
Research Log
Stage 1: Environment preparation:

● Install/check anaconda
conda -V

● Create new virtual environment:
conda create -n yolov5 python=3.9

● Activate the conda virtual environment:(palmetto)
source activate yolov5 # for linux

● Download the Yolo-v5 code:
git clone https://github.com/ultralytics/yolov5 # clone

● Goto the yolov5 folder:
cd [path_to_yolov5]

● Install the required packages:
pip install -r requirement.txt



Stage 2: Labels and picture preparation:
● Prepare the pictures:

● Label the picture on image labeling tools: WebSite

● Load the pictures and load the labels from file:

https://www.makesense.ai/


● Start Labeling picture:



● Select label:

● Export labels:





● Put the image file and the label files(txt and XML) under the yolov5 folder:





Stage 3: Dataset preparation:
● Train test split with python:



● Run the code: python3 split_train_val.py
● Result: train set and validation set.

● Create the label files:
● python3 voc_label.py





● Setup the yaml settings: the path and the labels



Stage 4: Options preparation:
● Setting the training parameters:

Weights(which model), settings(yaml), epochs, batch size etc.

● Training the model:
python train.py --img 640 --batch 8 --epoch 501 --data data/eyeTrack.yaml --cfg
models/yolov5m.yaml --weights weights/yolov5m.pt --device '0'



● Above is the first version of the yolov5 model, I put too many labels in this
version. And the performance was bad, only 75% acc, and it will have bad
result in the real classification task.

● In the second version I re-labeled the data into 4 classes and added some
extra samples, the result was good.(99% acc)



● The labels:



● The prediction result:



● Now I’m working on the video object detection and extraction of the
bounding box into tabular data, and the eye tracking data extraction.

Video Detection worked



The speed is about 15 frames per second.



Here is the detection result, each class of label in each frame and the position.



For the Eye-tracking part, I have tested and output the Eye-tracking data with
GazePoint Analysis.

For the result analysis part:
The Video Frame and the EyeTracking are not in the same frequency(24FPS and
60Hz), and the timeline does not match, and the timing and location of the
samples are subject to error. To address these issues, two possible solutions
were proposed. The first solution is to use the KNN method with K = 3 and 5 to
smooth the distribution of the video object position data and eye tracking fixation
data respectively. This approach can help to reduce the noise and errors in the
data and improve the accuracy of the analysis. The second solution is to use a
time-based comparison method to measure the position of the object for each
time segment. This method can help to compensate for the timing and location
errors caused by the differences in the frequency of the Video Frame and the
EyeTracking.



Eye Tracking data analysis

Original data



Filtered data







Load the txt files into data frame



Match the object in txt and gaze data



Result analysis



Dataset2 and smoothed Dataset2



Dataset2 result analysis


