
Live Data in VR
Roger S. Rivas

Clemson University
South Carolina , USA
rrivasg@clemson.edu

Abstract
The Live Data in Virtual Reality project developed on Unity
is an exciting project created for the class 8810 Eye Tracking
II: Gaze Sensing and Interaction in XR at Clemson University
in spring-2023. The project aims to combine the latest virtual
reality technology to create an immersive and interactive
user experience inwhich users can navigate the environment,
and every time the user’s gaze focuses on a specific object,
the program will fetch a number transmitted by a Web API
representing the actual temperature in a water pump.

CCSConcepts: •Human-CenteredComputing→ Virtual
Reality .

Keywords: Eye Tracking, Unity, Eye gaze input, VR, Live-
data
ACM Reference Format:
Roger S. Rivas. 2023. Live Data in VR. In Proceedings of Clemson
University (Classs: ’CPSC 8810 Eye Tracking II: Gaze Sensing Inter-
action in XR’). ACM, New York, NY, USA, 5 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 Introduction
The use of virtual reality (VR) technology has exploded in
recent years, with applications ranging from entertainment
and gaming to education and healthcare. One up-and-coming
area for using VR is the presentation and visualization of data
in a virtual environment. It is possible to provide users with
a more engaging and informative experience than traditional
2D charts and graphs by using VR for data visualization. This
paper presents a VR project developed in Unity Engine that
shows real-time information from aWebAPI and implements
gaze tracking functions on the environment.
Virtual reality (VR) has been a subject of research since

the mid-20th century[10], with early experiments conducted
in psychology and engineering. However, it was not until

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Classs: ’CPSC 8810 Eye Tracking II: Gaze Sensing Interaction in XR’, Spring,
2023, Clemson, SC
© 2023 Association for Computing Machinery.
ACM ISBN CPSC-8810 04/25/2023. . . $0.00
https://doi.org/XXXXXXX.XXXXXXX

the 1990s that VR technology became more widely available
and affordable, leading to increased research in computer
graphics, human-computer interaction, and gaming[10]. In
the early days of VR research, much of the focus was on
developing the technology, including creating more realistic
and immersive graphics and improving tracking and input
devices. As technology has advanced, research has shifted
towards exploring the potential applications of VR in various
fields such as medicine, education, and entertainment. Some
areas of current VR research include exploring the use of
VR for therapy and rehabilitation, developing more natural
and intuitive user interfaces, and investigating the effects of
VR on learning and memory. There is also ongoing research
into the potential risks and benefits of VR, such as motion
sickness and its impact on social behavior.
The benefits of creating a VR project with real-time data

interaction and gaze tracking using Unity Engine are the
following: First, real-time data interaction can allow users
to manipulate and interact with data in a more intuitive and
immersive way, making the experience more engaging and
potentially leading to a better understanding of complex
information. For example, real-time data interaction in a sci-
entific visualization application could allow researchers to
explore and manipulate complex datasets more quickly than
traditional methods. Secondly, gaze tracking can enhance the
user experience by allowing for more natural and intuitive
interactions within the virtual environment. By tracking
where the user is looking, the VR system can adjust the per-
spective, display the information most relevant to the user’s
current focus, and make the experience more immersive and
intuitive. Finally, creating a VR project with real-time data in-
teraction and gaze tracking can help to push the boundaries
of what is currently possible in VR development. By explor-
ing new techniques and technologies, developers can create
more innovative and engaging VR experiences, potentially
leading to breakthroughs in VR development.
This paper will provide detailed information on design-

ing and implementing a live data visualization tool in VR
using Unity and eye tracking. This paper aims to analyze
related research techniques and provide feedback about the
challenges faced, what was/was not completed, and the dif-
ficulty level of each implementation. Also, provide proven
alternatives for implementing gaze tracking and real-time
data in a VR project. There are five goals that the author
focuses on in this research: create a VR environment in
Unity Engine, use HTC Vive Pro Eye to read the user’s
gaze, dynamically load assets or data when the user watches

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Classs: ’CPSC 8810 Eye Tracking II: Gaze Sensing Interaction in XR’, Spring, 2023, Clemson, SC Roger S. Rivas.

