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ABSTRACT

As video cameras become cheaper and more pervasive, there is
now increased opportunity for user interfaces to take advantage of
user gaze data. Eye movements provide a powerful source of
information that can be used to determine user intentions and
interests. In this paper, we develop and test a method for
recognizing when users are reading text based solely on eye-
movement data. The experimental results show that our reading
detection method is robust to noise, individual differences, and
variations in text difficulty. Compared to a simple detection
algorithm, our algorithm reliably, quickly, and accurately
recognizes and tracks reading. Thus, we provide a means to
capture normal user activity, enabling interfaces that incorporate
more natural interactions of human and computer.

Keywords
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1. INTRODUCTION

With small low-cost cameras now filling our environment,
improved sensing promises to increase the richness and speed of
interaction with technology. A key question concerning this
bandwidth increase is how an abundance of information will be
used to improve the interaction experience. Good interactions take
place when people accurately interpret behaviors and respond
appropriately. If we want computers to provide satisfying and
natural interactions, methods must be devised to infer user
intentions and interests from user actions.

Given the highly visual nature of windows-based interfaces, gaze
direction has been identified as an excellent source for
determining user interest. Gaze movement data has led to two
very different types of interfaces: command and non-command
[2].[8]. Command-based interfaces use gaze location to directly
issue commands to the system. For example, gaze can be used to
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type on a graphical keyboard [10], or select icons or menu items
[3]. In contrast, non-command interfaces use gaze information to
indirectly tune the system to the user's needs. An example of this
is the storyteller system created by Starker and Bolt [11]. This
system evaluates the level of interest in various objects and uses
this information to determine which objects to talk about.

The typical desktop environment is heterogeneous, displaying a
wide range of objects (windows, icons, menus, and text) in
different sizes and colors. In this context, gaze patterns follow
complex sequences of movements. A number of approaches have
been developed to understand how these movements ought to be
organized and modeled. Generally, these can be classified into
three different levels of analysis: (a) highly detailed low-level
micro-events, (b) low-level intentional events, and (¢) coarse-level
goal-based events.

Highly detailed low-level events typically include such
movements as micro-saccades, jitter, nystagmus, and brief
fixations, which are studied for their physiological and
psychological relevance by vision scientists and psychologists.
Low-level intentional events are the smallest coherent units of
movement that the user is aware of during visual activity, which
include sustained fixations and revisits (e.g., [2]). For example,
users are aware of gazing at the cursor and then at an item on the
menu bar, but they are not aware of briefly fixating on two other
menu items before finding the desired one. Similar to both
approaches is that of synthesizing higher-order intentions with
low-level events. For example, once fixations and saccades can be
reliably detected, then behaviors such as searching can be
determined from a particular pattern of events. This approach
assumes, however, that intentions are hierarchically organized
such that global intentions are composed of a common set of
specific intentions.

In contrast, goal-based analysis is concerned with the most
general intentions of the user. In the typical windows interface,
there are five primary goals to eye movements: (a) inspecting, (b)
searching, (c) exploring, (d) performance monitoring, and (e)
reading. Inspecting is simply looking at a relatively specific object
to obtain more information about it. The object could be an icon,
an image, or small animation on a web page. Searching is
scanning around the desktop to find or visually acquire a known
object. Searching is required when the object's location can not be
determined from foveal or parafoveal vision. Exploring, in
contrast, is the searching the desktop for some object that is
interesting—looking for something to look at. Performance
monitoring is looking at the cursor, keyboard, or other



input/control object to ensure the expected actions are being
performed. Typically, performance monitoring occurs while
typing, dragging, or steering the cursor through menus. Finally,
users may carefully read text, or they may quickly skim text [7].

Our goal is to develop and test a method for determining when the
user is reading rather than searching or otherwise exploring the
visual scene. As mentioned, our ultimate aim is to track text the
user reads to infer user interests and goals. The paper is organized
in four parts. First, we elaborate many of the advantages that can
be gained by detecting reading. Second, we detail our algorithm
for reading detection. Third, we describe two experiments that test
our reading detection method. Finally, we discuss implications
and future work..

2. UTILITY OF DETECTING READING

Because windows-based operating systems are ubiquitous and
visually intensive, eye-gaze is a valuable way to determine user
interest when interacting with computer displays. In many such
gaze-based systems, interest in some display object (icon, image,
or text) is determined by a fixation threshold. If the user looks at
an object long enough, the system infers interest in that object
(e.g., [11]). Reading detection provides a much more precise
means for determining user interest because it can determine the
level of user interest based on the type of user behavior, such as
reading (high interest), skimming (medium), or scanning (low
interest) as well as capturing the exact words on the screen
involved. Scanning will be used to refer to the behaviors listed
previously except reading (i.e., inspecting, searching, exploring,
and monitoring).

