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ABSTRACT
Virtual Reality (VR) technology has advanced to include eye-tracking,
allowing novel research, such as investigating how our visual sys-
tem coordinates eye movements with changes in perceptual depth.
The purpose of this study was to examine whether eye tracking
could track perceptual depth changes during a visual discrimina-
tion task. We derived two depth-dependent variables from eye
tracker data: eye vergence angle (EVA) and interpupillary distance
(IPD). As hypothesized, our results revealed that shifting gaze from
near-to-far depth significantly decreased EVA and increased IPD,
while the opposite pattern was observed while shifting from far-to-
near. Importantly, the amount of change in these variables tracked
closely with relative changes in perceptual depth, and supported
the hypothesis that eye tracker data may be used to infer real-time
changes in perceptual depth in VR. Our method could be used as
a new tool to adaptively render information based on depth and
improve the VR user experience.

CCS CONCEPTS
•Human-centered computing→VirtualReality; •EyeTrack-
ing → Perceptual Depth Changes; • Human Visual System →

Vergence and Interpupillary Distance.
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1 INTRODUCTION
Virtual reality (VR) technology has been increasingly used in a vari-
ety of applications, such as immersive training, as well as in several
basic research fields, including visual perception, psychology, and
cognitive science [Callahan-Flintoft et al. 2021; Clay et al. 2019]. In
addition, VR provides an opportunity to further understand the hu-
man visual system, by investigating behavior in controlled yet natu-
ralistic contexts. Recent commercial technology developments have
allowed the combination of VR and eye tracking, enabling novel
investigations. For example, researchers have used eye tracking to
measure eye movements and pupil size fluctuations to elucidate per-
ceptual and cognitive processes [Cohen Hoffing et al. 2020; Feil et al.
2017; Hooge et al. 2019; Solé Puig et al. 2021]. However, an open
research question, which is well-suited for VR experimentation, is
how our visual system behaves in response to depth changes. Be-
cause VR devices incorporated with eye trackers have only recently
been developed, there have only been a handful of investigations
using these devices to understand visual responses in VR [Imaoka
et al. 2020; Iskander et al. 2019; Kim et al. 2021; Lynn et al. 2020]. The
primary purpose of this work is to investigate whether perceptual
depth can be estimated using eye tracker data from participants
performing a task in VR [Callahan-Flintoft et al. 2021].

Eye Vergence Angle (EVA). Depth perception requires rapid and
precise eye movements (e.g., saccadic, fixation, vergence, etc.), be-
cause perceived depth is influenced by monocular and binocular
depth cues (e.g., binocular disparity, size, accommodation, vergence,
etc.) [Leigh and Zee 2015; Singh et al. 2018]. During accommoda-
tion, the ciliary muscles of the eye adjust the lens to bring objects
at different depths into sharp focus. In addition to accommoda-
tion, viewing objects at different distances requires the eyes to
rotate simultaneously, known as vergence, which allows the eyes to
maintain combined binocular vision. The link between vergence
and accommodation is known as the vergence-accommodation re-
flex [Hoffman et al. 2008]. When changing the depth of binocular
viewing, there are two types of vergence eye movements: conver-
gence and divergence [Gross et al. 2015]. When shifting gaze from
far to near objects, the eyes rotate inward horizontally, known as
convergence (see Fig. 1a), and when shifting gaze from near to far,
the eyes need to rotate outward horizontally, known as divergence
(see Fig. 1a). Therefore, when focusing on an object binocularly,
the eye vergence angle (EVA) is the angle between the visual axes
of both eyes [Iskander et al. 2019]. In general, the value of EVA is
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Figure 1: (a) The eye vergence angle (EVA) and inter-pupillary distance (IPD) defined according to binocular human vision, when
the eyes are verged on a near or far target. (b) Calculating EVA and IPD from eye tracker data, using the vectors of 3D gaze
direction and 3D gaze origin.

larger when verged on a closer object, and smaller when verged on
a farther object. As the object distance becomes large relative to
the interpupillary distance, EVA tends towards zero. At a value of
zero, the visual axes of both eyes become parallel [Leigh and Zee
2015].