Figure 1. VR System running in Unity Engine.

a specific object, publish the project and research log on
GitHub, and preferably provide a budget-friendly VR system
with low cognitive load. The project developed in this pa-
per is available on GitHub. To see the project, please visit:
https://github.com/RogerSmithR/Live-Data-in-VR.

2 Related Work
2.1 User’s gaze tracking
Several studies have explored the use of gaze tracking in
various contexts. The following papers were used in this
research as a guide to understanding different methods and
concepts about gaze tracking before starting the develop-
ment of the VR system. First, "What you look at is what you
get: eye movement-based interaction techniques" by Jacob,
Robert JK[4]. proposes a novel approach to eye gaze interac-
tion that allows users to control a graphical user interface
(GUI) by looking at specific regions of interest. Second, "Eye
tracking based human computer interaction: Applications
and their uses" by Chandra, Sushil, et al[1]. provide a com-
prehensive review of the applications of eye gaze tracking
in human-computer interaction.

Also, this research used other papers to guide which tool
should be implemented in the VR system. First, "Visualiza-
tion of Eye Tracking Data in Unity3D" by Müller, Lisa-Maria,
et al[9]. proposes methods for integrating eye-tracking data
into a virtual reality (VR) environment using Unity3D. Sec-
ond, “3D gaze in virtual reality: vergence, calibration, event
detection" by Duchowski, Andrew T., et al[2]. presents a de-
tailed analysis of the challenges involved in measuring eye
gaze in virtual reality environments and proposes a method
for detecting events, such as saccades and fixations, in 3D
space.

2.2 Live data in VR
The following papers provide concepts and tools essential
to understanding the principal challenges faced in this re-
search regarding live data streaming. First, "3DRepo4Unity:
Dynamic loading of version-controlled 3D assets into the
Unity game engine" by Friston, Sebastian, et al[3]. proposes

a method for dynamically loading 3D assets into the Unity
game engine in real-time, which is explained in more de-
tail in the section “Architecture Overview.” Second, "Unity:
Collaborative downloading content using co-located socially
connected peers" by Jassal, Prateek, et al[5]. proposes a col-
laborative downloading of content in Unity using socially
connected peers. The authors describe a peer-to-peer (P2P)
architecture that enables users to share data and content
in real-time, reducing the load on centralized servers and
improving download speeds; this paper is used to under-
stand other alternatives to obtain content from the internet.
Third, the paper "GreedyDual Web caching algorithm: ex-
ploiting the two sources of temporal locality in Web request
streams" by Jin, Shudong, and Azer Bestavros[6]. Proposes
a web caching algorithm that exploits temporal locality in
web request streams to improve performance. While not ex-
plicitly focused on VR, the paper’s concepts can be applied
to VR environments incorporating live data. Fourth, "Unity
Networking Fundamentals" by Kelly, Sloan, and Khagendra
Kumar[7]. The book provides a foundation for understand-
ing the networking requirements and challenges of creating
VR experiences incorporating live data. This book was used
as a guide to understanding more about security challenges
in networking in Unity.

2.3 Cognitive load
Cognitive load refers to an individual’s mental effort to com-
plete a task. “Measuring cognitive load using eye-tracking
technology in visual computing” by Zagermann, Johannes,
Ulrike Pfeil, and Harald Reiterer[12]. Provides valuable in-
sights into the use of eye-tracking technology for measuring
cognitive load in visual computing, which can inform the
development and optimization of interactive systems to im-
prove their performance, usability, and user experience. This
paper is used as a reference to understand more about how
cognitive load in VR systems affects user behavior, this re-
search does not focus on implementing methods to reduce
the cognitive load while using the system, but it does take
into consideration the information provided by the paper.

3 Architecture Overview
The following section discusses the selection of Unity En-
gine and HTC Vive Pro Eye for the virtual reality project
and how to obtain live data from a Web API (Application
Programming Interface) by obtaining the user’s gaze using
eye-tracking technology. Unity was chosen because it is
easy to use, has multi-platform support, a large community,
built-in VR support, an extensive asset store, performance
optimization tools, and continuous development. HTC Vive
Pro Eye was chosen because it has eye-tracking technology,
high resolution, developer support, Unity integration, and
OpenVR support. The text also discusses obtaining the user’s

https://github.com/RogerSmithR/Live-Data-in-VR

Live Data in VR Classs: ’CPSC 8810 Eye Tracking II: Gaze Sensing Interaction in XR’, Spring, 2023, Clemson, SC

gaze using Tobii SDK and executing HTTP (Hypertext Trans-
fer Protocol) requests using UnityWebRequest[7]. Finally, the
text describes how the idea of fetching live data was inspired
by 3DRepo4Unity[3], and how the method was changed to
show simple text instead of fetching the entire graph assets
to reduce hardware and network costs.