We originally implemented our reading detection method to
obtain information about what text the user is reading in order to
infer user interests and then adapt information displays to user
needs. The adaptation process includes recording the text of
interest in a user model and using the text to find related
information from local machine databases, local area network
databases, and wide area network databases. An implemented
scenario includes providing web pages related to text the user is
currently reading, and then displaying the title of those pages on a
scrolling ticker at the bottom of the screen [5].

Another benefit is that more accurate feedback results in more
accurate models of the user. Thus, systems can provide relevant
and personal assistance for a variety a tasks commonly performed
with personal computers, such as searching for information on the
web, writing manuscripts, composing e-mail, or looking for a
certain type of news. For example, if a user’s model shows that
articles on Astronomy are always read, news gathering agents
could use this knowledge to obtain articles that might be of
interest and organize (prioritize) articles that have already been
gathered.

Another specific advantage is that by using gaze movement data,
computer help systems could be given more context information
and therefore provide more accurate help. By analyzing reading
data, we can determine which text was re-read, perhaps suggesting
confusion, and which words were fixated on, perhaps because of a
lack of familiarity. This data can then be used to decide what help
topics to suggest and in what order.

Finally, knowledge of whether the user is reading, skimming, or
scanning would be useful for creating adaptive peripheral displays
[6]. When the user is reading, the display should be as quiet or as

Figure 1. Example pattern of eye movements for
Participant 1 reading a paragraph of text.

non-distracting as possible by reducing motion and eliminating
auditory feedback. However, when the user is scanning, the
display can be more assertive with its suggestions, for instance,
becoming larger, flashing new information in red, or by making
noises for stock market actions

3. SYSTEM AND IMPLEMENTATION

Detecting when a user is reading rather than merely scanning or
skimming from eye-gaze patterns is a difficult problem, as low-
level eye movements are almost completely automatic (i.e.,
involuntary). Common eye movement behaviors observed in
reading include forward saccades (or jumps) of various length
(eye-movements to the right), micro-saccades (small movements
in various directions), fixations of various duration, and
regressions (eye-movements to the left). These behaviors in turn
depend on several factors, including text difficulty, word length,
word frequency, font size and color, distortion, user distance to
display, and individual differences (e.g., reading speed,
intelligence, age, and language skills). For example, as the text
becomes more difficult to comprehend, fixation duration increases
[4], and the number of regressions increase as well [7]. Figure 1
shows an example eye-gaze pattern during reading.

Our reading detection system relies on three mechanisms: (a)
coarse or quantized represented of eye-movements, (b) pooled
evidence based detection, and (c) mode switching. First, the eye-
movements in both x and y positions are quantized (averaged)
over 100 ms intervals. This process removes some of the
inaccuracy of current eye-tracking hardware and reduces the
influence of micro-saccades. Second, evidence of reading is
accumulated until it crosses a threshold value. This is done by
incrementing a reading-evidence variable when the eye moves to
the right and de-incrementing when the eye moves to the left. If
the evidence reaches a threshold, then “reading” is detected and
the mode is switched to reading from scanning.

Pooled evidence acts to reduce the influence of eye movements
back to previously read words (regressions or revisits) and
movements above and below the current line of text. When the



evidence threshold is reached, reading is detected and the system
switches from scanning to reading mode. Mode switching allows
us to essentially interpret the same eye movements differently
based on changes in context. For example, large eye movements
to the left and slightly up mean within a scanning context that the
user is continuing to scan but within a reading context, this
movement is more likely to mean that the user is re-reading text
and will continue the reading process. Depending on the difficulty
of the text, a user may often revisit text encountered several
sentences before to clarify ambiguities in the sentence currently
being read. If this movement were only allowed to have only one
meaning, say that the user is scanning, then the tracking of
reading would end prematurely on every revisit. If this movement
were to only mean that the user is reading, then this would
increase the number of false alarms or times the system detected
reading when the user was not reading. Mode switching allows us
to account for this behavior in different contexts, and as a result,
to produce more robust reading detection as well as continuous,
reliable read tracking.

