Image Processing and Computer Graphics **Transformations and Homogeneous Coordinates**

Matthias Teschner

Computer Science Department University of Freiburg

Albert-Ludwigs-Universität Freiburg

FREIBURG

Motivation

- transformations are used
 - to position, reshape, and animate objects, lights, and the virtual camera
 - to orthographically or perspectivly project three-dimensional geometry onto a plane
- transformations are represented with 4x4 matrices
- transformations are applied to vertices and normals
- vertices (positions) and normals (directions) are represented with 4D vectors

Outline

- transformations in the rendering pipeline
- motivations for the homogeneous notation
- homogeneous notation
- basic transformations in homogeneous notation
- compositing transformations
- summary

Vertex Processing

- modelview transform
- (lighting)
- projection transform
- (clipping)
- viewport transform

Modelview Transform

- M₁, M₂, M₃, M₄, V are matrices representing transformations
- M_1 , M_2 , M_3 , M_4 are model transforms to place the objects in the scene
- V places and orientates the camera in space
 - V⁻¹ transforms the camera to the origin looking along the negative z-axis
- model and view transforms are combined in the modelview transform
- the modelview transform V⁻¹M_{1..4} is applied to the objects
 University of Freiburg Computer Science Department Computer Graphics 5

Projection Transform

- P transforms the view volume to the canonical view volume
- the view volume depends on the camera properties
 - orthographic projection \rightarrow cuboid

• perspective projection \rightarrow pyramidal frustum

- canonical view volume is a cube from (-1,-1,-1) to (1,1,1)
- view volume is specified by near, far, left, right, bottom, top

Viewport Transform / Screen Mapping

- projected primitive coordinates (x_p, y_p, z_p) are transformed to screen coordinates (x_s, y_s)
- screen coordinates together with depth value are window coordinates (x_s, y_s, z_w)

[Akenine-Moeller et al.: Real-time Rendering]

Vertex Transforms

UNI FREIBURG

Vertex Transforms

University of Freiburg – Computer Science Department – Computer Graphics - 9

JNI REIBURG

Outline

- transformations in the rendering pipeline
- motivations for the homogeneous notation
- homogeneous notation
- basic transformations in homogeneous notation
- compositing transformations
- summary

Some Transformations

- congruent transformations (Euclidean transformations)
 - preserve shape and size
 - translation, rotation, reflection
- similarity transformations
 - preserve shape
 - translation, rotation, reflection, scale

Affine Transformations

- preserve collinearity
 - points on a line are transformed to points on a line
- preserve proportions
 - ratios of distances between points are preserved
- preserve parallelism
 - parallel lines are transformed to parallel lines
- angles and lengths are not preserved
- translation, rotation, reflection, scale, shear are affine
- orthographic projection is a combination of affine transf.
- perspective projection is not affine

Affine Transformations

- affine transformations of a 3D point $p \colon \mathbf{p}' = \mathbf{T}(\mathbf{p}) = \mathbf{A}\mathbf{p} + \mathbf{t}$
- affine transformations preserve affine combinations $\mathbf{T} (\sum_{i} \alpha_{i} \cdot \mathbf{p}_{i}) = \sum_{i} \alpha_{i} \cdot \mathbf{T}(\mathbf{p}_{i})$ for $\sum_{i} \alpha_{i} = 1$
- e.g., a line can be transformed by transforming its control points

$$\mathbf{p_1}$$

$$\mathbf{x} = \alpha_1 \mathbf{p_1} + \alpha_2 \mathbf{p_2}$$

$$\mathbf{x'} = \mathbf{T}(\mathbf{x}) = \alpha_1 \mathbf{T}(\mathbf{p_1}) + \alpha_2 \mathbf{T}(\mathbf{p_2})$$

$$\mathbf{p_2'}$$

Affine Transformations

- affine transformations of a 3D point p
 $\mathbf{p}' = \mathbf{A}\mathbf{p} + \mathbf{t}$
- the 3x3 matrix **A** represents scale and rotation
- the 3D vector t represents translation
- using homogeneous coordinates, all affine transformations are represented with one matrix-vector multiplication

