Introduction to Computer Vision

Week 3, Fall 2010

Instructor: Prof. Ko Nishino



Last Week

B [mage Sensing

0 Our eyes: rods and cones...
O CCD, CMOS, Rolling Shutter

[0 Sensing brightness and sensing color
B Projective Geometry/Camera Calibration

0 Projection models: perspective, orthographic, weak-
perspective, and affine

O

Homogeneous coordinates (to and from)

O

Camera parameters: intrinsic and extrinsic

O

Camera calibration
O Direct Linear Calibration: Total Least Square

[0 Non-linear calibration



Measurements on Planes
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Approach: unwarp then measure
What kind of warp is this?




Image Rectification

To unwarp (rectify) an image
* solve for homography H given p and p’

* solve equations of the form: wp’ = Hp
— linear in unknowns: w and coefficients of H
— H is defined up to an arbitrary scale factor
— how many points are necessary to solve for H?



Solving for Homographies

! hoo ho1 ho2 T;
y: | = | hio h11 hio | | v
1 hoo ho1 hoo 1
o = hooxi + ho1y; + ho2
hoox; + ho1y; + hoo
Y = hioz; + h11y; + h12

hoox; + ho1y; + hoo

z;(hoom; + ho1y; + hoo) = hooxi + ho1v: + koo
yi(hoow; + ho1y; + hoo) = hioz; + h11y + hio

hoo
ho1
hoo
z; y; 1 0 0 0 —alz; —aly; —x;] Zi? =[O]

: hi2
hoo
ho1
hoo




Solving for Homographies
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B Total least squares

00 Since h is only defined up to scale, solve for unit vector h
0 Minimize |AR%

|AL||? = (Ah)’ Ah = h' AT Ah
00 Solution: h = eigenvector of ATA with smallest eigenvalue
0 Works with 4 or more points (more points more accurate)



Homography

B Homography is a singular case of the
Fundamental Matrix

0 Two views of coplanar points

[0 Two views that share the same center of
projection
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Project #1: Homography

M Rectification
0 Take two images of an object with a planar surface

[0 Make a fronto-parallel image of one of the planar
surfaces

0 Submit results for three images including the test
B Compositing
OO0 Take two 1images

O Composite the entire or part of one image into

another using the homography of corresponding
regions

0 Submit results for three images including the test
B Planar Mosaic (Extra Credit)



o e bee VB O VR OB PR W B2 e

e et e S TG,

This 1s your test image




Example

B Rectification




Example

B Compositing

This is your test image set




Example

B Composite

O Need not be rectangular

0 Masking and Blending




Example

B Planar Mosaic (Extra Credit)
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Ingredients

B Take good images
Specify correspondences (manual)

B Compute homography

O Solve with eigen decomposition
B Apply homography

0 Warping

OO0 Interpolation

0 Masking

0 Blending



Image Warping

B Given a coordinate transform (x’,y’) = h(x,y) and a
source 1image f(x,y), how do we compute a transformed

image g(x’,y ") = f(h(x,y))?



Forward Warping

B Send each pixel f(x,y) to its corresponding location
(x’,y’) = h(x,y) 1n the second image

Q: what 1f pixel lands “between” two pixels?



Forward Warping
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B Send each pixel f(x,y) to its corresponding location

(x’,y’) = h(x,y) 1n the second image

Q: what 1f pixel lands “between” two pixels?

A: distribute color among neighboring pixels (x’,y’)

— Known as “splatting”



Inverse Warping

B Get each pixel g(x’,y’) from 1ts corresponding
location

O (x,y) = h!(x’,y’) in the first image

Q: what 1f pixel comes from “between” two pixels?



Inverse Warping
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Get each pixel g(x’,y’) from its corresponding
location (x,y) = h/(x’,y’) in the first image

. what 1f pixel comes from “between” two pixels?

. resample color value



Forward vs. Inverse Warping

B (Q: which is better?

B A: usually inverse—eliminates holes

OO0 however, it requires an invertible warp function—not always
possible...



Bilinear Interpolation

B A simple method for resampling images
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Image Blending




Feathering




Effect of Window Size




Effect of Window Size




Good Window Size

B “Optimal” window: smooth but not ghosted
O Doesn’t always work...



Pyramid Blending

(d) (h)

B Create a Laplacian pyramid, blend each level

Burt, P. J. and Adelson, E. H., A multiresolution spline with applications to image mosaics,
ACM Transactions on Graphics, 42(4), October 1983, 217-236.




Alpha Blending

—

I2
Encoding blend weights: [(x,y) = (aR, aG, aB, «)

(a1R1, a1G1, a1B1) + (agR2, asGa, axBs) + (a3R3, a3G3, azB3)

coloratp = o1t ant s

Implement this in two steps:
1. accumulate: add up the (a premultiplied) RGBa values at each pixel
2. normalize: divide each pixel’s accumulated RGB by its a value

Q: whatifa=0?



Poisson Image Editing

seamless cloning

cloning

sources/destinations

B For more info: Perez et al, SIGGRAPH 2003

http://research.microsoft.com/vision/cambridge/papers/perez sigeraph03.pdf

O




Project #1: Homography

Due 10/17 Sunday Midnight

See the assignment web page for details (3 artifacts for each
task)

B Skelton Code on the web
O Fill in the empty functions

0 Write additional functions for extra credits

B Cameras!



Image Filtering (Continuous)

Reading: Robot Vision Chapter 6



What is an Image?

