Lecture 13+: Nearest Neighbor Search

Thinh Nguyen Oregon State University

VQ Encoding is Nearest Neighbor Search

- Given an input vector, find the closest codeword in the codebook and output its index.
- Closest is measured in squared Euclidean distance.
- **D** For two vectors (w_1, x_1, y_1, z_1) and (w_2, x_2, y_2, z_2) .

Squared Distance = $(w_1 - w_2)^2 + (x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2$

k-d Tree

□ Jon Bentley, 1975

Tree used to store spatial data.

- Nearest neighbor search.
- Range queries.
- Fast look-up!
- k-d trees are guaranteed log₂ n depth where n is the number of points in the set.
 - Traditionally, k-d trees store points in d-dimensional space (equivalent to vectors in ddimensional space).

k-d tree construction

- If there is just one point, form a leaf with that point.
- Otherwise, divide the points in half by a line perpendicular to one of the axes.
- Recursively construct k-d trees for the two sets of points.
- Division strategies:
 - divide points perpendicular to the axis with widest spread.
 - divide in a round-robin fashion.

divide perpendicular to the widest spread.

k-d tree Construction Complexity

□ First sort the points in each dimension:

- O(*dn* log *n*) time and *dn* storage.
- These are stored in A[1..d, 1..n]
- Finding the widest spread and equally dividing into two subsets can be done in O(*dn*) time.
- Constructing the k-d tree can be done in O(dn log n) and dn storage

Codebook for 2-d vector

2-d vectors (x,y)

Х

Node Structure for k-d Tree

A node has 5 fields

- axis (splitting axis)
- value (splitting value)
- Ieft (left subtree)
- right (right subtree)
- point (holds a point if left and right children are null)

Node Structure for k-d Tree

A node has 5 fields

- axis (splitting axis)
- value (splitting value)
- Ieft (left subtree)
- right (right subtree)
- point (holds a point if left and right children are null)

Why does k-d tree work?

q(n.axis) – w <u><</u> n.value means the circle overlaps the left subtree. q(n.axis) + w > n.value means the circle overlaps the right subtree.

```
NNS(q: point, n: node, p: ref point w: ref distance)
if n.left = n.right = null then {leaf case}
  w' := ||q - n.point||;
  if w' < w then w := w'; p := n.point;
else
  if q(n.axis) < n.value then
     search_first := left;
  else
     search_first := right;
  if (search_first == left)
     if q(n.axis) - w \leq n.value then NNS(q, n.left, p, w);
     if q(n.axis) + w > n.value then NNS(q, n.right, p, w);
  else // search_first == right
     if q(n.axis) + w > n.value then NNS(q, n.right, p, w);
     if q(n.axis) - w \leq n.value then NNS(q, n.left, p, w);
```

initial call

NNS(q, root, p, infinity)

У

s1

Х

е

s1

Х

е

y s6

f

y s8

h

y s6

y s8

h

f

е

d

Х

Notes on Nearest Neighbor Search

- Has been shown to run in O(log n) average time per search in a reasonable model. (Assuming d a constant)
- For VQ it appears that O(log *n*) is correct.
- **D** Storage for the k-d tree is O(n).
- Preprocessing time is O(n log n) assuming d is a constant.

Notes on Nearest Neighbor Search

Orchard's Algorithm (1991)

- Uses O(n2) storage but is very fast
- Annulus Algorithm
 - Similar to Orchard but uses O(n) storage. Does many more distance calculations.
- Principal Component Partitioning (PCP)
 - Zatloukal, Johnson, Ladner (1999).
 - Similar to k-d trees.
 - Also very fast.

PCP Tree

PCP Tree vs. k-d Tree

Search Time

Notes on VQ

Works well in some applications.

- Requires training.
- Has some interesting algorithms:
 - Codebook design.
 - Nearest neighbor search.
- Variable length codes for VQ:
 - PTSVQ pruned tree structured VQ (Chou, Lookabaugh and Gray, 1989)
 - ECVQ entropy constrained VQ (Chou, Lookabaugh and Gray, 1989)