Points and Vectors

- the rendering pipeline transforms vertices, normals, colors, texture coordinates
- points (e.g. vertices) specify a location in space
- vectors (e.g. normals) specify a direction
- relations between points and vectors
 - point point = vector
 - point + vector = point
 - vector + vector = vector
 - point + point = not defined
 - $\vec{\mathbf{p}} = \mathbf{p} \mathbf{O}$ $\mathbf{p} = \mathbf{O} + \vec{\mathbf{p}}$

UNI FREIBURG

Points and Vectors

- transformations can have different effects on points and vectors
- translation
 - translation of a point moves the point to a different position
 - translation of a vector does not change the vector
- using homogeneous coordinates, transformations of vectors and points can be handled in a unified way

Outline

- transformations in the rendering pipeline
- motivations for the homogeneous notation
- homogeneous notation
- basic transformations in homogeneous notation
- compositing transformations
- summary

Homogeneous Coordinates of Points

- $(x, y, z, w)^T$ with $w \neq 0$ are the homogeneous coordinates of the 3D point $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T$
- $(\lambda x, \lambda y, \lambda z, \lambda w)^T$ represents the same point $(\frac{\lambda x}{\lambda w}, \frac{\lambda y}{\lambda w}, \frac{\lambda z}{\lambda w})^T = (\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T$ for all λ with $\lambda \neq 0$
- examples
 - (2, 3, 4, 1) ∼ (2, 3, 4)
 - (2, 4, 6, 1) ∼ (2, 4, 6)
 - (4, 8, 12, 2) ~ (2, 4, 6)

1D Illustration

BURG

Homogeneous Coordinates of Vectors

- for varying w, a point $(x, y, z, w)^T$ is scaled and the points $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T$ represent a line in 3D space
- the direction of this line is characterized by $(x, y, z)^T$
- for $w \to 0$, the point $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T$ moves to infinity in the direction $(x, y, z)^T$
- $(x, y, z, 0)^T$ is a point at infinity in the direction of $(x, y, z)^T$
- $(x, y, z, 0)^T$ is a vector in the direction of $(x, y, z)^T$

1D Illustration

University of Freiburg – Computer Science Department – Computer Graphics - 21

UNI FREIBURG

Points and Vectors

- if points are represented in the homogeneous (normalized) form, point - vector relations can be represented
- vector + vector = vector
- point + vector = point

point - point = vector

$$\begin{array}{c} u_{x} \\ u_{y} \\ u_{z} \\ 0 \end{array} \right) + \begin{pmatrix} v_{x} \\ v_{y} \\ v_{z} \\ 0 \end{array} \right) = \begin{pmatrix} u_{x} + v_{x} \\ u_{y} + v_{y} \\ u_{z} + v_{z} \\ 0 \end{array} \right)$$

$$\begin{array}{c} p_{x} \\ p_{y} \\ p_{z} \\ 1 \end{array} \right) + \begin{pmatrix} v_{x} \\ v_{y} \\ v_{z} \\ 0 \end{array} \right) = \begin{pmatrix} p_{x} + v_{x} \\ p_{y} + v_{y} \\ p_{z} + v_{z} \\ 1 \end{array} \right)$$

$$\begin{array}{c} p_{x} \\ p_{y} \\ p_{z} \\ 1 \end{array} \right) - \begin{pmatrix} r_{x} \\ r_{y} \\ r_{z} \\ 1 \end{array} \right) = \begin{pmatrix} p_{x} - r_{x} \\ p_{y} - r_{y} \\ p_{z} - r_{z} \\ 0 \end{array} \right)$$

Homogeneous Representation of Linear Transformations

Affine Transformations and Projections

general form

m_{00}	m_{01}	m_{02}	t_0
m_{10}	m_{11}	m_{12}	t_1
m_{20}	m_{21}	m_{22}	t_2
p_0	p_1	p_2	w

- *m_{ii}* represent rotation, scale
- *t_i* represent translation
- *p_i* represent projection
- w is analog to the fourth component for points / vectors