@ QT Luong / terragalleria.com



Image as a Function

B We can think of an image as a function, f, from R? to
R:
O f(x, y) gives the intensity at position (x, )

OO0 Realistically, we expect the image only to be defined over a
rectangle, with a finite range:

O f [a,b]X[c,d] = [0,1]

B A color image 1s just three functions pasted together.
We can write this as a “vector-valued” function:

7(x, )]
f(xy)=1g(x,y)
b(x,y) |




Image as a Function




Image Processing

B Define a new 1image g 1n terms of an existing
image f

0 We can transform either the domain or the range of

/

B Range transformation:

g(z,y) = t(f(z,y))

What kinds of operations can this perform?



Image Processing

B Some operations preserve the range but change
the domain of £ :

9(33, y) — f(tilﬁ(xa y)v ty(xv y))

What kinds of operations can this perform?



Image Processing

B Still other operations operate on both the
domain and the range of f .



Linear Shift Invariant Systems

Linearity:
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Example of LSIS

%

g f
Ideal lens 1s a LSIS

Defocused image ( g ) 1s a processed
version of the focused 1image ( /)

f(x) —> LSIS

— g(x)

Linearity: Brightness variation

Shift invariance:

Scene movement

(not valid for lenses with non-linear distortions)



Convolution

LSIS 1s doing convolution; convolution is linear and shift invariant

ff (x-t)dt g=f*h
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Convolution
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Eric Weisstein’s Math World



Example of Convolution
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Convolution Kernel

f— h —g g=f*h

m What 4 will giveus g =/?

Dirac Delta Function (Unit Impulse Function)

Sifting property: (%)

f_o:of(x)é(x)dx = f_o;f(O)(S(x)dx %g
= £(0)J_ 8(x)dx = £(0)

glx) = foo f(r)d(x —1)dT = f(x) £ =0

—00

- [ 8(@)h(x - 7)dr = h(x)



Point Spread Function

scene —>

Optical
System

—> 1mage

Ideally, the optical system 1s a dirac delta function.

However, optical systems are never ideal.

5(x)—>

point source

Optical
System

— PSF (x)

point spread func.

Human eyes’ point spread function




Point Spread Function

hyperopia

astigmatism

Images by Richmond Eye Associates



Properties of Convolution

B Commutative

ax*b=b*a
B Associative

(a*b)*c=a*(b*c)

Cascade system

f_>'h1_>h2 >8

=f—>- hl>1<h2 —> g

=f—>- ]/12>X<h1 —> g




2D Convolution

oo o0

g(x)=fff(rx,ry)h(x—rx,y—ry)drx dt,




Jean Baptiste Joseph Fourier (1768-1830)

B Had crazy idea (1807):

“Any periodic function can be
rewritten as a weighted sum of
Sines and Cosines of different

frequencies. “

B Don’t believe it?

O Neither did Lagrange,
Laplace, Poisson and other
big wigs

0 Not translated into English
until 1878!

B Butit’s true!
O called Fourier Series
O Possibly the greatest tool

used in Engineering



A Sum of Sinusoids

® Our building block:
Asin(cwx + ¢@)

B Add enough of them to get
any signal f(x) you want!

f(target)=

f]+ f2+ f3...+ fn+...




Time and Frequency

g(t) = sin(27 ft) + ! sin(2m(3f)t)

M

W W




Time and Frequency

g(t) = sin(27 ft) + % sin(27 (3 f)t)
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Frequency Spectra

g(t) = sin(27 ft) + % sin(27 (3 f)t)
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Frequency Spectra

m  Usually, frequency 1s more interesting than the phase




Frequency Spectra
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Frequency Spectra

)
W W

i




Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Fourier Transform

Represent the signal as an infinite weighted sum
of an infinite number of sinusoids (u: oscillation frequency)

F(u) = f_o;f(x)e'izmdx

Note: e” =cosk+isink i=+/-1

phase is encoded Pcos(x) +Qsin(x) = Asin(x +¢)

by sin/cos pair — A= [P 4 = tan‘l(g)

Arbitrary function —> Single Analytic Expression
Spatial Domain (x) = —> Frequency Domain (u)

(Frequency Spectrum F(u))
Inverse Fourier Transform (IFT)

f(x) = f_o;F(u)eimxdx




Fourier Transform (Physicists’ Definition)

Represent the signal as an infinite weighted sum
of an infinite number of sinusoids (u: angular frequency)

f f —iuxdx

Note: e” =cosk +isink I =4/—1

Arbitrary function —> Single Analytic Expression
Spatial Domain (x) @ —> Frequency Domain (u)
(Frequency Spectrum F(u))

Inverse Fourier Transform (IFT)

Xx) = %fiF(w)ei”‘xdx




Fourier Transform Pairs (I)

FOURIER TRANSFORM PAIRS
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F (u)

Rectangle function
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Exponential
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Sinc function
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Play with

http://www.falstad.com/fourier/

Unit impulse  8(x)

Unit step
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Note that these are derived using
angular frequency (e~



Fourier Transform Pairs (1I)
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Fourier Transform and Convolution

Let g=f=*h
Then G(u)= f " g(x)e ™ dx

=f_o;f_oof x 1: "Z’detdx
= f_o:o f_o:o[f(r)e'imtdr][h(x —r)e‘iz””(x'f)dx]

- JLlr@e ][ [n(e)eax]
= F(u)H(u)

Convolution in spatial domain

<= Multiplication in frequency domain




Fourier Transform and Convolution

Spatial Domain (x) Frequency Domain (u)
g=f=*h G=FH
g=fh <« G=F*H

g

So, we can find g(x) by Fourier transform

g = f * h
4 | |
IFT. FT FT
| v v



