp' = Hp
 - linear in unknowns: w and coefficients of H
 - H is defined up to an arbitrary scale factor
 - how many points are necessary to solve for **H**?

Solving for Homographies

$$\begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

$$x'_{i} = \frac{h_{00}x_{i} + h_{01}y_{i} + h_{02}}{h_{20}x_{i} + h_{21}y_{i} + h_{22}}$$
$$y'_{i} = \frac{h_{10}x_{i} + h_{11}y_{i} + h_{12}}{h_{20}x_{i} + h_{21}y_{i} + h_{22}}$$

$$\begin{aligned} x_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{00}x_i + h_{01}y_i + h_{02} \\ y_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{10}x_i + h_{11}y_i + h_{12} \end{aligned}$$

$$\begin{bmatrix} x_i & y_i & 1 & 0 & 0 & 0 & -x'_i x_i & -x'_i y_i & -x'_i \\ 0 & 0 & 0 & x_i & y_i & 1 & -y'_i x_i & -y'_i y_i & -y'_i \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Solving for Homographies

$$\begin{bmatrix} x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x'_{1}x_{1} & -x'_{1}y_{1} & -x'_{1} \\ 0 & 0 & 0 & x_{1} & y_{1} & 1 & -y'_{1}x_{1} & -y'_{1}y_{1} & -y'_{1} \\ & & & & & \\ x_{n} & y_{n} & 1 & 0 & 0 & 0 & -x'_{n}x_{n} & -x'_{n}y_{n} & -x'_{n} \\ 0 & 0 & 0 & x_{n} & y_{n} & 1 & -y'_{n}x_{n} & -y'_{n}y_{n} & -y'_{n} \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

$$\underbrace{\mathbf{A}_{2\mathbf{n} \times 9}} \underbrace{\mathbf{A}_{2\mathbf{n} \times 9}} \underbrace{\mathbf{A}_{2\mathbf{n}$$

п

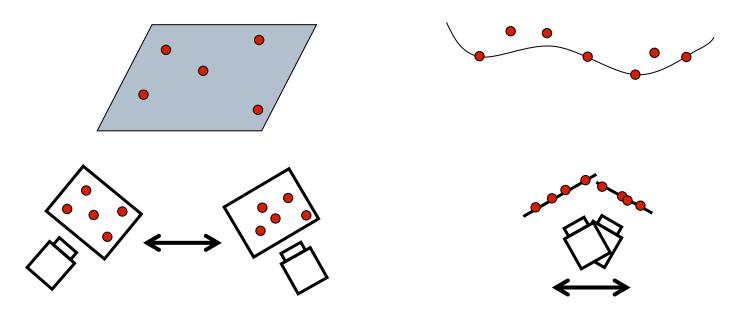
- Total least squares
 - Since **h** is only defined up to scale, solve for unit vector $\hat{\mathbf{h}}$ Minimize $\|A\hat{h}\|^2$ п

$$\|\mathbf{A}\hat{\mathbf{h}}\|^2 = (\mathbf{A}\hat{\mathbf{h}})^T \mathbf{A}\hat{\mathbf{h}} = \hat{\mathbf{h}}^T \mathbf{A}^T \mathbf{A}\hat{\mathbf{h}}$$

- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^{T}\mathbf{A}$ with smallest eigenvalue П
- Works with 4 or more points (more points more accurate) П

Homography

- Homography is a singular case of the Fundamental Matrix
 - □ Two views of **coplanar points**
 - Two views that share the same center of projection

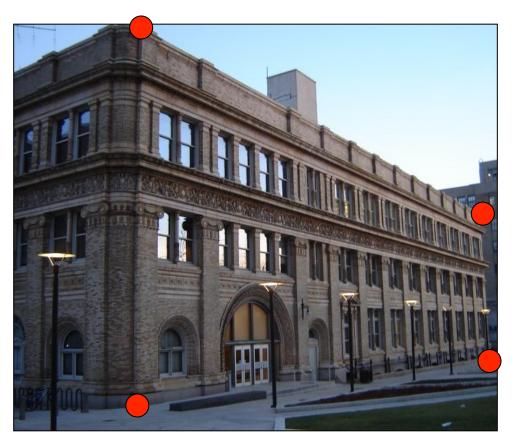


Project #1: Homography

Rectification

- □ Take two images of an object with a planar surface
- Make a fronto-parallel image of one of the planar surfaces
- □ Submit results for three images including the test
- Compositing
 - □ Take two images
 - Composite the entire or part of one image into another using the homography of corresponding regions
 - □ Submit results for three images including the test
 - Planar Mosaic (Extra Credit)

Rectification



This is your test image

Rectification

Compositing

This is your test image set

Composite

- □ Need not be rectangular
- □ Masking and Blending

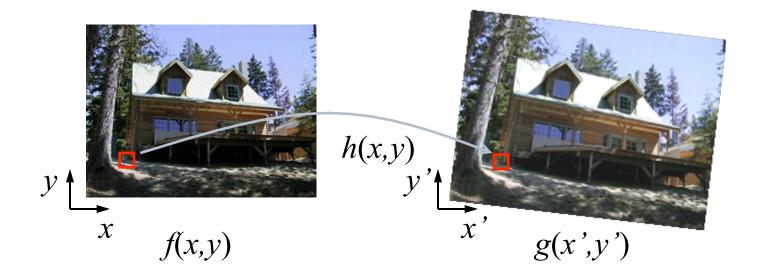
Planar Mosaic (Extra Credit)

Note that the COP is the same

Ingredients

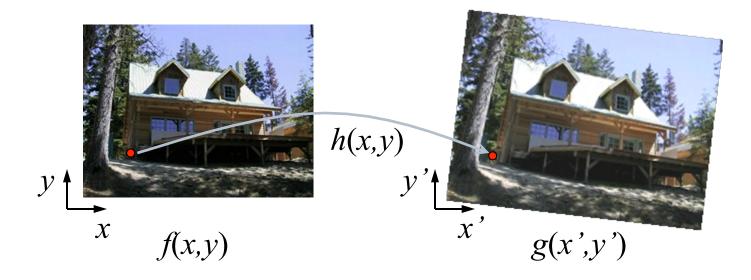
- Take good images
- Specify correspondences (manual)
- Compute homography
 - □ Solve with eigen decomposition
- Apply homography
 - □ Warping
 - □ Interpolation
 - □ Masking
 - □ Blending

Image Warping



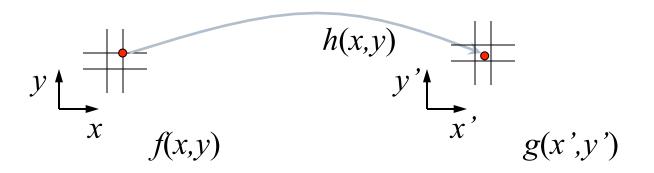
Given a coordinate transform (x',y') = h(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(h(x,y))?

