Image Processing and Computer Graphics

Transformations and
Homogeneous Coordinates

Matthias Teschner

Computer Science Department
University of Freiburg

UNI

FREIBURG

Motivation

transformations are used

= to position, reshape, and animate
objects, lights, and the virtual camera

= to orthographically or perspectivly project
three-dimensional geometry onto a plane

transformations are represented with 4x4 matrices
transformations are applied to vertices and normals

vertices (positions) and normals (directions) are
represented with 4D vectors

University of Freiburg — Computer Science Department — Computer Graphics - 2

Outline

= transformations in the rendering pipeline

= motivations for the homogeneous notation

= homogeneous notation

= basic transformations in homogeneous notation
= compositing transformations

= summary

University of Freiburg — Computer Science Department — Computer Graphics - 3

Vertex Processing

modelview transform

(lighting)
projection transform

(clipping)
viewport transform

University of Freiburg — Computer Science Department — Computer Graphics - 4

Modelview Transform

Camera direction

/\J

Inverse
View transform

®
V-l . /

View frustum

> X - X
\ M,
Camera . _ _ |
position z [Akenine-Moeller et al.: Real-time Rendering] 4

= M;, M,, M3, M, Vare matrices representing transformations
= M;, M,, M3, M, are model transforms to place the objects in the scene
= Vplaces and orientates the camera in space

= V1transforms the camera to the origin looking along the negative z-axis
= model and view transforms are combined in the modelview transform

= the modelview transform VM, , is applied to the objects
University of Freiburg — Computer Science Department — Computer Graphics - 5

Projection Transform

s P transforms the view volume to the canonical view volume

= the view volume depends on the camera properties
= orthographic projection — cuboid
= perspective projection — pyramidal frustum

(1,-1,-1)

orthographic e [Song Ho Ahn] g

= canonical view volume is a cube from (-1,-1,-1) to (1,1,1)
= Vview volume is specified by near, far, left, right, bottom, top

P

perspective

University of Freiburg — Computer Science Department — Computer Graphics - 6

Viewport Transform /
Screen Mapping

= projected primitive coordinates (x,, y,, z,) are
transformed to screen coordinates (x, y.)

= screen coordinates together with depth value are
window coordinates (x,, V., z,)

T (X,,),)

i.%

unit-cube

-

Screen mapping
|:>

| (x 1 sy1)

[Akenine-Moeller et al.: Real-time Rendering] _

University of Freiburg — Computer Science Department — Computer Graphics - 7

Vertex Transforms

object space
U modelview transform

eye space / camera space
U projection transform

normalized
device coordinates

U viewport transform

window space

University of Freiburg — Computer Science Department — Computer Graphics - 8

Vertex Transforms

local object space
U model transform
world coordinate space

U inverse view transform

eye space / camera space

U projection transform

normalized
device coordinates

U viewport transform

window space

University of Freiburg — Computer Science Department — Computer Graphics - 9

Outline

= transformations in the rendering pipeline

= motivations for the homogeneous notation

= homogeneous notation

= basic transformations in homogeneous notation
= compositing transformations

= summary

University of Freiburg — Computer Science Department — Computer Graphics - 10

Some Transformations

= congruent transformations
(Euclidean transformations)
= preserve shape and size
= translation, rotation, reflection
= Similarity transformations
= preserve shape
= translation, rotation, reflection, scale

University of Freiburg — Computer Science Department — Computer Graphics - 11

Affine Transformations

= preserve collinearity
= points on aline are transformed to points on a line

= preserve proportions
= ratios of distances between points are preserved

= preserve parallelism
= parallel lines are transformed to parallel lines

= angles and lengths are not preserved

= translation, rotation, reflection, scale, shear are affine

= orthographic projection is a combination of affine transt.
= perspective projection is not affine

University of Freiburg — Computer Science Department — Computer Graphics - 12

Affine Transformations

= affine transformations of a 3D point p: p’ = T(p) = Ap +t
= affine transformations preserve affine combinations

T (3, i pi) =2 ;i T(pi) for 3, =1
= e.g.,aline can be transformed

by transforming its control points
/

P1
P1

X = o1P1 + 2P2 x' =T(x) = a1T(p1) + a2 T(p2)

/

P2

University of Freiburg — Computer Science Department — Computer Graphics - 13

Affine Transformations

= affine transformations of a 3D point p

p =Ap+t
= the 3x3 matrix A represents scale and rotation
= the 3D vector t represents translation