During various studies of the human visual system in natural and
virtual environments, researchers have been measuring vergence
eye movements with eye trackers, typically using the angle be-
tween the two eyes’ lines of sight as the vergence component [Feil
et al. 2017; Hooge et al. 2019; Solé Puig et al. 2021; Sulutvedt et al.
2018]. While there have been a few studies relating gaze depth
and EVA [Duchowski et al. 2014, 2011], based on our knowledge
only Iskander et al. [2019] studied how to measure EVA using a
consumer-grade VR headset with integrated eye trackers (HTC
VIVE Pro). This study calculated vergence through inverse kine-
matics with a biomechanical head and eye model. Results revealed
that the real-time vergence angle from the eye tracker in VR had
higher variability, and suggested that the vergence-accommodation
conflict present in the VR headset might cause higher variability of
vergence values in VR, contributing to the misperception of depth.

Interpupillary Distance (IPD). Another essential component of
binocular human visual system that changes with object depth is
interpupillary distance (IPD)—the distance between the centers of
the left and right eye pupils [Dodgson 2004]. Changing the depth of
a verged object can measurably affect IPD. According to Jones et al.
[2016], IPD changes also bring changes in eye gaze distances, and
changes in vergence strongly affect IPD. Therefore, if the eyes focus
at a near distance, the IPD value will be smaller, and if the eyes focus
at a far distance, the IPD values will be larger (see Fig. 1a). There is
evidence that infrared eye tracking technology is reliable enough
for measuring small changes in IPD [Kim et al. 2021; Murray et al.
2017]. Most prior investigations of eye vergence have been con-
ducted in a controlled experimental environment with custom-built
displays and eye-tracking technology. Most researchers restricted
the participants from moving their heads; only eye movements
were allowed. In addition, a few papers have measured vergence
movements in response to depth changes in VR environments, but
these did not consider other depth-related eye movement metrics,
such as IPD [Duchowski et al. 2014, 2011; Iskander et al. 2019].

The main contribution of this paper is demonstrating a method
of estimating EVA and IPD in VR, using a consumer-grade VR
display (HTC VIVE Pro) with an integrated Tobii eye tracker. The
behavior of EVA with perceptual depth changes was validated by
considering the behavior of IPD. Since EVA and IPD were measured
independently from the same eye tracker data, similar responses
to depth changes increases the confidence that estimated EVA and
IPD can track perceptual depth changes in VR.

2 HYPOTHESIS
We hypothesize that data collected from an eye tracker concurrently
while participants perform a perceptual task in VR will be able to
track relative changes in the perceived depth plane associated with
fixated objects. More specifically, we hypothesize that EVA will
increase and IPD will decrease when participants shift their gaze
from a far object to a near object (see Fig. 2b and c). Likewise,
we hypothesize that EVA will reduce and IPD will increase when
participants shift their gaze from a near object to a far object (see
Fig. 2e and f). Last, we hypothesize that the degree of change in
these two variables will reflect the amount of change in perceptual
depth such that greater changes in depth will be associated with
greater changes in EVA and IPD.