3.1 Why Unity?
Unity Engine is a powerful game engine and development
platform that creates games, simulations, and interactive
experiences across multiple platforms. Unity is designed to
be flexible and easy to use, focusing on making game devel-
opment accessible to a wide range of users, from hobbyists
to professional developers.
Unity Engine was chosen for this project compared to

other software for the following reasons:

• Previous knowledge: The developer working on the
project has more experience programming in C-Sharp
language (since 2016) than other programming lan-
guages and has already had some experience working
in Unity Engine (since 2022).

• Easy to use: Unity has a user-friendly interface and
a simple learning curve, making it accessible to devel-
opers of all skill levels.

• Multi-platform support: Unity supports multiple
platforms, including Oculus Rift, HTC Vive, PlaySta-
tion VR, and Google Cardboard, among others.

• Community support: Unity has a large and active com-
munity of developers who share their experiences and
provide support through online resources.

• Built-in VR support: Unity has built-in support for
VR, which means that developers can easily create VR
applications and experiences without needing to write
additional code.

• Extensive asset store: Unity’s asset store contains
a wide range of pre-built assets, including models, ani-
mations, and scripts, which can save developers time
and effort. This variety of assets is essential to expand
the project or simulate specific scenarios.

• Performance optimization: Unity offers built-in tools
for optimizing VR performance, which is critical for
delivering a smooth and immersive VR experience.

• Continuous development: Unity is constantly evolv-
ing, with regular updates and new features added, en-
suring it remains a cutting-edge engine for VR devel-
opment.

3.2 Why HTC Vive Pro Eye?
HTCVive Pro Eye is a virtual reality (VR) headset that allows
users to experience immersive virtual environments. The
headset includes high-resolution displays, integrated eye-
tracking technology, and a variety of sensors for tracking
the user’s movements and gestures. This device was chosen

Figure 2. HTC Vive Pro Eye Device.

for this project compared to other devices for the following
reasons:

• Device Availability: The device is available for use
free of charge in the Clemson University laboratory
where the project was carried out.

• Eye-tracking technology: The Vive Pro Eye is the
first VR headset to feature eye-tracking technology,
which allows a more natural interaction, immersive ex-
periences, and the potential for new forms of exchange,
such as eye-based navigation and selection.

• High-resolution: The Vive Pro Eye has a high reso-
lution of 1440 x 1600 pixels per eye, which provides a
more detailed and precise VR experience (convenient
when selling the software).

• Developer support: HTC is firmly committed to de-
veloper support, offering resources such as the Vive-
port SDK and the Vive Developer Community to help
developers create VR experiences with the Vive Pro
Eye.

• Unity integration: The Vive Pro Eye is fully inte-
grated with Unity, so developers can easily create VR
experiences for the Vive Pro Eye using the Unity en-
gine.

• OpenVR support: The Vive Pro Eye is compatible with
OpenVR, an open standard for VR development that
supports multiple VR devices and engines. Developers
can use the Vive Pro Eye with other VR devices and
machines if desired.

3.3 Obtaining the user’s gaze
The system identifies when the user watches an object using
the “GazeFocusChanged,” a class obtained from the Tobii SDK
for Unity. Tobii SDK (Software Development Kit) is a suite
of software tools and APIs (Application Programming Inter-
faces) provided by Tobii AB, which develops eye-tracking
technology. The Tobii SDK allows developers to integrate
eye-tracking functionality into their applications and games

Classs: ’CPSC 8810 Eye Tracking II: Gaze Sensing Interaction in XR’, Spring, 2023, Clemson, SC Roger S. Rivas.

and use eye-gaze data as an input method, among other fea-
tures. This information was discussed in the paper "3D gaze
in virtual reality: vergence, calibration, event detection" by
Ph.D. Duchowski, Andrew T. et al[2]. in 2022. It discusses the
challenges and opportunities of 3D gaze-tracking technology
in virtual reality (VR) environments. It also describes some
techniques for calibrating 3D gaze-tracking technology, like
using natural features as reference points.