Forward Warping



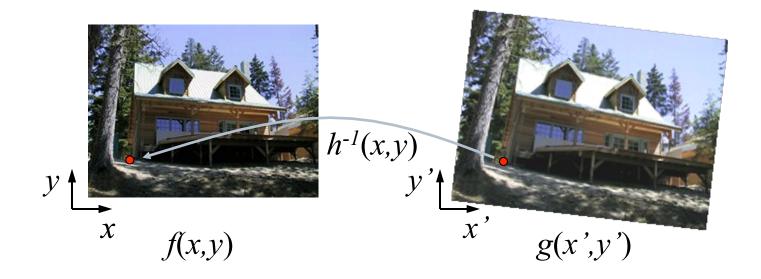
- Send each pixel f(x,y) to its corresponding location (x',y') = h(x,y) in the second image
- Q: what if pixel lands "between" two pixels?

Forward Warping



- Send each pixel f(x,y) to its corresponding location (x',y') = h(x,y) in the second image
- Q: what if pixel lands "between" two pixels?
- A: distribute color among neighboring pixels (x', y')
 - Known as "splatting"

Inverse Warping

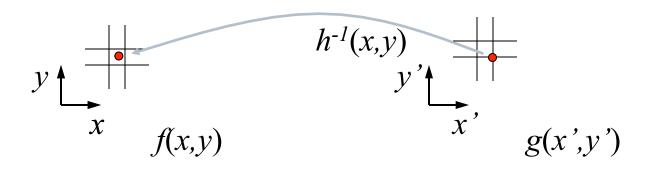


Get each pixel g(x', y') from its corresponding location

$$(x,y) = h^{-1}(x',y')$$
 in the first image

Q: what if pixel comes from "between" two pixels?

Inverse Warping



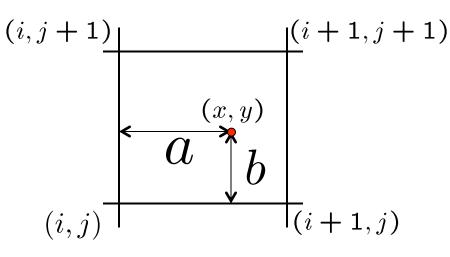
- Get each pixel g(x',y') from its corresponding location $(x,y) = h^{-1}(x',y')$ in the first image
- Q: what if pixel comes from "between" two pixels?
- A: *resample* color value

Forward vs. Inverse Warping

- Q: which is better?
- A: usually inverse—eliminates holes
 - however, it requires an invertible warp function—not always possible...

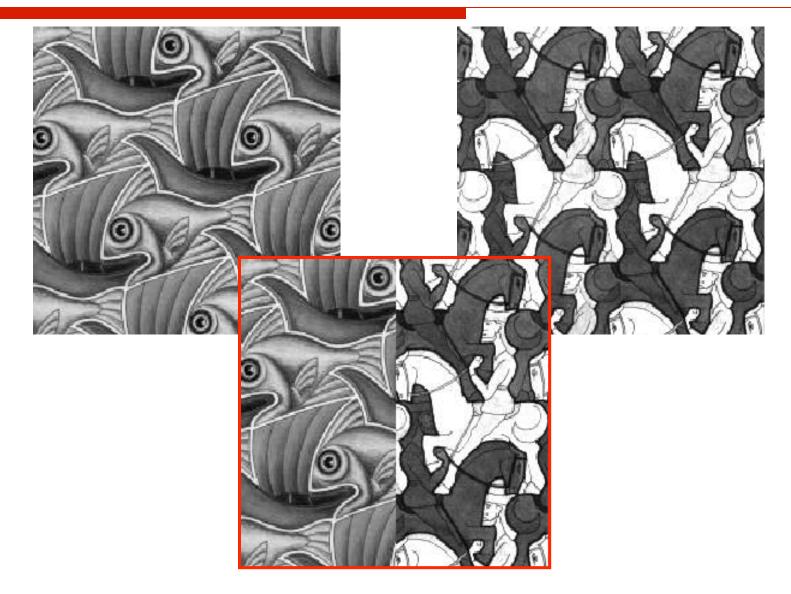
Bilinear Interpolation

• A simple method for resampling images



$$f(x,y) = (1-a)(1-b) \quad f[i,j] \\ +a(1-b) \qquad f[i+1,j] \\ +ab \qquad f[i+1,j+1] \\ +(1-a)b \qquad f[i,j+1]$$