FREIBURG

Homogeneous Coordinates - Summary

• $(x, y, z, w)^T$ with $w \neq 0$ are the homogeneous coordinates of the 3D point $\left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right)^T$ • $(x, y, z, 0)^T$ is a point at infinity in the direction of $(x, y, z)^T$ • $(x, y, z, 0)^T$ is a vector in the direction of $(x, y, z)^T$ $\left(\begin{array}{ccccc} m_{00} & m_{01} & m_{02} & t_0 \\ m_{10} & m_{11} & m_{12} & t_1 \\ m_{20} & m_{21} & m_{22} & t_2 \\ p_0 & p_1 & p_2 & w \end{array}\right)$ is a transformation, representing rotation, scale, translation, projection

Outline

- transformations in the rendering pipeline
- motivations for the homogeneous notation
- homogeneous notation
- basic transformations in homogeneous notation
- compositing transformations
- summary

Translation

• of a point $\mathbf{T}(\mathbf{t})\mathbf{p} = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} = \begin{pmatrix} p_x + t_x \\ p_y + t_y \\ p_z + t_z \\ 1 \end{pmatrix}$ • of a vector $\mathbf{T}(\mathbf{t})\mathbf{v} = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_x \\ v_y \\ v_z \\ 0 \end{pmatrix} = \begin{pmatrix} v_x \\ v_y \\ v_z \\ 0 \end{pmatrix}$

• inverse (T⁻¹ "undoes" the transform T) $\mathbf{T}^{-1}(\mathbf{t}) = \mathbf{T}(-\mathbf{t})$

Rotation

positive (anticlockwise)
 rotation with angle φ
 around the x-, y-, z-axis

$$\mathbf{R}_{\mathbf{x}}(\phi) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi & 0 \\ 0 & \sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$\mathbf{R}_{\mathbf{y}}(\phi) = \begin{pmatrix} \cos \phi & 0 & \sin \phi & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \phi & 0 & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$\mathbf{R}_{\mathbf{z}}(\phi) = \begin{pmatrix} \cos \phi & -\sin \phi & 0 & 0 \\ \sin \phi & \cos \phi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

UNI FREI

Inverse Rotation

•
$$\mathbf{R}_{\mathbf{x}}(-\phi) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos -\phi & -\sin -\phi & 0 \\ 0 & \sin -\phi & \cos -\phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

= $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \phi & \sin \phi & 0 \\ 0 & -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \mathbf{R}_{\mathbf{x}}^{T}(\phi)$

R_x⁻¹ = R_x^T R_y⁻¹ = R_y^T R_z⁻¹ = R_z^T
 the inverse of a rotation matrix corresponds to its transpose

University of Freiburg – Computer Science Department – Computer Graphics - 29

BURG

Mirroring / Reflection

- mirroring with respect to x =0, y =0, z =0 plane
- changes the sign of the x -, y -, z component

$$\mathbf{P}_{\mathbf{x}} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mathbf{P}_{\mathbf{y}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mathbf{P}_{\mathbf{z}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• the inverse of a reflection corresponds to its transpose $\mathbf{P_x}^{-1} = \mathbf{P_x}^T$ $\mathbf{P_v}^{-1} = \mathbf{P_v}^T$ $\mathbf{P_z}^{-1} = \mathbf{P_z}^T$

Orthogonal Matrices

- rotation and reflection matrices are orthogonal
 $\mathbf{R}\mathbf{R}^T = \mathbf{R}^T\mathbf{R} = \mathbf{I}$ $\mathbf{R}^{-1} = \mathbf{R}^T$
- $\mathbf{R}_1, \mathbf{R}_2$ are orthogonal \Rightarrow $\mathbf{R}_1 \mathbf{R}_2$ is orthogonal
- rotation: $\det \mathbf{R} = 1$ reflection: $\det \mathbf{R} = -1$
- length of a vector does not change $\|\mathbf{R}\mathbf{v}\| = \|\mathbf{v}\|$
- angles are preserved $\langle {f Ru}, {f Rv}
 angle = \langle {f u}, {f v}
 angle$