= Using homogeneous coordinates,
all affine transformations are represented
with one matrix-vector multiplication

University of Freiburg — Computer Science Department — Computer Graphics - 14

Points and Vectors

= the rendering pipeline transforms vertices,
normals, colors, texture coordinates
= points (e.g. vertices) specify a location in space
= vectors (e.g. normals) specify a direction
= relations between points and vectors
= point - point = vector
= point + vector = point
= vector + vector = vector
= point + point = not defined
*p=p—-0 p=0O0+p

University of Freiburg — Computer Science Department — Computer Graphics - 15

Points and Vectors

= transformations can have different
effects on points and vectors
= translation

= translation of a point moves the point to a different position
= translation of a vector does not change the vector

= Using homogeneous coordinates,
transformations of vectors and points
can be handled in a unified way

University of Freiburg — Computer Science Department — Computer Graphics - 16

Outline

= transformations in the rendering pipeline

= motivations for the homogeneous notation

= homogeneous notation

= basic transformations in homogeneous notation
= compositing transformations

= summary

University of Freiburg — Computer Science Department — Computer Graphics - 17

Homogeneous Coordinates of Points

s (2,v, 2, w)T with w # 0 are the homogeneous
coordinates of the 3D point (& £ z)*

s (Az, Ay, Az,)vw)T represents the same point
(A Ay Az)T = (&, x 2T forall A with L #0

Aw ! Aw? Aw w? w! w

= examples
= (2,3,4,1)~(2,3,4)
= (2,4,6,1)~ (2,4, 6)
= (4,8,12,2)~(2,4,6)

University of Freiburg — Computer Science Department — Computer Graphics - 18

1D Illustration

o
Moy, Ao)' ~ 2
Y ‘/()\1%1,)\1)T ~ T
‘//(331, 1)T ~ I
w =1
/ I > T
L1

University of Freiburg — Computer Science Department — Computer Graphics - 19

Homogeneous Coordinates of Vectors

« forvarying w, a point (z,v, z, w)T is scaled and the

r Y z

points (£, %,)" represent a line in 3D space
= the direction of this line is characterized by (z, v, z)T
= forw — 0, the point (-, Z, i)Tmoves to infinity

in the direction (z, v, z)T
s (2, 2, O)T is a point at infinity in the direction of (x, v, z)T

s (2,9, 2, O)T is a vector in the direction of (z, v, z)T

University of Freiburg — Computer Science Department — Computer Graphics - 20

1D Illustration

:Ul/// /// o
w=1|,/_~"x2 , T T T3
ST &—(3307 ws) ~ I3
| B I > T
Lo

University of Freiburg — Computer Science Department — Computer Graphics - 21

Points and Vectors

= if points are represented in the homogeneous (norma-
lized) form, point - vector relations can be represented

s vector + vector = vector [Y= Vg Uy + Vg
Uy n Uy _ Uy —I—’Uy
U‘Z Uz uz _|_UZ

0 0 0
int tor = point [3’ N Pa T U
= pOoInt + vector = poin py || v | 2| Pyt
D= Uz Pz +Uz

1 0 1
Pz Ty Px — Ty
= point - point = vector py | |y | | Py
P= Tz Pz — Tz

1 1 0

University of Freiburg — Computer Science Department — Computer Graphics - 22

= the transform of [Pz) results in (ra)

Homogeneous Representation
of Linear Transformations

mip M1 Mi2 Py
Moo Ma21 1M22

Moo Mop1 MMo2
Moo Mop1 Mop2 Px
- mio Mi11 M2
Mmoo Ma21 122 Pz 0 0 0

_ o O O

py Ty
Pz T

1 T

University of Freiburg — Computer Science Department — Computer Graphics - 23

Y

s if the transform of [P= resultsin [Tz \, then

Affine Transformations and Projections

= general form

/ Mmoo Mo1 Moz Lo \

mio Mi1 Miz2 b
Moo M21 Moo to

\ Po D1 p2 W)

represent rotation, scale

= t. represent translation

= p; represent projection

= W is analog to the fourth component
for points / vectors

University of Freiburg — Computer Science Department — Computer Graphics - 24

Homogeneous Coordinates - Summary

 (2,y, 2, w)T with w # 0 are the homogeneous
coordinates of the 3D point (£, £, 2)"

s (7,9, 2, O)T is a point at infinity in the direction of (z,v, 2)"

= (z,y,2,0)" is a vector in the direction of (z,y,2)"