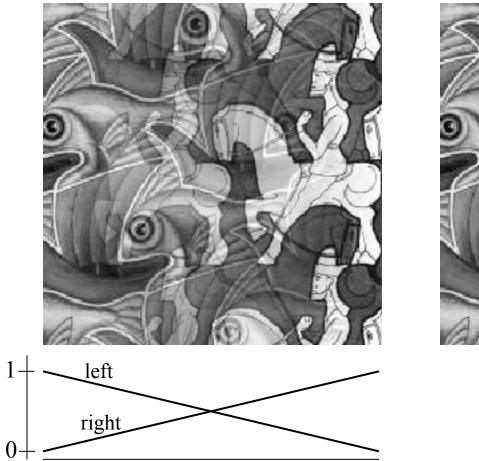
Image Blending

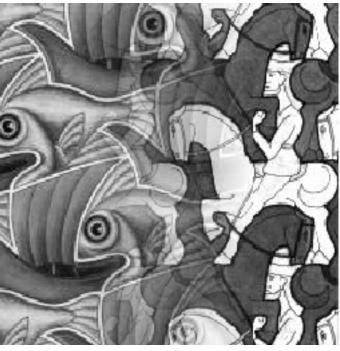


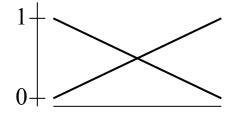
Feathering



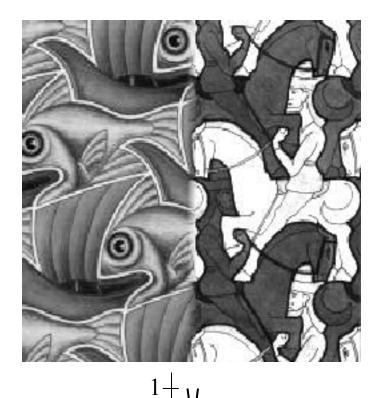
Effect of Window Size



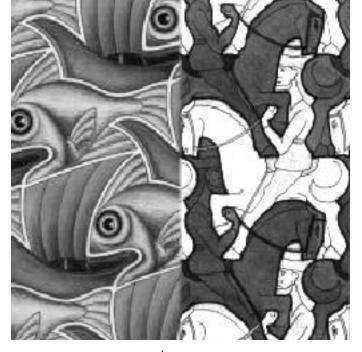




Effect of Window Size

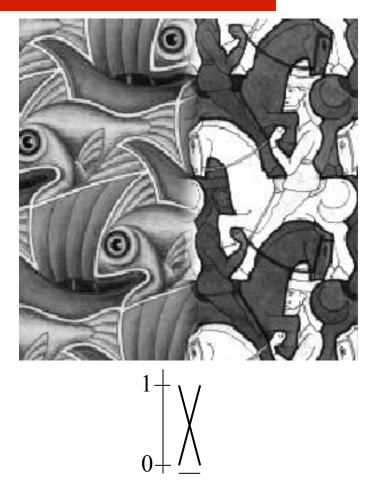


0+



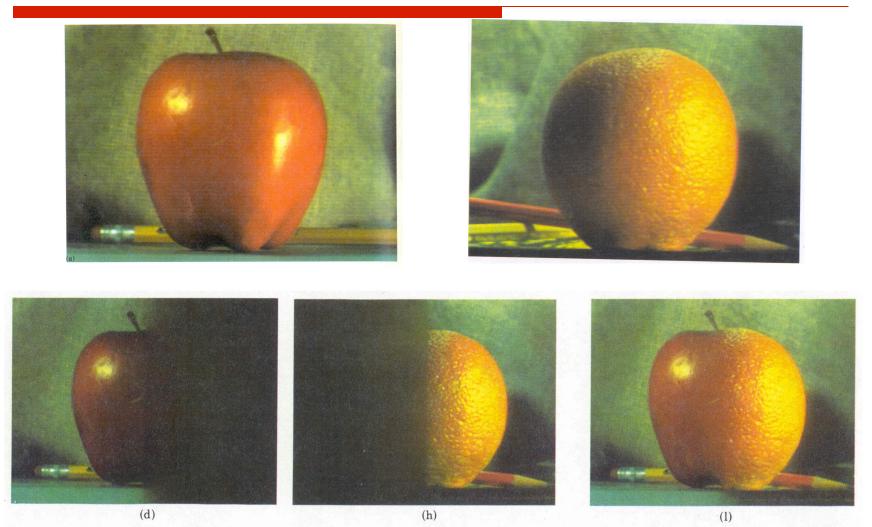
1-0+

Good Window Size

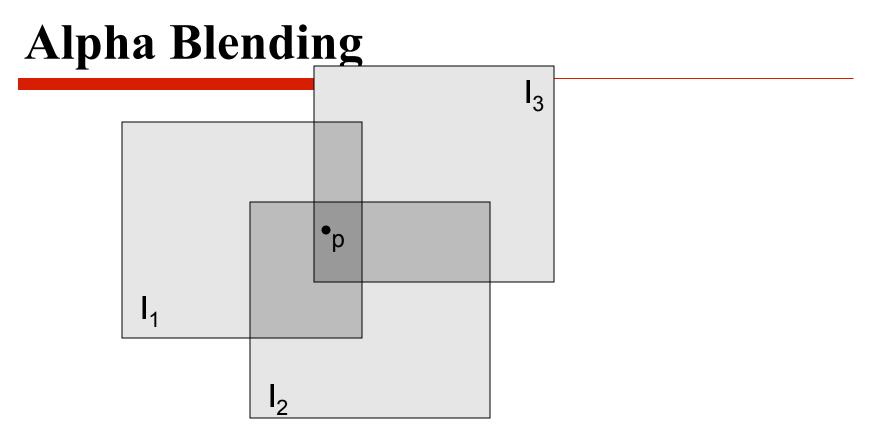


"Optimal" window: smooth but not ghostedDoesn't always work...

Pyramid Blending



Create a Laplacian pyramid, blend each level Burt, P. J. and Adelson, E. H., <u>A multiresolution spline with applications to image mosaics</u>, ACM Transactions on Graphics, 42(4), October 1983, 217-236.



Encoding blend weights: $I(x,y) = (\alpha R, \alpha G, \alpha B, \alpha)$ color at $p = \frac{(\alpha_1 R_1, \alpha_1 G_1, \alpha_1 B_1) + (\alpha_2 R_2, \alpha_2 G_2, \alpha_2 B_2) + (\alpha_3 R_3, \alpha_3 G_3, \alpha_3 B_3)}{\alpha_1 + \alpha_2 + \alpha_3}$

Implement this in two steps:

- 1. accumulate: add up the (α premultiplied) RGB α values at each pixel
- 2. normalize: divide each pixel's accumulated RGB by its α value

Q: what if $\alpha = 0$?

Poisson Image Editing

cloning

sources/destinations

seamless cloning

For more info: Perez et al, SIGGRAPH 2003

http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf

Project #1: Homography

Due 10/17 Sunday Midnight

- See the assignment web page for details (3 artifacts for each task)
- Skelton Code on the web
 - □ Fill in the empty functions
 - □ Write additional functions for extra credits
- Cameras!

Image Filtering (Continuous)

Reading: Robot Vision Chapter 6

What is an Image?

Image as a Function

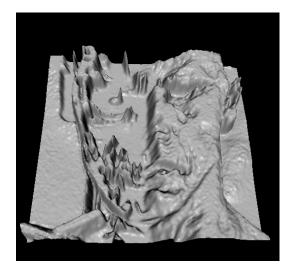
- We can think of an image as a function, *f*, from R² to R:
 - \Box f(x, y) gives the **intensity** at position (x, y)
 - Realistically, we expect the image only to be defined over a rectangle, with a finite range:

 $\Box f: [a,b] \mathbf{x}[c,d] \rightarrow [0,1]$

• A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

Image as a Function



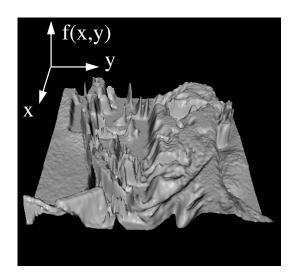


Image Processing

- Define a new image g in terms of an existing image f
 - \square We can transform either the domain or the range of f
- Range transformation:

$$g(x,y) = t(f(x,y))$$

What kinds of operations can this perform?