More precisely, the system first quantizes raw data sent from the
eye tracking hardware by averaging every 3 data points. This raw
data is provided by the eye tracker at a rate of 60 points (x and y
positions) per second, but after averaging is reduced to 20 data
points per second or one data point every 50 ms. The system is
initially in scanning mode, which requires a set of events to occur
to switch into reading mode. The events that are tracked include
the specific eye movements shown in Table 1. For example, if the
eye moves a short distance left then the event is a “regression
saccade” but if the eye moves a long distance left then the event is
a “scan jump”. The distinction among “short”, “medium” and
“long” distances used to characterize events (in Table 1) reflect a
set of adjustable parameters, one for each distance and each
direction pair.

The quantized, tokenized stream of eye-movement data is then
pooled to determine whether the user is reading. The pooled
evidence for reading is calculated by taking the accumulated value
of the pooled data and adding the points associated with the
current event for both the X and Y axes. Thus, if a “read
forward” event occurs for the X axis and a “skim jump” occurs for
the Y axis then (10 + -5) = 5 points would be added to the pool.
Note that it is possible to have no event occur for the x or y axis if
the eye does not move. Every non-event is given 0 points. For
this implementation, the pooled evidence that a user is reading
must cross a threshold of 30 to switch into reading mode.

Using pooled evidence, the system does not have to look for a
specific pattern of events but allows for a wide range of patterns
to signal reading. Thus, reading recognition is tolerant to noise,
maintains a high hit rate and low false alarm rate. For example,
the events “read forward”, “skim forward”, “skim jump”, “read
forward”, and “read forward” (10 + 5 + -5 + 10 + 10 = 30 points)
are sufficient to trigger reading detection. However, these five
events may be ordered in different ways -- there are exactly 20
possible permutations. Rather than looking for each of these 20
possible sets of events, pooled evidence allows the system to
accumulate mounting evidence despite noise. Thus, increasing
noise only delays reading detection but does not block it
altogether. Ideally, the fastest period in which reading could be
detected occurs if the highly unlikely pattern of three “read
forward” events appear in a row. Because we sample in 100

millisecond increments, 3 x 100 = 300 milliseconds or about one-
third of a second is the fastest possible reading detection time.

Once the threshold is passed, reading is detected and the mode
changes from “scanning” to “reading” mode. In reading mode,
the rules for changing back to scanning mode are different. The
system records every word read in reading mode until a “scan
jump” event is detected. A single “scan jump” event will send the
system back into scanning mode. This method of mode switching
allows for fairly quick changes in modes while still maintaining
reliable read tracking. Reliable read tracking is important because
readers will often show a wide range of behaviors while reading,
including long pauses on ambiguous words, large regressions to
text that may help to disambiguate the current sentence, and
moderate forward jumps in anticipation of up-coming text.

Table 1. Tokenization of eye movements and

evidence values for reading.

Distance, direction, Token Points

axis

Short right X Read forward 10

Medium right X Skim forward 5

Long right X Scan jump Reset

Short left X Regression -10
saccade

Medium left X Skim jump -5

Long left X Scan jump Reset

Shortup Y Skim jump -5

Medium up Y Scan jump Reset

Longup Y Scan jump Reset

Short down Y Anticipatory 0
saccade

Medium down Y Skim jump -5

Long down Y Scan jump Reset

Long, medium left X Reset jump 5

and short down Y

Note:  Positive point values indicate evidence

supporting reading and negative number indicate
evidence against reading.




Previous research has been concerned more specifically with
making sense out of complex, low level eye movement data. The
eye is constantly moving. Even when one seems to be looking
steadily at some object, the eye still makes micro-saccades (small
movements), jitters (shaky movements), and nystagmus
(compensatory movements to head motion). To provide eye
movement data that is closer to what users experience, researchers
have attempted to break down or filter complex raw eye
movement data into a set of tokens. Jacob's [3][2] work on
fixation recognition has formed the core of this research area.
The term "fixation" refers to an area of relatively stable gaze that
lasts between 30 and 800 milliseconds. Although people are not
aware of micro-saccades, they do report areas of fixation. Thus,
fixation recognition is an attempt to determine where a user
intended to look. Jacob's fixation recognition algorithm works by
taking a 100 millisecond set of data (6 data points for this
implementation) and if the points are all within .5 degrees of
visual angle, then a fixation is said to be detected and located at
the average point. The fixation continues as long as the gaze
points stay within 1.0 degree of this average fixation point.

Obviously, the goal of Jacob’s method differs from our goal of
recognizing reading. To compare Jacob's method with our own,
let us assume that his method for fixation recognition is used by a
simple algorithm for reading detection. For instance, suppose a
series of say three fixations to the right signal that reading is
detected. However, several problems occur when using this
method for reading detection: (a) loss of information, (b)
regressions, (c) eye movement on the Y axis, (d) resets to
beginning of next line, (e) revisits to previous sentences.