. / Mmoo Mo1 Moz to \ is a transformation,

mip Mmi1 Mmiz2 11 representing rotation, scale,

M20 M21 M2z L2 translation, projection
\ Po P1 P2 w/

University of Freiburg — Computer Science Department — Computer Graphics - 25

Outline

= transformations in the rendering pipeline

= motivations for the homogeneous notation

= homogeneous notation

= basic transformations in homogeneous notation
= compositing transformations

= summary

University of Freiburg — Computer Science Department — Computer Graphics - 26

Translation

= of a point (100 t.\ [p BZEETA
o1 0 ¢ py | | pyt+ty

TOP=1¢0 0 1 ¢ I
o001)\T) T

»= Of a vector /100t$\(@$\ [vz
LONE I I e
\ooo1/\o/) \o)

= inverse (T1"undoes" the transform T)
T-1(t) = T(—t)

University of Freiburg — Computer Science Department — Computer Graphics - 27

Rotation

= positive (anticlockwise) 0 0

1
rotation with angle ¢ Rx(¢) = 8
0

cos¢ —sing
sing cos ¢

around the x-, y-, z-axis 0 0

cosp 0 sing

0 1 0
Ry(o)=1 _ sing 0 cos¢

0 0 0
cosgp —sing 0
sin cOS 0
0 0 0

University of Freiburg — Computer Science Department — Computer Graphics - 28

_ o O O —_—o O O

_ O O O

Inverse Rotation

1 0 0 0

1 0 cos—¢p —sin—¢ 0

" Rx(=¢)= 0 sin— cos—¢ 0

0 0 0 1
1 0 0 0

| 0 cos¢ sing O | L T

| 0 —sing cosod 0 | Ry (¢)
0 0 0 1

- Rx_l _ RXT Ry—l _ RyT Rz—l _ RZT
= the inverse of a rotation matrix
corresponds to its transpose

University of Freiburg — Computer Science Department — Computer Graphics - 29

Mirroring / Reflection

= mirroring with respect to x =0, y =0, z =0 plane
= changes the sign of the x -, y -, Z- component

-1 0 0 0 1 0 0 0 1
0O 1 0 O 0 -1 0 O 0
P = 0O 0 1 O Py = 0O 0 1 O P = 0
0 0 0 1 0 0 0 1 0

s the inverse of a reflection
corresponds to its transpose

_ — T _
Px1:PXT PylzPy leszT

University of Freiburg — Computer Science Department — Computer Graphics - 30

o O = O
- O O O

Orthogonal Matrices

= rotation and reflection matrices are orthogonal
RR' =R'R=1
R-1 = R7
= R{,R, areorthogonal= R;R, isorthogonal
» rotation: det R =1 reflection: det R = —1
= length of a vector does not change ||Rv| = ||v]||
= angles are preserved (Ru,Rv) = (u,v)

University of Freiburg — Computer Science Department — Computer Graphics - 31

Scale

= scalingx -, y-,z-components of a point or vector

S(Saja Sya Sz)p —

= inverse S (sg,sy,5.) = S(

= uniform scaling
1 0

S(s,s,8) = 8 (1)
0 O

1

se 0 0 0
(0 syoo\
0 0 s O
\ 0 0 0 1)

1

1

1Sy =S,=S5,=S

CDP—‘CDCDX
wl—oO O O

Sg’ Sy’ Sz

e
LT

)

[SaPz)

SyPy

SzPz

\ 1)

University of Freiburg — Computer Science Department — Computer Graphics - 32

Shear

= one component is offset
with respect to another component

= Six basic shear modes in 3D
= e.g., shear of x with respect to z

/10

0

X

sz(s)p —

1
0
0

= [nverse

I_Ixz_1 (5) — sz(—S)

S

S = O

0
0
0
1

\
/

[P)

Py

1

University of Freiburg — Computer Science Department — Computer Graphics - 33

Basis Transform - Translation

= two coordinate systems

Cl — (Ola {81,92,83}) CZ — (027 {81,92,83})

€2 €2
P2,
e b_—_ e ___ _I‘__
Yi| Y2 ' P1
O>

X9 €1

t |
01 in €1

University of Freiburg — Computer Science Department — Computer Graphics - 34

Basis Transform - Translation

= the coordinates of p1 with respect to C, are given
by p2=p1—t DP2= T(—t)p1

= the coordinates of a point in the transformed
basis correspond to the coordinates of point in the
untransformed basis transformed by the inverse
basis transform