3 METHOD
This study was approved by the IRB at the US Air Force Acad-
emy (USAFA) and the US Army Research Laboratory under Project
Number ARL 19-122. All procedures were in accordance with the
Declaration of Helsinki. In this study, we analyzed data from a
virtual reality environment where subjects (USAFA Cadets, n=24,
female=9, mean=19.3 years) performed a two-alternative forced
choice task. All subjects had normal or corrected vision and pro-
vided written informed consent. We briefly describe the methods
here, but more information can be found in Callahan-Flintoft et al.
[2021]. Subjects foveated on a centering cross placed 11m away in
Unity coordinate space, and were instructed to saccade to a cued
disk among an array of disks, which contained a target. Subjects
were asked to report whether the target was facing right or left.
The disks were organized in two circular arrays around the cen-
tering cross in either the parafovea or periphery, respectively 6
or 20 degrees of visual angle away from the cross. Additionally,
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Figure 2: Two-alternative forced choice task in VR with experimental prediction. (a) During convergence, participants shifted
the eye gaze from the virtual cross (perceptually far) to the virtual disk (perceptually near). In this scenario, if we consider
a time window of −1s to +1s and lock the event on the first saccade onset after the cue is presented (blue vertical line), our
hypothesis is that after shifting the gaze, EVA will be increased and IPD will be decreased (b, c). (d) During divergence, par-
ticipants shifted the eye gaze from the virtual disk (perceptually near) back to the virtual cross (perceptually far), and our
hypothesis is that after shifting the gaze, the opposite pattern of results will be seen: EVA will be decreased and IPD will be
increased (e, f). Note that graphs b, c, e, and f are made using theoretical data.

subjects completed static and dynamic conditions. In the static tri-
als disks appeared either at 13m (near) or 32m (far) away in Unity
coordinate space. In the dynamic trials participants moved through
the environment and disks appeared to pass behind the subject. In
this manuscript we only analyze data from the static condition, to
isolate discrete times when vergence and IPD should change.

This task was designed to investigate characteristics of saccadic
eye movements for targets presented at different locations and
depth planes in the naturalistic yet controlled environment that is
afforded by VR. Eye movements were classified by applying a dy-
namic threshold to gaze and eye speed that is scaled by the current
head speed. Missing data were excluded from the classification. Eye
movement classification was validated using ray-casts of each gaze
sample. For a detailed discussion of eye movement classification see
Fig. 2 in Callahan-Flintoft et al. [2021] and Agtzidis et al. [2019]. We
found the design of this study to be suitable for preliminary analysis
to determine (i) whether EVA and IPD can be reliably estimated
from the output of the eye tracker device, and (ii) whether relative
changes in EVA and IPD accurately track and temporally coincide
with experimentally-induced changes in perceptual depth.

4 DATA PROCESSING
4.1 Filtering
Our study aims to compute and analyze EVA and IPD from the eye
tracker data while shifting gaze from far to near (convergence) and
near to far (divergence). During the convergence phase, participants
shifted their eye gaze from the centering cross (perceptually far)

to the disks (perceptually near) (see Fig. 2a). Therefore, we time-
locked to the first saccade onset after the cue (yellow virtual disk)
was displayed. After time-locking, we considered the valid trails
considering the eye movements before the time locked. To be a
valid trial, the eye gaze should be labeled as on the recentering
cross in the time window ranging from 0–3 seconds between after
the first saccade offset and second fixation onset before the saccade
onset. If the time period was more than 3 seconds, we considered
only the first fixation onset instead of the second fixation onset
before the first saccade offset. In addition, for a valid trial at least
25% of eye-gaze should be on the recentering cross during the time
period. Based on these criteria, an average of 191 trials (66% of the
trials) were considered as valid trials for our convergence phase
analysis.