3.4 Obtaining live data
When the user’s gaze is watching the object, the program
executes an HTTP (Hypertext Transfer Protocol) request to
a Web API which transmits a JSON response containing a
number done using the class UnityWebRequest. UnityWe-
bRequest is a class in the Unity game engine that allows
developers to send HTTP requests and receive responses
from web servers[7]. One crucial point is that the program
executes the HTTP request in every frame, and the execu-
tion is controlled using Coroutines. Performance in every
HTTP request is essential; for that reason, the request was
made using the URL without SSL (Secure Sockets Layer). If
confidentiality is the first concern, the data can be encrypted
in the Web API and decrypted in the VR system to secure
the transmission using asymmetric encryption to improve
performance[11]. The idea of fetching live data was inspired

Figure 3. Representation of a Web HTTP Request.

by the paper "3DRepo4Unity: dynamic loading of version
controlled 3D assets into the Unity game engine" by Fris-
ton, Sebastian, et al[3]., which describes a plugin for the
Unity game engine that allows developers to access and use
3D models and data stored in the 3DRepo platform directly
within Unity. This integration makes it easier for developers
to access and use 3D data in their projects, streamlining the
development process and enabling more complex and sophis-
ticated 3D applications. However, the method was changed
from fetching the entire graph assets to showing a simple
text from an HTTP request because of the high hardware
and network cost when using 3DRepo4Unity.[?]

The data is transmitted by a Web API created in ASP.NET
Core Web API[8] by our team, and the server was provided
for free by Sistemas RSA. To see the API URL, please visit
http://livedataapi.sistemasrsa.com/api/heatvalue.

3.5 Development log
The section is designed to present the schedule followed and
the project’s progress.

January 2023: Defining project goals, schedule, and design.
February 2023: Creation of the virtual reality environment

using Unity.
March 2023: Research related topics and show the project

proposal in class, including a paper proposal. Also, it suc-
cessfully tested and integrated dynamic loading of 3D assets
and gaze interaction with objects in the code.
April 2023: SDK and plugins were implemented into the

Unity project and tested with new code. Additionally, a web
API project was created to improve data transmission per-
formance, and a website was developed to showcase the
research log content. The visual details in the Unity project
were finalized, and the research log was presented in class.

May 2023: The standalone executable Windows and Mac
OS versions are created. The final presentation is given in
class.

4 Future Research
While the current implementation of the live data VR ap-
plication allows users to view real-time data while using
eye-tracking technology, there is room for further research
in implementing real-time analytic. By integrating analytic
into the application, users can better understand the data
and draw insights more quickly.

First, the research could be focused on developing an ana-
lytic dashboard within the VR environment. This dashboard
would allow users to view key metrics and visualizations,
such as charts or graphs, in real-time. The dashboard could
also provide interactive features like filtering data by differ-
ent parameters or zooming in on specific data points.
Second, the research could focus on developing machine

learning models to save data in the system and provide pre-
dictive analytic within the VR environment, which is es-
sential, especially when there is no network connection. By
analyzing historical data, thesemodels could provide insights
into future trends or anomalies in the data. These insights
could help users make informed decisions and act quickly,
even in lousy network connection scenarios.

Third, network performance was an important issue while
developing the VR system. Further research should be done
on improving the speed of importing assets in the VR project
while having a bad network connection or slow connection
speed. Using secure connections was also a main perfor-
mance issue, and research could be done on improving data
transfer using SSL (Secure Sockets Layer).
Overall, users can better understand the data and make

more informed decisions by integrating faster connectivity
and real-time analytics into the live data VR application. This
area of research has the potential to revolutionize how users
interact with and understand data in a virtual environment.

http://livedataapi.sistemasrsa.com/api/heatvalue

Live Data in VR Classs: ’CPSC 8810 Eye Tracking II: Gaze Sensing Interaction in XR’, Spring, 2023, Clemson, SC