We believe our method is an improvement over this extended
algorithm because it: (a) does not throw out any raw eye
movement information and also uses partial information by giving
fuzzy evidence points for tokens, (b) can ignore regressions using
pooled evidence, (c) takes into account eye movements on the Y
axis with respect to reading, (d) tokenizes resets as evidence to
detect reading, (e) uses mode-switching to track ongoing reading
by ignoring revisits.

4. EVALUATION

In what follows, we compare our algorithm with the extended
Jacob’s algorithm to determine which performs faster and more
reliably under actual reading conditions. More precisely, two
experiments investigated recognition accuracy (Experiment 1) and
recognition speed (Experiment 2) for the two competing
algorithms. Eye movements can be classified as either reading [7]
or goal directed searching. We believe that the gaze patterns
associated with each are sufficiently different such that they can
be distinguished, that is, reading is detected when the user is
reading and not when the user is searching. The two algorithms
evaluated were (a) the pooled evidence method and (b) the simple
method based on Jacob's fixation recognition method. It was
hypothesized that reading recognition would differ across
participants, but that the pooled evidence method would be
systematically faster and more accurate than the competing
method.

4.1 EXPERIMENT 1

The first experiment was performed to test the reading detection
accuracy of two competing algorithms.

4.1.1 Method

Participants were instructed to perform two tasks: (a) quickly
search for a target icon on a screen full of distracter icons, and (b)
carefully read a text passage and then answer a multiple-choice
question about the passage. These two tasks were presented in
random order, and eye movements were recorded.

4.1.1.1 Participants
Four participants were recruited from IBM Almaden Research
Center. All had normal or corrected to normal vision.

4.1.1.2 Design and Materials

We used a single factor (task type) within-subjects design with
two levels, searching and reading. Each task was presented 20
times for a total of 40 trials presented in random order.

In the search task, participants were presented with a matrix of
standard Windows-style icons that had been reduced in size from
1280 x 1024 pixels to 640 x 480 pixels. The search target for
every search trial was the Windows Excel Document icon, which
varied in position from trial to trial. Participant's used the mouse
pointer to select the target icon.

In the reading task, participants were presented with a paragraph
of text that filled an area of about 400 x 400 pixels. The text was
taken from popular press science magazine articles and averaged
250 words each. The text was presented in 15 point font with a
black foreground and a gray background (see Figure 1). After
reading the text, comprehension was tested with a four alternative
multiple-choice question.

4.1.1.3 Equipment

Participants viewed a 20-inch monitor with a resolution of 1280 x
1024 pixels. The reading passages were shown in a window 400 x
400 pixels, subtending a visual angle of 15.6 horizontal and 15.6
vertical degrees at a distance of 0.43 meters. The search matrices
were presented in a window 640 x 480 pixels, subtending a visual
angle of 24.1 horizontal and 18.5 vertical degrees at a distance of
0.43 meters.

Gaze direction was obtained by a video camera fitted with an
array of LED's that project infrared light to the participant's eye,
resulting in a reflectance point on the cornea and the illumination
of the pupil. Given the reflectance point and the center point of
the pupil, along with a short calibration session, the location of
the eye-gaze could be easily calculated to within about 2.5
degrees of visual angle. Images were obtained from the camera
through the serial port and processed by a custom software
application. The application output one gaze position (x and y
screen coordinates) once every 16.666ms (60Hz).

4.1.1.4 Procedure.

Participants were calibrated on the eye tracking hardware to
ensure accurate tracking over the area of the screen. A chin rest
was used to stabilize the participant’s head during calibration and
during the experiment, as the camera was not equipped with
servos to adjust to changes in head position. The calibration
process lasted about 2 minutes.

Participants then went through a training session in which they
performed one trial each of the searching and reading tasks. The
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Figure 2. Proportion of hits and false alarms

for competing algorithms.

experimenter monitored participants in the training session and
was available for any questions or concerns.

Participants were presented with each task in random order
without replacement. If participants failed to click the correct
icon or failed to answer the multiple-choice question correctly,
they were required to do the trial over. This was instituted to
motivate the participants to perform the task carefully and with
greater accuracy than speed. After each trial, participants could
take a break from the experiment for as long as needed to prevent
fatigue.