Scale

scaling x -, y - , z - components of a point or vector

$$\mathbf{S}(s_x, s_y, s_z)\mathbf{p} = \begin{pmatrix} s_x & 0 & 0 & 0\\ 0 & s_y & 0 & 0\\ 0 & 0 & s_z & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} = \begin{pmatrix} s_x p_x \\ s_y p_y \\ s_z p_z \\ 1 \end{pmatrix}$$

- inverse $\mathbf{S}^{-1}(s_x, s_y, s_z) = \mathbf{S}(\frac{1}{s_x}, \frac{1}{s_y}, \frac{1}{s_z})$
- uniform scaling: $s_x = s_y = s_z = s_z$

$$\mathbf{S}(s,s,s) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{s} \end{pmatrix}$$

University of Freiburg – Computer Science Department – Computer Graphics - 32

BURG

Shear

- one component is offset with respect to another component
- six basic shear modes in 3D
- e.g., shear of x with respect to z

$$\mathbf{H_{xz}}(s)\mathbf{p} = \begin{pmatrix} 1 & 0 & s & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} = \begin{pmatrix} p_x + sp_z \\ p_y \\ p_z \\ 1 \end{pmatrix}$$

• inverse $\mathbf{H_{xz}}^{-1}(s) = \mathbf{H_{xz}}(-s)$

BURG

Basis Transform - Translation

two coordinate systems

 $\mathbf{C_1} = (\mathbf{O_1}, \{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}) \qquad \mathbf{C_2} = (\mathbf{O_2}, \{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\})$

University of Freiburg – Computer Science Department – Computer Graphics - 34

INI

Basis Transform - Translation

- the coordinates of p_1 with respect to $\, C_2$ are given by $\, p_2 = p_1 t \quad p_2 = T(-t) p_1 \,$
- the coordinates of a point in the transformed basis correspond to the coordinates of point in the untransformed basis transformed by the inverse basis transform
 - translating the origin by t corresponds to translating the object by -t
 - also: rotating the basis vectors by an angle corresponds to rotating the object by the same negative angle

Basis Transform - Rotation

two coordinate systems

 $\mathbf{C_1} = (\mathbf{O}, \{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}) \qquad \mathbf{C_2} = (\mathbf{O}, \{\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}\})$

BURG

L R N R N

Basis Transform - Rotation

• the coordinates of $\mathbf{p_1}$ with respect to $\mathbf{C_2}$ are given by

$$\mathbf{p_2} = \begin{pmatrix} \mathbf{b_1}^T \\ \mathbf{b_2}^T \\ \mathbf{b_3}^T \end{pmatrix} \mathbf{p_1} \sim \begin{pmatrix} \mathbf{b_{1x}} & \mathbf{b_{1y}} & \mathbf{b_{1z}} & 0 \\ \mathbf{b_{2x}} & \mathbf{b_{2y}} & \mathbf{b_{2z}} & 0 \\ \mathbf{b_{3x}} & \mathbf{b_{3y}} & \mathbf{b_{3z}} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mathbf{p_1}$$

- \mathbf{b}_1 , \mathbf{b}_2 , \mathbf{b}_3 are the basis vectors of \mathbf{C}_2 with respect to \mathbf{C}_1
- b₁, b₂, b₃ are orthonormal, therefore the basis transform is a rotation
- rotating the basis vectors by an angle corresponds to rotating the object by the same negative angle

7

Basis Transform - Application

- the view transform can be seen as a basis transform
- objects are placed with respect to
 a (global) coordinate system C₁ = (O₁, {e₁, e₂, e₃})
- the camera is also positioned at O₂ and oriented at {b₁, b₂, b₃} given by viewing direction and up-vector
- after the view transform, all objects are represented in the eye or camera coordinate system C₂ = (O₂, {b₁, b₂, b₃})
- placing and orienting the camera corresponds to the application of the inverse transform to the objects
- rotating the camera by R and translating it by T, corresponds to translating the objects by T⁻¹ and rotating them by R⁻¹ rotating them by R⁻¹

