
1. Inspiration papers:

Istance, H., Hyrskykari, A., Immonen, L., Mansikkamaa, S., and Vickers, S. (2010). De-signing gaze gestures for
gaming: An investigation of performance. In Proceedings of the 2010 Symposium on Eye-Tracking Research
Applications, ETRA ’10, page 323–330, New York, NY, USA. Association for Computing Machinery.

Drewes, H. and Schmidt, A. (2007). Interacting with the computer using gaze gestures. In Human-Computer
Interaction–INTERACT 2007: 11th IFIP TC 13 International Conference, Rio de Janeiro, Brazil, September 10-14,
2007, Proceedings, Part II 11 pages 475–488. Springer Berlin Heidelberg.

	 Both inspired a gaze gesture model

	 Drewes & Schmidt’s saccade direction method more appealing for VR

2: SRAnipal

	 HTC’s SDK for animating player avatars in VR (Super Reality Animation pal)

	 Plugins for game engines allow them to access gaze data

	 GetGazeData provides normalized gaze vector

	 No inherent fixation/saccade recognition or blink handling, must be implemented

	 	 • Hacky blink implementation; if a blink is in progress, gaze is assumed to be the
	 	 same as it was on the last frame before the blink, which still sometimes causes 	 	
	 	 unintentional “saccades”

	 	 • Better implementation may ignore comparisons during blink and a few frames 	 	
	 	 after

3. Fixations & Saccades

	 Identify saccades by looking for rapid eye movement between frames

	 If the angle between gaze vectors crosses a threshhold a saccade is in progress

	 	 • Threshhold is (.15°/frame, 13.5°/s), large enough to be safely not a fixation but 		
	 	 slow enough to capture even slow saccades

	 	 • Angle between vectors calculated via arccos(a•b/|a||b|), no projecting points 	 	
	 	 onto planes

	 If a saccade is long enough, it can be part of a gesture

	 During no saccade, assume fixation & keep track of duration

	 Drop prior saccades if fixation is adequately long

4. Direction Classification

	 Remember gaze vector from beginning of saccade

	 Compare to vector at end of saccade

	 High +/- difference in X indicates up/down, in Y indicates right/left

	 	 • Brief halts or system errors in the middle of a saccade can cause it to be 	 	
	 	 recognized as multiple saccades in the same direction, interfering with gesture 	 	
	 	 input

	 	 • Multiple consecutive saccades in the same direction ignored, should not be 	 	
	 	 used as gesture input

	 Diagonals ignored, both for system simplicity and to maintain eye tracking accuracy

	 	 • See notes on UI grid

5. Head-Based Selection

	 Use camera’s GetForwardVector to cast a ray matching HMD orientation

	 Raycast returns hit objects; process gaze only when hitting an interactable

	 UI object attached to head (rendered in a canvas space) helps guide saccades

	 	 • 3x3 grid of 9 points

	 	 	 Allows for many gestures, but eye tracking accuracy is 	 	 	 	
	 	 	 compromised when looking at a corner point; losing tracking briefly 	 	
	 	 	 causes the system to “recognize saccades” in error

	 	 • Grid of 4 points; one centered and one point for each cardinal direction

	 	 	 Allows for fewer gestures, but maintains eye tracking accuracy at all 	 	
	 	 	 points	 	

	 Interactable objects have a recieveGesture function

	 	 • When an object is selected, its recieveGesture function is called every frame to
	 	 check if it should perform an action based on the current gesture