Image Processing

Some operations preserve the range but change the domain of *f* :

$$g(x,y) = f(t_x(x,y), t_y(x,y))$$

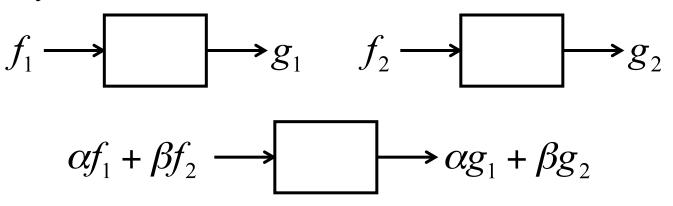
What kinds of operations can this perform?

Image Processing

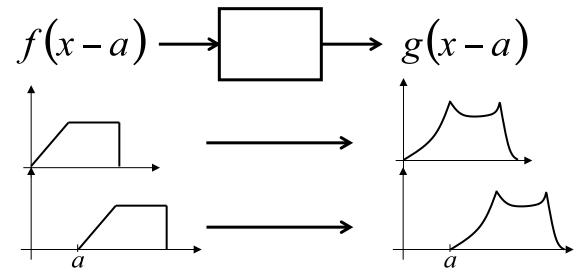
Still other operations operate on both the domain *and* the range of f.

Linear Shift Invariant Systems

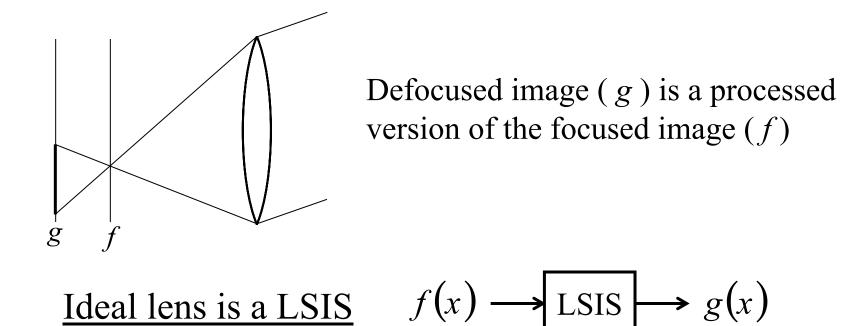
Linearity:



Shift invariance:



Example of LSIS

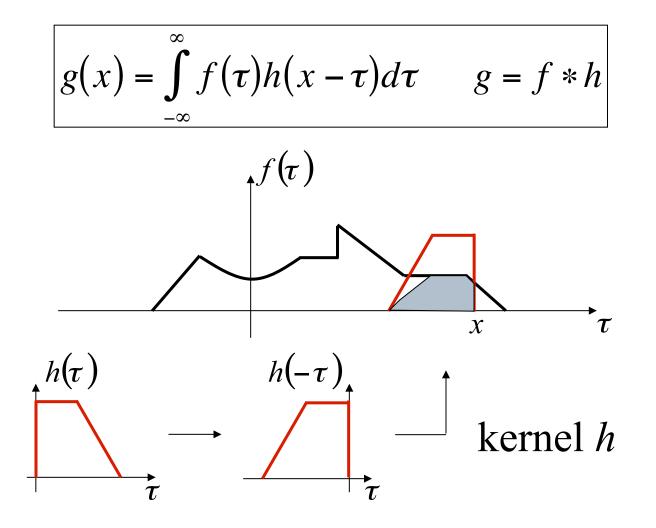


Linearity: Brightness variation Shift invariance: Scene movement

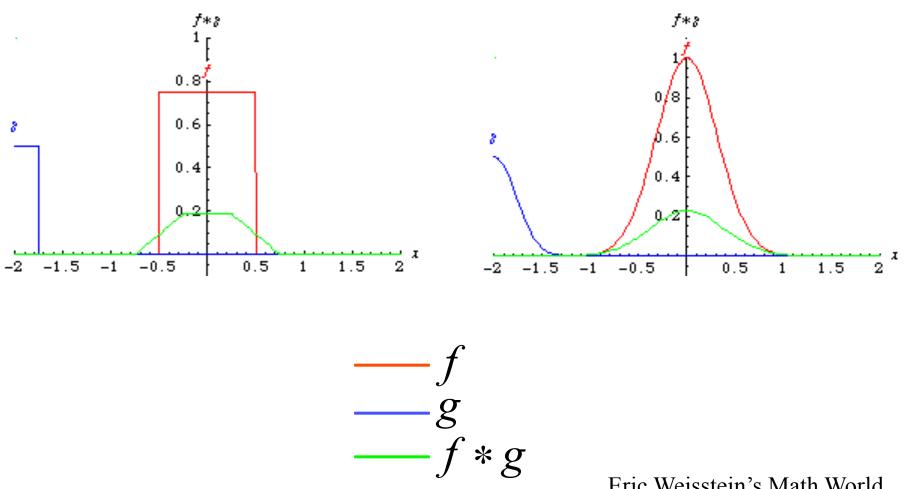
(not valid for lenses with non-linear distortions)

Convolution

LSIS is doing convolution; convolution is linear and shift invariant

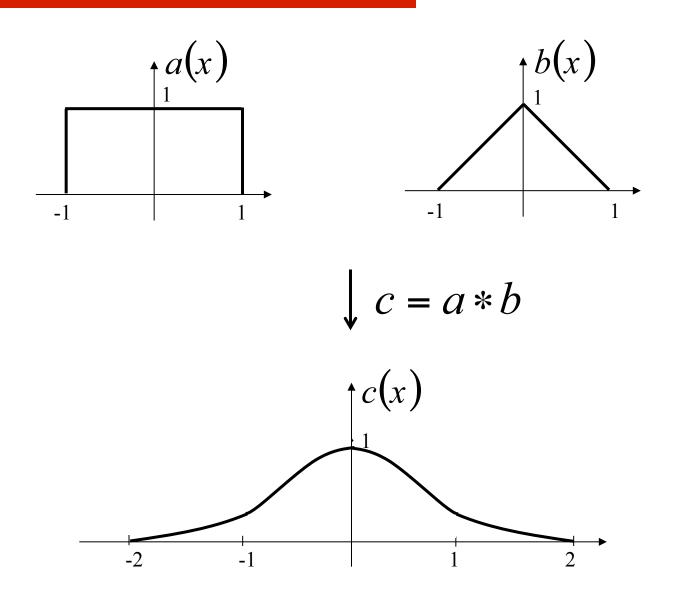


Convolution



Eric Weisstein's Math World

Example of Convolution



Convolution Kernel

$$f \longrightarrow h \longrightarrow g \qquad g = f * h$$

• What h will give us g = f?