= translating the origin by t corresponds
to translating the object by -t

= also: rotating the basis vectors by an angle corresponds
to rotating the object by the same negative angle

University of Freiburg — Computer Science Department — Computer Graphics - 35

Basis Transform - Rotation

= two coordinate systems

Cl — (Oa {81,92,93}) CZ — (Ov {blab27b3})

University of Freiburg — Computer Science Department — Computer Graphics - 36

Basis Transform - Rotation

= the coordinates of pi1 with respect to C, are given by

by” / bix biy biz 0 \
_ T b2X b2y b2z 0
P2 = b2 P11~ b b b 0 P1
b T 3x 3y 3z
3 \ 0 0 0 1)

= by, b,, by are the basis vectors of C, with respect to C,

= by, b, byare orthonormal, therefore
the basis transform is a rotation

= rotating the basis vectors by an angle corresponds
to rotating the object by the same negative angle

University of Freiburg — Computer Science Department — Computer Graphics - 37

Basis Transform - Application

= the view transform can be seen as a basis transform

= Objects are placed with respect to
a (global) coordinate system C; = (04, {e1,e2,e3})

= the camera is also positioned at O, and oriented at
{by,bs2,bs} given by viewing direction and up-vector

= after the view transform, all objects are represented in
the eye or camera coordinate system C, = (05, {b1,ba,bs})

= placing and orienting the camera corresponds to the
application of the inverse transform to the objects

= rotating the camera by R and translating it by T,
corresponds to translating the objects by Tt and
rotating them b

-1
ersity of Freibury—Bomputer Science Department — Computer Graphics - 38

Planes and Normals

= planes can be represented by a surface normal n and
a point r. All points pwithn - (p —r) =0 form a plane.

NxPx + Thy Py + NPy + (_nazrm — NyTy — nz'rz) =0

NaPe + NyDy +n2p. +d =10

(na: Ty Ny d)(pa: Py Pz l)T =0
(ne ny n, d)A T A(py py p- 1t =0

= the transformed points A(p, p, p. 1)¥
are on the plane represented by
(ng ny n, A)A™ = (A"H" (ng ny n,))*

= if asurfaceis transformed by A, its homogeneous notation
(including the surface normal) is transformed by (A1)T -_2-

University of Freiburg — Computer Science Department — Computer Graphics - 39

Outline

= transformations in the rendering pipeline

= motivations for the homogeneous notation

= homogeneous notation

= basic transformations in homogeneous notation
m compositing transformations

= summary

University of Freiburg — Computer Science Department — Computer Graphics - 40

Compositing Transformations

= composition is achieved by matrix multiplication
= a translation T applied to p, followed by a rotation R
R(Tp) = (RT)p
= a rotation R applied to p, followed by a translation T
T(Rp) = (TR)p
= note that generally TR # RT
= the order of composed transformations matters

University of Freiburg — Computer Science Department — Computer Graphics - 41

Examples

= rotation around a line through t parallel
to the x-, y-, z- axis
T(t)nyz(¢)T(_t)

= scale with respect to an arbitrary axis
Rixyz(0)S(8z, 8y, 52)Rxyz(—9)

= e.g., by, b, b;represent an orthonormal basis,
then scaling along these vectors can be done by

b1b2b308()b1b2b30T
0 0 0 1 5%y %20\ g 0 0 1

University of Freiburg — Computer Science Department — Computer Graphics - 42

Rigid-Body Transform

] (IO{ i)pzT(t)Rp

with R being a rotation and t being a
translation is a combined transformation

= [nverse
(T(t)R)™' =R7'T(t)"' =R"T(-t)
= in Euclidean coordinates p’ = Rp + t
= the inverse transform p=R'(p’—t) =R

= therefore / R t _1_ RT —R't
0O 1 o 0 1

University of Freiburg — Computer Science Department — Computer Graphics - 43

—1pl o R_lt

Outline

= transformations in the rendering pipeline

= motivations for the homogeneous notation

= homogeneous notation

= basic transformations in homogeneous notation
= compositing transformations

= summary

University of Freiburg — Computer Science Department — Computer Graphics - 44

Summary

= usage of the homogeneous notation is motivated
by a unified processing of affine transformations,
perspective projections, points, and vectors

= all transformations of points and vectors are
represented by a matrix-vector multiplication

= 'undoing" a transformation is represented by
Its inverse

= compositing of transformations is accomplished
by matrix multiplication

University of Freiburg — Computer Science Department — Computer Graphics - 45