During the divergence phase, the opposite pattern of eye gaze
shifting occurred when subjects shifted their gaze from the target
back to the centering cross (see Fig. 2d)). We time-locked to the first
saccade onset after the target (red virtual disk) was deactivated. To
be a valid trial, the eye gaze should be labeled as on the recentering
cross in the time window ranging from 0–3 seconds between after
the first saccade onset and second fixation offset after the saccade
onset. If time period is more than 3 seconds, we considered only
the first fixation onset instead of the second fixation onset before
the first saccade offset. In addition, for a valid trial, at least 25% of
eye-gaze should be on the recentering cross during the time period.
Considering these criteria, an average of 195 trials (67.5% of the
trials) were considered valid trials for our divergence analysis.
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EVA and IPD data were first preprocessed by identifying blinks
using the pupil signal. Data during periods of blinkingwere replaced
with with "not a number" (NaN) in Matlab so that these data would
not be incorporated in the mean data. Additionally, estimating
EVA and IPD from the commercial eye tracker can occasionally
introduce noise and artifacts that appear as large changes in EVA
and IPD from one sample to another that are not physiologically
realistic. Therefore, EVA and IPD data artifacts were identified
from the first derivative (velocity) of the measurements and also
replaced with NaN values. To get rid of the largest artifacts first,
we thresholded data to remove any EVA measurements greater
than 2400 deg/sec, and IPD measurements greater than 600 mm/sec
respectively. This yielded a robust measure of standard deviation
(SD). Next, we replaced data points over +2.5 SDs from the mean
with NaN values. Finally, due to both blinking and artifacts, 18.6%
data for the EVA and 18.2% data for IPD were replaced with NaNs
and therefore omitted from analysis.

4.2 Eye Vergence Angle (EVA) Calculation
In our study, experimental stimuli were located in three different re-
gions: foveal (virtual cross), parafoveal (virtual disk), and periphery
(virtual disk). There was no restriction on head movements during
the study. Further, there was a lack of documentation regarding
the focal distance of the lenses of our experimental device (HTC
Vive Pro) [Iskander et al. 2019]. Therefore, we considered 3D eye
gaze direction vector, and vector dot product formula to calculate
the vergence angle. Previously, Sulutvedt et al. [2018] used a simi-
lar approach to calculate vergence from the eye tracker-provided
vector data in their vergence analysis with depth and image size.
In this approach, we considered the angle created by the lines of
sight of each eye (the angle formed by the left and right eye gaze
direction vectors) as our EVA. For example, let us consider that
we had the left eye gaze direction vector (−−−−→Lx,y,z ) and the right eye
gaze direction vector (−−−−−→Rx,y,z ) from the eye tracker, and that both
eyes were focusing a target in the parafoveal region (See Figure 1b).
Therefore, according to the vector dot product formula we can get
the EVA (θ ) in degrees:

−−−−→
Lx,y,z ·

−−−−−→
Rx,y,z =

��Lx,y,z �� ��Rx,y,z �� cosθ (1)

4.3 Interpupillary Distance (IPD) Calculation
As mentioned previously, IPD is the distance between the center of
the two pupils, and it varies with depth changes. According to the
Tobii Pro SDK, the gaze origin vector indicates the center of the pupil
position for both eyes. Therefore, we considered the 3D eye gaze
origin vector to calculate the IPD in our analysis. For example, let us
consider that we had the left eye gaze origin vector (−−−−−−−−→LOlx,ly,lz ) and
the right eye gaze origin vector (−−−−−−−−−→ROrx,ry,rz ) from the eye tracker,
and the both eyes were focusing a target in the parafoveal region
(See Figure 1b). According to the Euclidean distance formula we
can get the IPD in millimeters (mm),

IPD =
√
(lx − rx)2 + (ly − ry)2 + (lz − rz)2 (2)

5 ANALYSIS
Our analysis focused on tracking the perceptual depth changes with
EVA and IPD using eye-tracker data. For this, we considered a time
interval from −1s to +1s. For the convergence phase, 0s is when
the first saccade onset made after cue (yellow virtual disk) was
displayed. Furthermore, for the divergence phase, 0s is the moment
when the first saccade onset was made after the target (red virtual
disk) was deactivated (divergence phase). The time from −1s to 0s
was considered before the gaze shift time frame (pre-event), and 0s
to 1s was considered after the gaze shift time frame (post-event). We
averaged the EVA and IPD of all participants to track the perceptual
depth changes. ∆ quantifies the amount of mean EVA and mean
IPD change between the post-event and pre-event periods. There-
fore, ∆ captures the degree of change induced to each variable by
changes in perceptual depth. To test our hypothesis, we performed
a repeated-measures ANOVA analysis on three experimental vari-
ables: vergence (convergence, divergence), perceptual depth (near, far),
and target position (parafovea, periphery).