Dirac Delta Function (Unit Impulse Function)

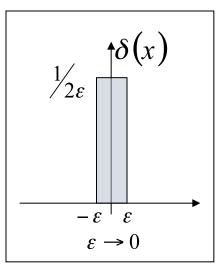
Sifting property:

$$\int_{-\infty}^{\infty} f(x)\delta(x)dx = \int_{-\infty}^{\infty} f(0)\delta(x)dx$$

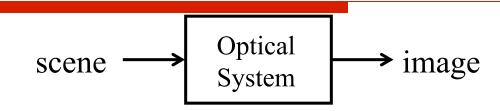
$$= f(0)\int_{-\infty}^{\infty}\delta(x)dx = f(0)$$

$$g(x) = \int_{-\infty}^{\infty} f(\tau)\delta(x-\tau)d\tau = f(x)$$

$$= \int_{-\infty}^{\infty}\delta(\tau)h(x-\tau)d\tau = h(x)$$

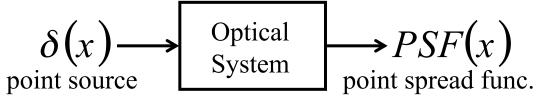


Point Spread Function

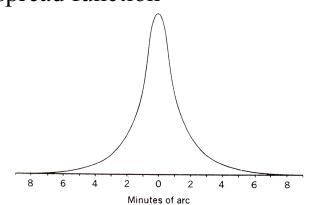


Ideally, the optical system is a dirac delta function.

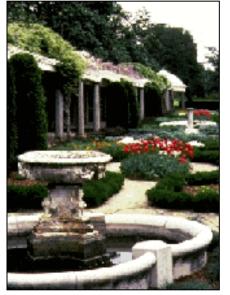
However, optical systems are never ideal.



Human eyes' point spread function



Point Spread Function



normal vision

myopia

hyperopia

astigmatism

Images by Richmond Eye Associates

Properties of Convolution

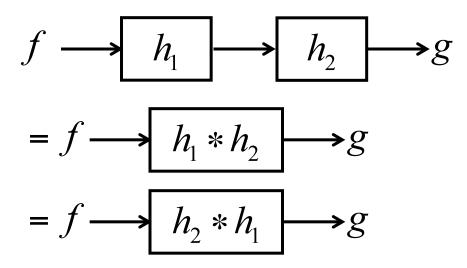
Commutative

$$a * b = b * a$$

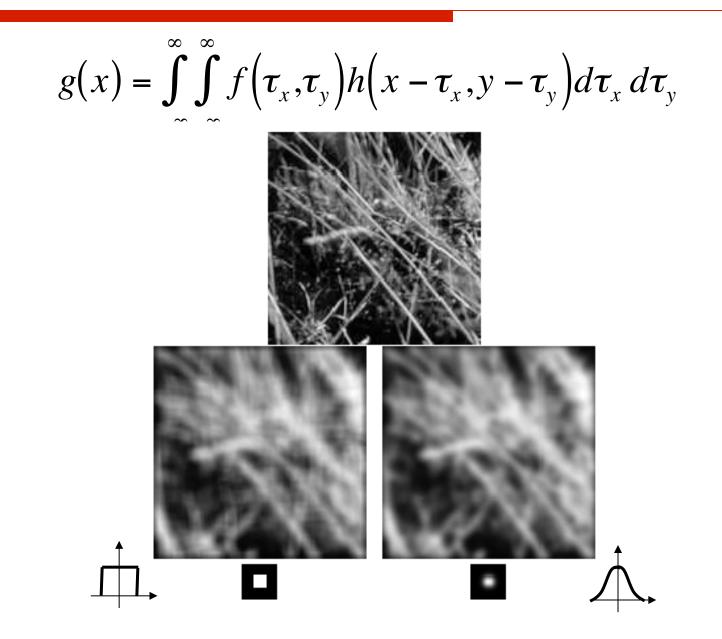
Associative

$$(a*b)*c = a*(b*c)$$

Cascade system



2D Convolution



Jean Baptiste Joseph Fourier (1768-1830)

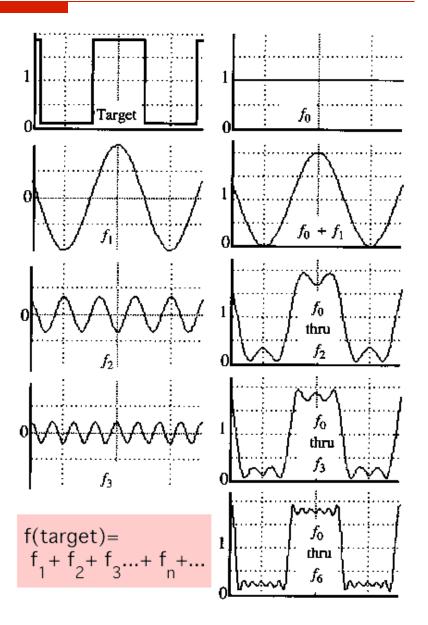
- Had crazy idea (1807):
 "Any periodic function can be rewritten as a weighted sum of Sines and Cosines of different frequencies. "
- Don't believe it?
 - Neither did Lagrange, Laplace, Poisson and other big wigs
 - □ Not translated into English until 1878!
- But it's true!
 - □ called Fourier Series
 - Possibly the greatest tool used in Engineering