Planes and Normals

- planes can be represented by a surface normal **n** and a point **r**. All points **p** with $\mathbf{n} \cdot (\mathbf{p} - \mathbf{r}) = 0$ form a plane. $n_x p_x + n_y p_y + n_z p_z + (-n_x r_x - n_y r_y - n_z r_z) = 0$ $n_x p_x + n_y p_y + n_z p_z + d = 0$ $(n_x n_y n_z d)(p_x p_y p_z 1)^T = 0$ $(n_x n_y n_z d)\mathbf{A}^{-1}\mathbf{A}(p_x p_y p_z 1)^T = 0$
- the transformed points $\mathbf{A}(p_x \ p_y \ p_z \ 1)^T$ are on the plane represented by $(n_x \ n_y \ n_z \ d)\mathbf{A^{-1}} = ((\mathbf{A^{-1}})^T(n_x \ n_y \ n_z \ d)^T)^T$
- if a surface is transformed by A, its homogeneous notation (including the surface normal) is transformed by (A⁻¹)^T

University of Freiburg – Computer Science Department – Computer Graphics - 39

UNI FREIBURG

Outline

- transformations in the rendering pipeline
- motivations for the homogeneous notation
- homogeneous notation
- basic transformations in homogeneous notation
- compositing transformations
- summary

Compositing Transformations

- composition is achieved by matrix multiplication
 - a translation T applied to p, followed by a rotation R
 $\mathbf{R}(\mathbf{Tp}) = (\mathbf{RT})\mathbf{p}$
 - a rotation R applied to p, followed by a translation T
 T(Rp) = (TR)p
 - note that generally $\mathbf{TR} \neq \mathbf{RT}$
 - the order of composed transformations matters

Examples

- rotation around a line through t parallel to the x-, y-, z- axis
 T(t)R_{xyz}(φ)T(-t)
- scale with respect to an arbitrary axis
 P (d)S(a a b)P (a d)

 $\mathbf{R}_{\mathbf{xyz}}(\phi)\mathbf{S}(s_x, s_y, s_z)\mathbf{R}_{\mathbf{xyz}}(-\phi)$

• e.g., $\mathbf{b_1}$, $\mathbf{b_2}$, $\mathbf{b_3}$ represent an orthonormal basis, then scaling along these vectors can be done by $\begin{pmatrix} \mathbf{b_1} & \mathbf{b_2} & \mathbf{b_3} & 0\\ 0 & 0 & 1 \end{pmatrix} \mathbf{S}(s_x, s_y, s_z) \begin{pmatrix} \mathbf{b_1} & \mathbf{b_2} & \mathbf{b_3} & 0\\ 0 & 0 & 1 \end{pmatrix}^T$

Rigid-Body Transform

$$\left(\begin{array}{cc} \mathbf{R} & \mathbf{t} \\ 0 & 1 \end{array}\right) \mathbf{p} = \mathbf{T}(\mathbf{t}) \mathbf{R} \mathbf{p}$$

with **R** being a rotation and **t** being a translation is a combined transformation

inverse

 $(\mathbf{T}(\mathbf{t})\mathbf{R})^{-1} = \mathbf{R}^{-1}\mathbf{T}(\mathbf{t})^{-1} = \mathbf{R}^T\mathbf{T}(-\mathbf{t})$

- in Euclidean coordinates $\mathbf{p}' = \mathbf{R}\mathbf{p} + \mathbf{t}$
- the inverse transform $\mathbf{p} = \mathbf{R}^{-1}(\mathbf{p}' \mathbf{t}) = \mathbf{R}^{-1}\mathbf{p}' \mathbf{R}^{-1}\mathbf{t}$

• therefore
$$\begin{pmatrix} \mathbf{R} & \mathbf{t} \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{R}^T & -\mathbf{R}^T\mathbf{t} \\ 0 & 1 \end{pmatrix}$$

Outline

- transformations in the rendering pipeline
- motivations for the homogeneous notation
- homogeneous notation
- basic transformations in homogeneous notation
- compositing transformations
- summary

Summary

- usage of the homogeneous notation is motivated by a unified processing of affine transformations, perspective projections, points, and vectors
- all transformations of points and vectors are represented by a matrix-vector multiplication
- "undoing" a transformation is represented by its inverse
- compositing of transformations is accomplished by matrix multiplication