4.1.2 Results

The raw gaze data were analyzed with both our pooled evidence
algorithm and the simple algorithm based on Jacob's fixation
recognition method.

For the pooled evidence algorithm, data were first quantized and
then tokenized according to the rules in Table 1. The number of
tokens was counted for each condition and subject. Finally, the
tokenized data were processed for reading with an evidence
threshold of 30 points. After the threshold was exceeded (reading
detection), reading was tracked until a Scan jump token was
found. Finally, the rectangular area on the screen in which
reading was detected was calculated with the upper left-hand
corner as the first point of detection and the lower right-hand
corner as the last point.

For the simple algorithm, the data were processed for fixations by
grouping gaze points that occur within 1.0 degree of visual angle
(about 14 pixels) and averaging over each group. Fixations were
then processed for short movements in the vertical (x) direction to
the right. A counter was incremented by one when this movement
was observed and set back to zero when a different movement was
encountered. When the counter reached a threshold value of 3,
reading was detected. That is, reading was detected when 3
successive movements to the right were detected. The threshold
of three movements was chosen because a pilot study that set the
threshold to four successive movements failed to detect reading
on any trials. The area of text read was simply all of the fixations
to the right after initial detection. Similar to the other algorithm,
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Figure 3. Sensitivity of competing algorithms

for all participants.

the area was calculated as a rectangle based on the first and last
reading points.

Figure 2 shows the accuracy of each method as indicated by hits
and false alarms. Hits are the proportion of reading trials in which
reading was detected. False alarms are the proportion of searching
trials in which reading was detected. Over all four participants,
the hit rate is high for the pooled evidence method and the false
alarm rate is much lower. For the simple method, both hits and
false alarms are low.

Though the difference in hits and false alarms seems to favor the
pooled evidence method, decision bias could also account for the
result --- that is, the pooled evidence algorithm had a more liberal
bias than the simple algorithm. Thus, d' was calculated as a bias-
free measure of reading detection. The d' measure is the z-score
difference between the proportion of hits and the proportion of
false alarms--- Z(hits) - Z(false alarms). Figure 3 shows that d' for
each participant is significantly higher (i.e., better) for the pooled
evidence method than the simple method (Friedman Test Statistic
= 4.00, p < .05). Thus, the pooled evidence method is more
sensitive to reading than the simple method.

4.2 EXPERIMENT 2

Given that the pooled evidence algorithm robustly detects reading
versus searching, we now turn our attention to whether the
difficulty of the text affects the algorithm and its detection speed.

4.2.1 Method

Participants were presented with a series of passages (each
containing about four sentences) that varied in reading difficulty.
Participants were instructed to read the text carefully in order to
correctly answer a multiple-choice question about the content of
the passage. The trial had was repeated until the correct answer
was given.

4.2.1.1 Participants
Five participants were recruited from the IBM Almaden Research
Center. All had normal or corrected to normal vision.
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4.2.1.2 Design and Materials

We used a single factor (text difficulty) within-subjects design
with two conditions (easy or difficult) and fifteen trials per
condition (30 trials total). Eye movements were measured the
same way as in Experiment 1.

Participants were presented with two types of text, easy and
difficult. The easy passages were taken from children's stories
with an average Flesch-Kincaid grade level (see [1]) of 4.2 and an
average Flesch reading ease score of 79. Reading ease scores
range from 0 to 100 with 100 being the easiest. The difficult
passages were taken from technical journal articles. The difficult
passages contained technical terms, as well as noticeably longer
and more complex sentences. The average Flesch-Kincaid grade
level of the difficult passages was 12, with a reading ease of 34.
Both easy and difficult passages contained the 65 words, but the
difficult passages tended to be longer because they contained
longer words. The font was 10 point Times Roman, presented in
black on a white background.

Participants were required to answer a four-alternative multiple-
choice question after each passage. The question was created to
focus on the meaning of the passage rather than on the surface
form. Thus, participants would not be expected to answer the
question correctly if they had merely skimmed the text.

4.2.1.3 Procedure and Equipment

Equipment was the same as in Experiment 1. Before beginning
the experiment, participants were instructed to read each passage
as carefully as possible and to click the Next button at the bottom
of the window when finished. Participants were told that they had
to answer a multiple-choice question correctly before proceeding
to the next passage.

4.2.2 Results

The pooled evidence algorithm and simple algorithm were
compared as in Experiment 1. Our measure of performance,
speed, was measured as the first point at which reading was
detected.