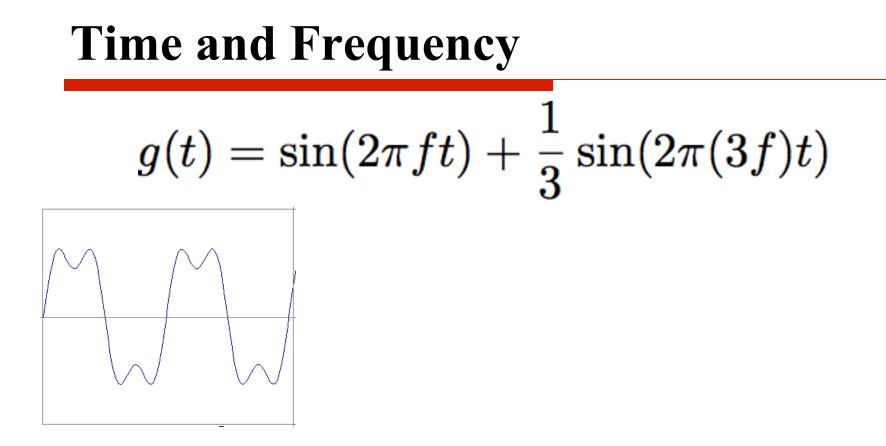
A Sum of Sinusoids

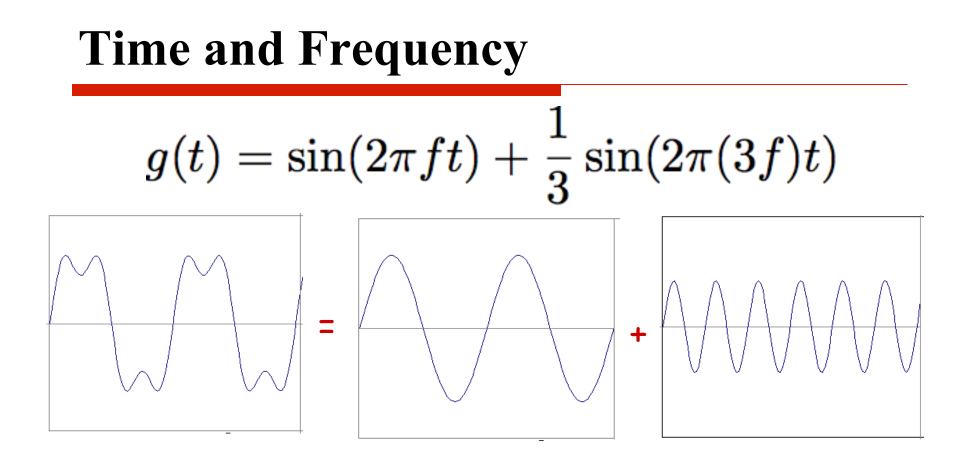
• Our building block:

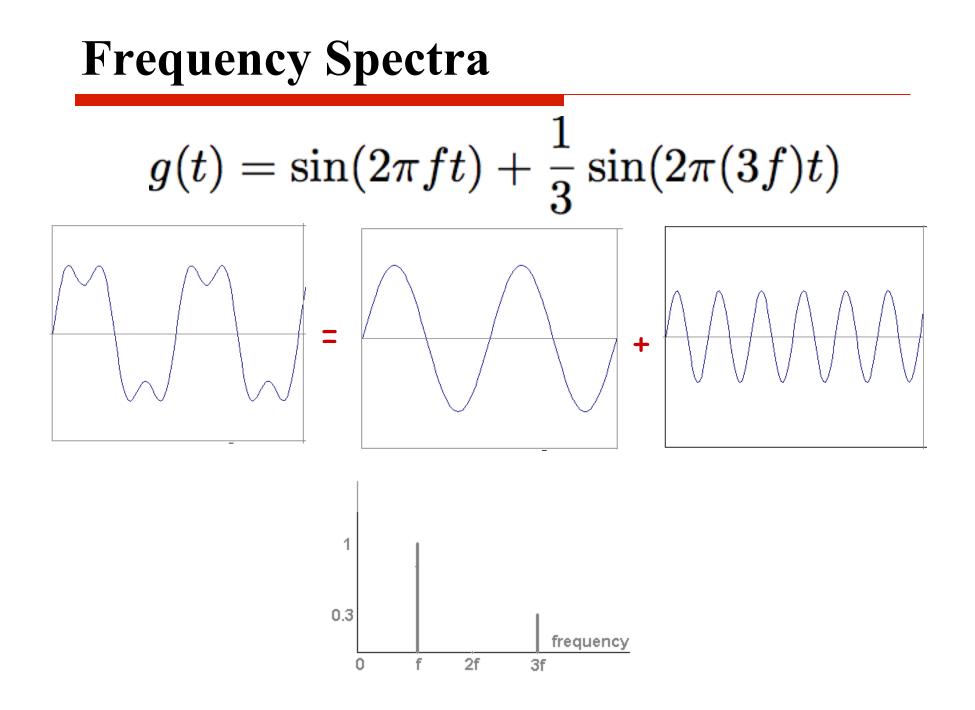
 $A\sin(\omega x + \phi)$

Add enough of them to get any signal *f*(*x*) you want!