6 RESULTS
Fig. 3 shows the results of our perceptual depth estimation with the
mean EVA and IPD of all participants. Figs. 3a and b illustrate the
result of the convergence phase. The results represent that shifting
eye gaze from the virtual cross (far perceptual depth) to the virtual
disk (near perceptual depth) increased EVA and decreased IPD. In
other words, the transition from the pre-event to the post-event
during the convergence phase increased EVA and decreased IPD, as
hypothesized. Figs. 3c and d represent the result of the divergence
phase. As expected, opposite patterns were observed during the
divergence phase.

Fig. 4 shows the amount of EVA changes (Fig. 4a) and IPD
changes (Fig. 4b) organized by perceptual depth and target po-
sitions. For EVA analysis, when vergence, perceptual depth, and
target position conditions are compared, there is only a significant
main effect of vergence (F1,23 = 6.15, p < .05), indicating that the
magnitude of EVA during the convergence phase was significantly
different from the divergence phase, considering all conditions. In
addition, we observed a significant interaction effect between ver-
gence and target position (F1,23 = 7.05, p < .01), indicating that
the values of EVA during the convergence and divergence phases
significantly differ between the parafovea and periphery positions
of virtual objects. No other significant effects were detected for
EVA.

For the IPD analysis, when vergence, perceptual depth, and target
position conditions are compared, there is a significant main effect
of vergence (F1,23 = 62.10, p < .001), perceptual depth (F1,23 = 14.64,
p < .001), and target position (F1,23 = 36.70,p < .001), revealing that
IPD significantly differed between the convergence and divergence
phases, near and far depths, and parafovea and periphery target
positions. In addition, we found a 2-way significant interaction
effect between vergence and perceptual depth (F1,23 = 19.36, p <
.001), and between vergence and target position (F1,23 = 50.45,
p < .001). These effects are caused by a significant 3-way interaction
effect among vergence, perceptual depth and target position (F1,23 =
11.16, p < .001). Altogether, these results indicate that IPD values
significantly differed across all the conditions. No other significant
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Figure 3: Tracking perceptual depth changes with EVA and IPD during convergence (left column) and divergence (right col-
umn). Red and points show the mean of EVA or IPD of all participants before (−1 to 0s, pre-event) and after gaze shift (0 to
1s, post-event), respectively. The blue vertical line represents the first saccade onset after the cue is presented (convergence
phase), and the first saccade onset after the cue is deactivated (divergence phase). The red and blue horizontal line illustrates
the mean EVA or IPD value from the pre-event and post-event, respectively. ∆ indicates how much EVA and IPD changed
between the post-event and pre-event. Supporting our hypothesises, during convergence EVA increased and IPD decreased.
During divergence, EVA decreased and IPD increased.

Figure 4: Results of the analysis for the change in of EVA (a) and IPD (b) with depth and target object position. In the near
periphery condition, the largest perceptual depth changes occurred, as EVA and IPD change values were largest in convergence
and divergence. In the far parafoveal condition, where perceptual depth discrepancies were expected to be smallest, changes
in EVA and IPD were smallest in convergence and divergence. Therefore, the relationship between the magnitude of depth
change and the magnitude of EVA and IPA change was consistent.

effects were detected for the IPD. In terms of the precision, IPD
had higher precision and less variability (∼0.01 mm SEM) than EVA
(∼0.15 degree SEM) in each of the conditions of depth and target
position.