5 Conclusion
In conclusion, virtual reality (VR) technology has seen ex-
plosive growth in recent years, and one area of interest is
using VR for data visualization. This paper presents a VR
project developed in Unity Engine that utilizes real-time
data interaction and gaze tracking to create a more engaging
and informative user experience. The paper aims to pro-
vide detailed information on designing and implementing a
live data visualization tool in VR using Unity and eye track-
ing, including challenges faced and alternative techniques.
Also, the paper describes the selection process for the Unity
Engine and HTC Vive Pro Eye for this project, along with
eye-tracking technology to obtain live data from a Web API.
Unity was chosen due to its user-friendliness, multi-platform
support, large community, built-in VR support, extensive as-
set store, performance optimization tools, and continuous
development. HTC Vive Pro Eye was selected for its high
resolution, developer support, Unity integration, OpenVR
support, and eye-tracking technology. Tobii SDK was used
to obtain the user’s gaze, while UnityWebRequest was used
to execute HTTP requests. The idea of fetching live data was
inspired by 3DRepo4Unity[3], and the method was modified
to display simple text to reduce hardware and network costs.
The project aims to create and publish a VR environment on
GitHub for others to explore and build their own VR system.

Acknowledgments
The author thanks Ph.D. Andrew T. Duchowski from Clem-
son University for the helpful discussions about this work
and for providing guidelines on the elaboration of this paper.
The views and conclusions in this document are below the
author’s.

References
[1] Sushil Chandra, Greeshma Sharma, Saloni Malhotra, Devendra Jha,

and Alok Prakash Mittal. 2015. Eye tracking based human computer in-
teraction: Applications and their uses. In 2015 International Conference
on Man and Machine Interfacing (MAMI). IEEE, 1–5.

[2] Andrew T Duchowski, Krzysztof Krejtz, Matias Volonte, Chris J
Hughes, Marta Brescia-Zapata, and Pilar Orero. 2022. 3D gaze in
virtual reality: vergence, calibration, event detection. Procedia Com-
puter Science 207 (2022), 1641–1648.

[3] Sebastian Friston, Carmen Fan, Jozef Doboš, Timothy Scully, and An-
thony Steed. 2017. 3DRepo4Unity: Dynamic loading of version con-
trolled 3D assets into the Unity game engine. In Proceedings of the 22nd
International Conference on 3D Web Technology. 1–9.

[4] Robert JK Jacob. 1990. What you look at is what you get: eyemovement-
based interaction techniques. In Proceedings of the SIGCHI conference
on Human factors in computing systems. 11–18.

[5] Prateek Jassal, Kuldeep Yadav, Abhishek Kumar, VinayakNaik, Vishesh
Narwal, and Amarjeet Singh. 2013. Unity: Collaborative download-
ing content using co-located socially connected peers. In 2013 IEEE
International Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops). IEEE, 66–71.

[6] Shudong Jin and Azer Bestavros. 2001. GreedyDual Web caching
algorithm: exploiting the two sources of temporal locality in Web
request streams. Computer Communications 24, 2 (2001), 174–183.

[7] Sloan Kelly and Khagendra Kumar. 2021. Unity Networking Fundamen-
tals. Springer.

[8] Andrew Lock. 2021. ASP. NET core in Action. Simon and Schuster.
[9] Lisa-Maria Müller, Kilian Mandon, Pascal Gliesche, Sebastian Weiß,

and Wilko Heuten. 2020. Visualization of Eye Tracking Data in
Unity3D. In Proceedings of the 19th International Conference on Mobile
and Ubiquitous Multimedia. 343–344.

[10] Janet HMurray. 2020. Virtual/reality: how to tell the difference. Journal
of visual culture 19, 1 (2020), 11–27.

[11] Gustavus J Simmons. 1979. Symmetric and asymmetric encryption.
ACM Computing Surveys (CSUR) 11, 4 (1979), 305–330.

[12] Johannes Zagermann, Ulrike Pfeil, and Harald Reiterer. 2016. Measur-
ing cognitive load using eye tracking technology in visual computing.
In Proceedings of the sixth workshop on beyond time and errors on novel
evaluation methods for visualization. 78–85.

Received 25 April 2023; revised 26 April 2023; accepted 27 April
2023

	Abstract
	1 Introduction
	2 Related Work
	2.1 User’s gaze tracking
	2.2 Live data in VR
	2.3 Cognitive load

	3 Architecture Overview
	3.1 Why Unity?
	3.2 Why HTC Vive Pro Eye?
	3.3 Obtaining the user’s gaze
	3.4 Obtaining live data
	3.5 Development log

	4 Future Research
	5 Conclusion
	Acknowledgments
	References