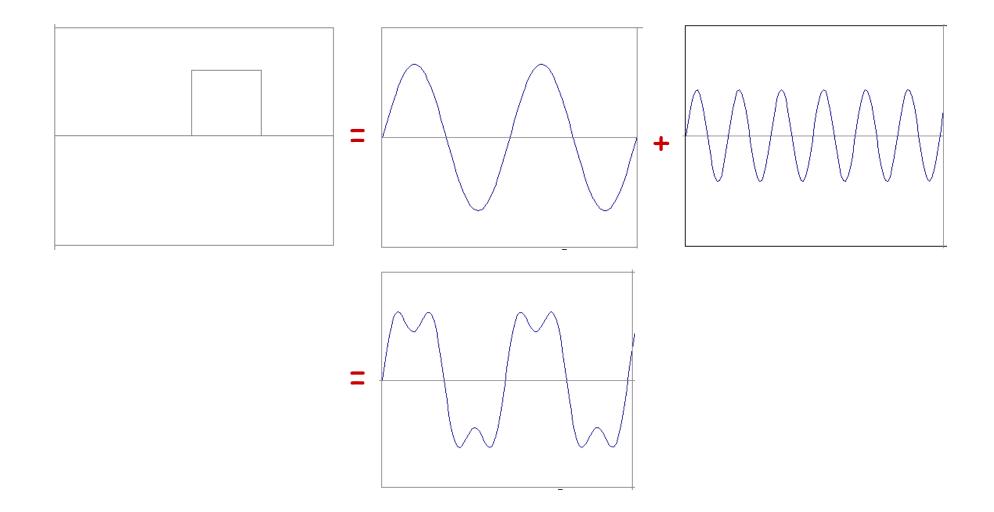


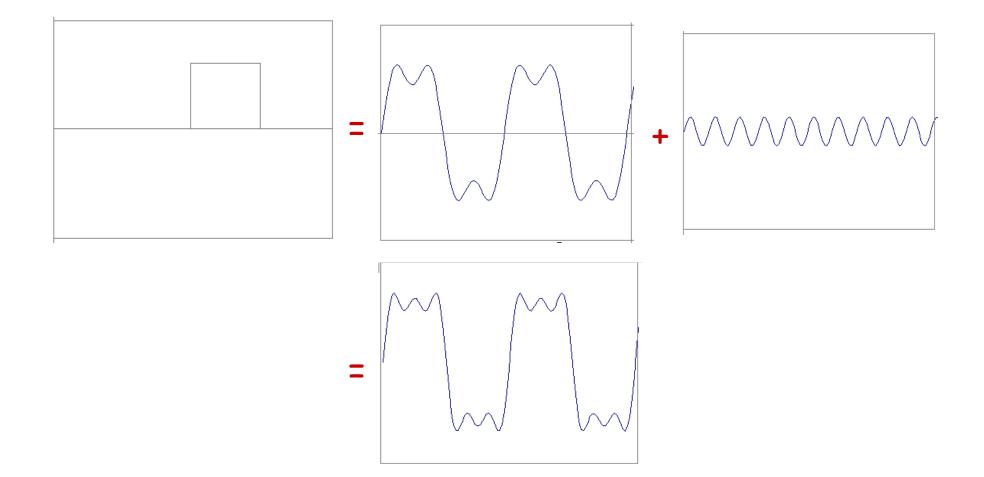


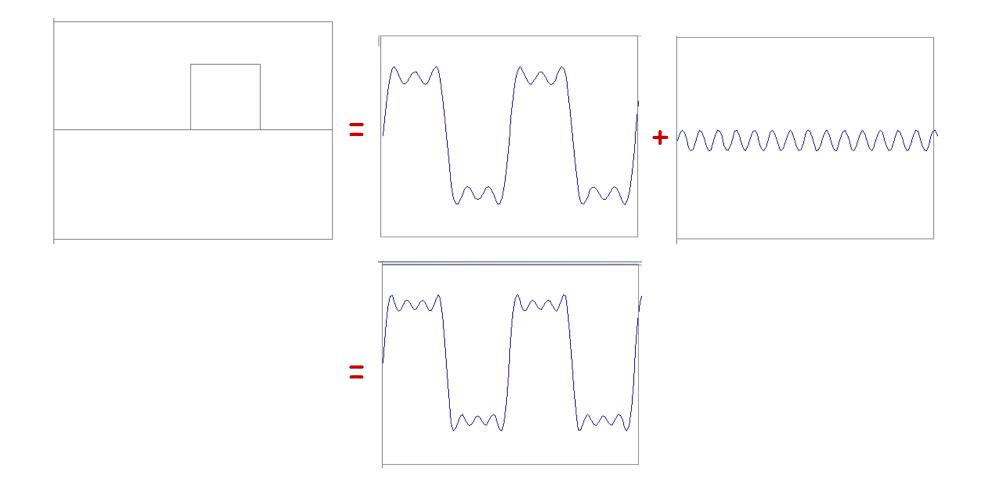


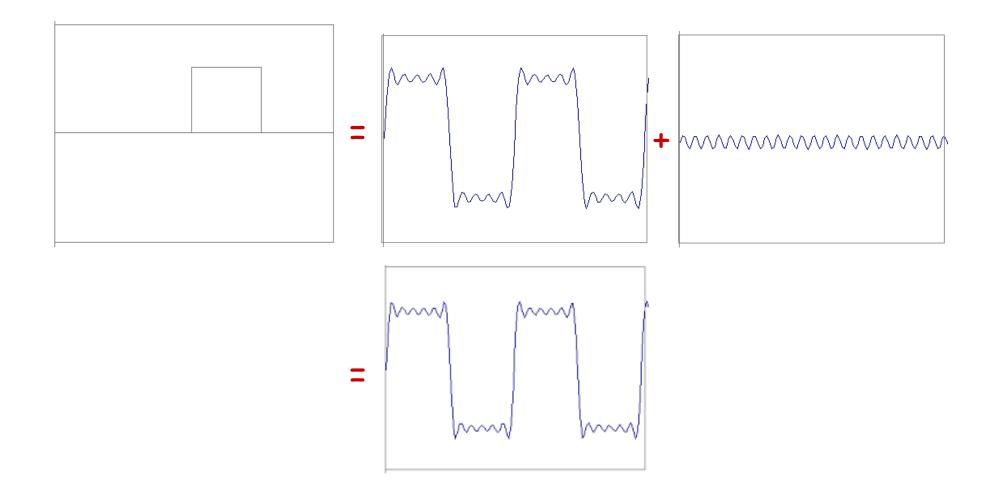
Usually, frequency is more interesting than the phase