7 DISCUSSION
In this study, we examined whether measurements of EVA and IPD,
derived from a commercial VR display with a built-in eye tracker,
could reveal when subjects changed their perceptual depth plane
to fixate on objects located in the fovea, parafovea, and periphery,
within a VR environment. We time-locked our analysis of EVA and
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IPD variables to moments in which we knew that participants suc-
cessfully shifted their gaze from far to near (convergence) and from
near to far (divergence). Further, because there was a background
with walls and a horizon inducing an environment with linear
perspective (e.g., looking down a hallway), targets located in the
periphery, which were closer to the walls closest to the participant,
appeared perceptually much closer than targets in the parafovea.
We expected that changes in EVA and IPD would be greater for
peripheral targets compared to parafoveal targets due to the greater
change in perceptual depth from the distant centering cross.

Our results confirmed that both EVA and IPD changed measur-
ably right at the moment that subjects landed their gaze on a new
object at a different depth (see Fig. 3), and they changed in the
hypothesized manner. EVA increased significantly after shifting
from far to near and decreased significantly after shifting from
near to far. Likewise, IPD decreased significantly after shifting from
far to near and increased significantly after shifting from near to
far. The time-locked degree of change measured in these variables,
as represented in Fig. 4, also supported the final hypothesis that
the degree of change in EVA and IPD would reflect the degree of
change in perceptual depth. We observed that in the near periphery
condition (Fig. 4 upper right quadrant), where the largest percep-
tual depth changes occurred, convergence and divergence EVA and
IPD change values were largest. The relationship of magnitude of
depth change and magnitude of EVA and IPD was also consistent in
the far parafoveal condition where perceptual depth discrepancies
were expected to be smallest, and EVA and IPD measures were
smallest (Fig. 4 bottom left quadrant). In terms of the precision
and variability, EVA has higher variability and less precision than
IPD. One possible explanation behind this findings is the vergence-
accommodation conflict, as previous results (Iskander et al. [2019])
found higher variability in vergence values in the commercial VR
displays, and stated the same reason.

8 CONCLUSIONS, LIMITATIONS, AND
FUTUREWORK

One potential use of eye-tracking-enabled VR technology is to track
which depth participants are looking at and present stimuli accord-
ing to the perceptual depth to reduce switching between visual
depth planes. Therefore, in this research, we presented an inves-
tigation of whether VR systems incorporated with eye-tracking
technologies can be used to infer changes in perceptual depth in
VR. Our findings indicate that it is possible, in principle, to predict
perceptual depth changes with an eye tracker enabled VR display.
Both EVA and IPD behaved according to our hypothesis, as well
consistent with the theory of how the human visual system re-
sponds to depth changes. With validation our findings could lead
to development of a closed eye-tracking enabled AR/VR system
that leverages EVA and/or IPD to estimate individualized depth
estimates. This capability could then be used to disambiguate fix-
ated objects using depth (i.e. AR car dashboard and nearby road)
as well as the displaying of objects at the perceptual depth plane.
This ability could help improve interactive display experience and
combat fatigue due to focal distance switching.

The main limitation of our investigation was in the design of
the VR environment, where the linear perspective created by walls

and horizon likely created depth cues and biased depth perception.
Specifically, the cues likely caused the peripheral and near condition
disks to be perceived as a larger depth change (because they were
closer to the walls and thus the subject) from the fixation cross than
the parafoveal and far condition disks (because the fixation cross,
parafoveal and far disks were closer to the horizon and far away
from the player). Thus, the linear perspective bias can explain the
pattern of EVA and IPD values in each condition despite ’objective’
unity coordinates placing peripheral and parafoveal disks at the
same distance from the subject as well as far condition disks ’ob-
jectively’ farther away from the fixation cross than near condition
disks. While our results indicate that EVA and IPD values vary with
the magnitude of perceptual depth changes, our experiment lacks a
ground truth to assess accuracy in the extent to which EVA and IPD
can measure depth changes. Future experimentation should include
a ground truth such as subjective depth perception questions, or
replication in an AR environment where real world depth changes
can be utilized and measured.
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