Consistent with previous work (e.g., [9]), regressions occur
significantly more often for difficult text than for easy text, t(4) =
2.36, p = 0.039. However, there are no significant differences for
text difficulty for the other tokens. As anticipated, there were few
scan jump tokens in relation to read forward and skim forward
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Figure 5. Recognition speed of the two competing
algorithms grouped by participant.

tokens. The large eye movements of scan jumps did not occur
with high frequency during careful reading. Finally, we see very
few reset jumps compared to the other tokens as these events only
occurred when the reader reaches the end of a line. Because few
lines of text were in each passage, we expected a low frequency of
reset jumps.

Figure 4 shows that the pooled evidence algorithm recognized
reading much faster than the simple algorithm, t(4) = 16.31, p <
0.05. Recognition speed of the pooled evidence algorithm ranged
from 200 to 3000ms, with an average of just over one second
(1106ms). The simple algorithm, however, ranged from 200 to
15000ms with an average of 4840ms or about five seconds.
Comparing the percentage of the time the simple algorithm
detected reading faster than our pooled evidence algorithm (wins
analysis), we find that the simple algorithm was faster only 2
times out of 150 trials (30 x 5 participants) or about 1% of the
time. Thus, pooled evidence won 99% of the time.

Figure 5 indicates that the performance of each algorithm was
fairly consistent across the different participants. The reading of
participant 2 seems to be recognized more quickly for both
algorithms, possibly because of better reading skill as there were
also fewer regressions and other eye movements that often
indicate comprehension difficulties.

5. GENERAL DISCUSSION

Overall, results show that the pooled evidence algorithm (a) is
about four seconds faster at detecting reading than the simple
method, (b) has a high (nearly 100%) accuracy rate, (c) is reliable
across different participants and styles of text. Fast reading
detection is critical for interactions that are both timely and
responsive. We believe that even the mean recognition time of 1
second given by our algorithm is somewhat slow for fast and
natural interaction. Though our algorithm is reliable across
participants, we believe a more diverse population should be
tested to ensure that reading can be detected even in individuals
with moderate to low language skills.

The results also show that text difficulty did not influence gaze
patterns as much as expected -- only the number of regressions
varied with difficulty. One possible reason for this is that the
children's story may have been more difficult to read than given
by the Flesch reading ease index. This is because of the highly
descriptive nature of the text using many low-frequency words.



Another factor could be that the participants all were of very high
reading ability and thus, had little trouble comprehending even
the technical journal passages.

Our goal was to create a system that recognizes reading from gaze
patterns that occur during normal interaction with a windows-
based user interface. Results from other research and the present
work have shown that gaze patterns during reading are more
complex than might be assumed. Testing a model that assumes a
simple reading pattern demonstrated that this method is not
sufficient for timely reading recognition. In contrast, our pooled
evidence algorithm can reliably, quickly, and accurately recognize
and track reading performance.

6. FUTURE WORK

We intend to enhance our reading detection algorithm in several
ways. First, in addition to detecting reading, with a few
modifications, the algorithm can also detect skimming. The
method for detecting skimming includes recording, in reading
mode only, the distance of each eye-movement. If the distance is
less than some threshold, the words that the eye moved across are
classified as “read” but if the distance is greater than some
threshold then the words are classified as “skimmed”. In other
words, if the eye moves quickly over some words then those
words were skimmed.

A second method to enhancing our algorithm would be to actively
adapt its parameters. We will include parameters that adapt to
individual reading speeds and abilities by adjusting parameters
that are used to determine the actual values of the distances we
called “short”, “medium”, and “long” in Table 1. If, for example,
the system determines that the user is a slow and careful reader,
all the distances (for the x axis) should be decreased to optimize
performance. If, however, the system determines that the user's
reading ability is poor, more regressions will occur and the mode
switching threshold should be decreased (to be more sensitive).

A third way to improve the algorithm is to take account of context
information to constrain reading detection and improve accuracy
and reliability. For instance, it would be useful to know (a) the
location of text on the screen, (b) the size of the font, (c) the
content of the text on the screen, (d) whether the user is scrolling,
navigating, or pointing, and (e) the distance of the user from the
screen. Mode switching between reading and scanning could be
improved by knowing if the user is looking at a block of text on
the screen. Reading detection could also be improved by knowing
the size of the text on the retina, as this determines the size of eye
movements: the larger the text, the bigger the eye movements in
reading. Reading detection would also be improved by knowing
the content of the text on the screen. Finally, knowing whether the
user is manipulating an input device may also help to determine
whether the user is reading, as it is unlikely that the user is
reading when navigating, pointing, or scrolling.
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