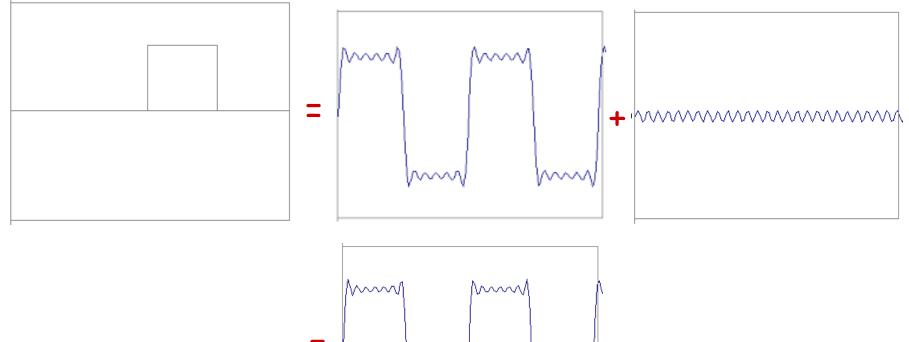
	1

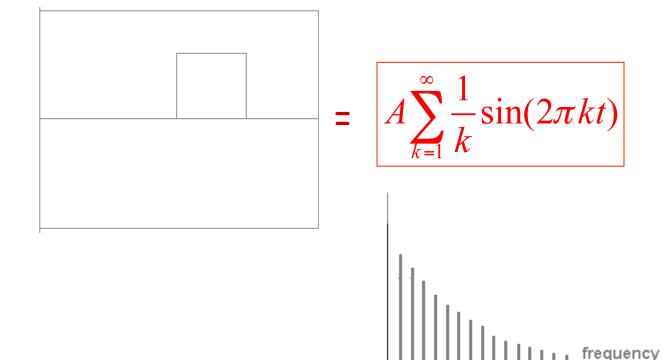






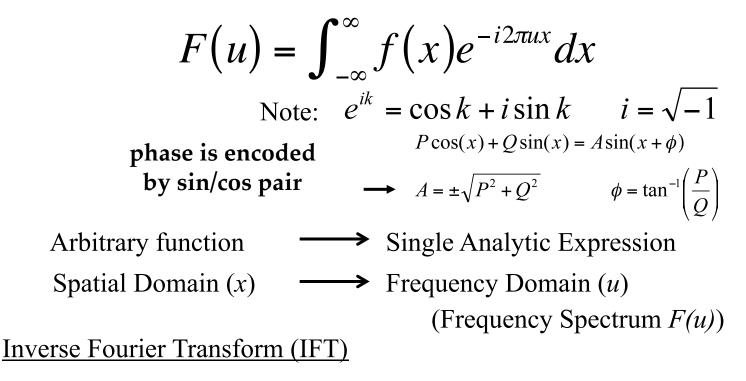






Fourier Transform

Represent the signal as an infinite weighted sum of an infinite number of sinusoids (u: oscillation frequency)



$$f(x) = \int_{-\infty}^{\infty} F(u) e^{i2\pi u x} dx$$

Fourier Transform (Physicists' Definition)

Represent the signal as an infinite weighted sum of an infinite number of sinusoids (u: angular frequency)

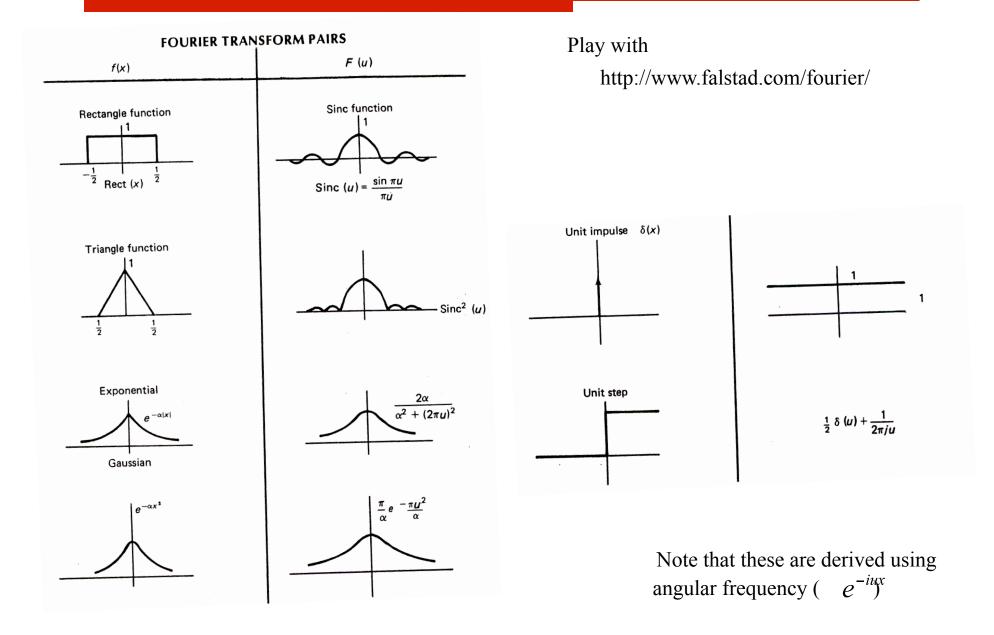
$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-iux} dx$$

Note:
$$e^{ik} = \cos k + i \sin k$$
 $i = \sqrt{-1}$

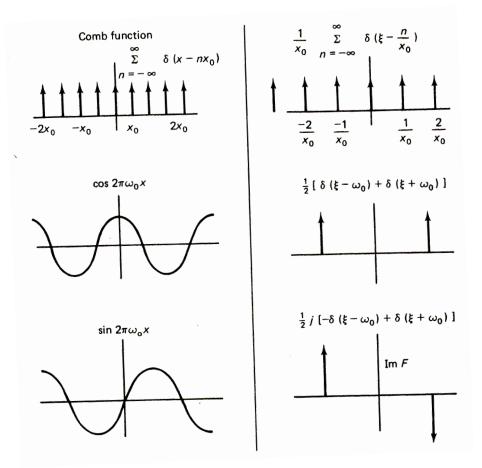
Arbitrary function \longrightarrow Single Analytic ExpressionSpatial Domain (x) \longrightarrow Frequency Domain (u)
(Frequency Spectrum F(u))

<u>Inverse Fourier Transform (IFT)</u> $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(u) e^{iux} dx$

Fourier Transform Pairs (I)



Fourier Transform Pairs (II)



Note that these are derived using angular frequency (e^{-iux})

Fourier Transform and Convolution

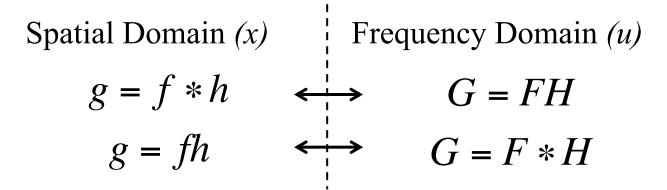
Let
$$g = f * h$$

Then $G(u) = \int_{-\infty}^{\infty} g(x)e^{-i2\pi ux} dx$
 $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau)h(x-\tau)e^{-i2\pi ux} d\tau dx$
 $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} [f(\tau)e^{-i2\pi u\tau} d\tau] [h(x-\tau)e^{-i2\pi u(x-\tau)} dx]$
 $= \int_{-\infty}^{\infty} [f(\tau)e^{-i2\pi u\tau} d\tau] \int_{-\infty}^{\infty} [h(x')e^{-i2\pi ux'} dx']$
 $= F(u)H(u)$

Convolution in spatial domain

 \Leftrightarrow Multiplication in frequency domain

Fourier Transform and Convolution



So, we can find g(x) by Fourier transform

