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Abstract. Real-time implementation of gaze-based 2°¢ order metrics is
given, including computation of the IC coefficient and gaze transition en-
tropy. Innovations include strategies for real-time update of both metrics,
dependent on instantaneous real-time binary gaze classification (saccades
or fixations), normalization of the K coefficient, and correction of gaze
transition entropy so that special cases are better handled, including
gaze fixating a specific Areas Of Interest (AOI) for a prolonged period,
or gaze falling outside of all defined AOIs. The resulting implementa-
tions are sensitive to the length of the history buffer maintained for
either computation, but both produce intuitively interpretable estimates
of gaze behavior. Both metrics are implemented in a contezt-free man-
ner allowing for future use in eye-tracking systems that do not possess
scene cameras and where there is a need for instantaneous gaze-based
biometric measures, e.g., captured over the course of a day.
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1 Introduction

Well-known so-called 1% order gaze-based metrics include numbers of fixations
and fixation durations, often employed as a proxy for cognitive function, dating
back to Just and Carpenter’s eye-mind assumption 9], stating that whatever is
fixated implies visual inspection via cognitive processing. Krejtz et al. introduced
two key 2°¢ order metrics, namely gaze-based transition entropy [12] and the K
coefficient [13] along with its visualization [5]. These metrics have been widely
adopted, providing reproducible results in numerous applications, including avi-
ation [2], transportation [18], learning [14], packaging usability [4], cartographic
visual exploration [11], and many others (see Negi and Mitra [14] in particular
for a summary of literature based on ambient/focal fixation classification).

Since then, there has been growing demand for implementation of these met-
rics as real-time indicators of assumed cognitive function they are considered to
represent, e.g., ambient/focal visual scanning as given by the K coefficient or
predictability of scanning behavior as given by gaze entropy.

Only a single example of real-time second-order metric implementation has
appeared thus far, to the best of our knowledge. Namely, Abeysinghe et al. [1]
evaluated a time-windowed implementation of K. Yielding negative values, “/C
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showed entirely ambient viewing behavior of participants during a puzzle-solving
task, where the " superscript denotes group-based windowed computation of
(see Sec. 2 below).

In this paper, details of real-time implementation of gaze entropy and K are
given, with notes on sensitivity of the algorithms to real-time parameters.

2 Implementation

Both real-time implementations of gaze entropy and K extend prior work devel-
oped for offline analysis [12,13]. Both metrics have generally been used to analyze
recorded eye movements on a per-trial basis, i.e., K or entropy computed over
usually short trials conducted on the order of several minutes.

In the first case, K relies on a fairly straightforward comparison of fixation
duration and saccade amplitude. This can clearly be implemented in real-time
so long as eye movements can be classified as either fixation or saccade in real
time. Specifically, given the next incoming gaze point sample g; = (x,y,t), this
point can generally be classified via a digital filter such as the commonly used
differential filter developed by Savitzky and Golay [16] (see Schafer [17] for an
in-depth explanation of its design). Used in this way as a differential filter leads
to the velocity-threshold identification (I-VT) event detection described early on
by Salvucci and Goldberg [15], characterized as a “saccade picker” by Karn [10].

Although binary classification of real-time gaze into saccades and fixations
is overly simplistic and omits classification of smooth pursuits or the Vestibulo-
Ocular Response (VOR), it does lead to a fairly useful event table with two
states, yielding four possible event transitions: (1) saccade — saccade, (2) sac-
cade — fixation, (3) fixation — fixation, and (4) fixation — saccade. Various
algorithmic bookkeeping operations can be performed during event state transi-
tions, e.g., during fixation onset (2) or fixation termination (4).

Similarly, in the second case, gaze entropy also relies on the decision of
whether transitions between specific Areas Of Interest (AOIs) are recorded based
on fixation-to-fixation transitions, or more instantaneously on real-time gaze g;
irrespective of its classification.

In both cases, computation of K and entropy relies not only on the length
of the differential filter but also on the length of the buffer over which either
metric is computed. I relies on estimation of recent means of fixation dura-
tion and saccade amplitude. This will depend on the length of buffer of recent
events. Similarly, entropy depends on the number of transitions which are used
to construct the transition matrix composed of observed transition probabilities.

The longer the buffer, the longer the memory of the system. This will neces-
sarily be reflected in response of the system to its estimation of IC or entropy.

2.1 Ambient/Focal K Coefficient
The K coefficient is typically computed by Eq. (1),

K, = di —pd  Qi—1 — [la (1)
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Fig. 1: Real-time computation of K: the top part of the figure shows the temporal ac-
cumulation of gaze points g; classified as either part of fixation durations {...,d;—1,d;}
or saccade amplitudes {...,a;—1,a;}. Given a new point g;, it is either accumulated
into d as the difference between timestamps At = g;, — g;—1, between the current and
last points, or it is accumulated into a as the difference in position A0 = ||gi, gi—1]|
converted to degrees visual angle.

where d; is the current (i'") fixation duration and a;_; is the preceding saccade
amplitude. The idea behind K is to compute the (instantaneous) ratio of fixation
duration to saccade amplitude, yielding positive values of K during focal fixations
(long duration minus short saccades) and vice-versa. Due to differing units of
time and distance, K is normalized using z-score standardization, with g, pq
and o,,04 the means and variances of previously observed fixation durations
and saccade amplitudes, respectively, over time, i.e., typically the duration of an
entire trial performed by participants when IC is computed offline.

Real-time implementation of I is conceptually tied to completion of any given
fixation, i.e., transition from fixation to saccade, e.g., as detected by velocity-
based filtering. Moreover, one can compute a windowed version of K over the
n few fixations, similarly to the implementation of Abeysinghe et al. [1], who
proposed “K as given by Eq. (2), where ,,,. and o,,,. are the mean and variance
defined over a window instead of over the duration of a trial.

di* i} 1—1 = Mw,a
> UK YK = fod _ 2ol ” Pw, (2)
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However, Abeysinghe et al. [1] omitted details of the real-time, windowed com-
putation, making it difficult to understand precisely when YK is updated. If it is
computed at the end of any given fixation, then C would only be updated when-
ever a transition from fixation to saccade is detected. Instead of this presumed
approach, K can be implemented so that it is updated with the arrival of the
next raw gaze point, making its computation continuous in comparison to the
presumed per-fixation approach of Abeysinghe et al.

In contrast to a windowed approach, instantaneous update of K relies on

updating the current estimate of fixation duration, d, or saccade amplitude, a,
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Fig. 2: Logistic function used to “squash” I, with L =2 and k= .125. Note that this
preserves K’s response to [—1 : 1] centering on 0 while dampening extreme values.

depending on the classification of the current gaze point, g;, as shown in Fig. 1
and expressed in Eq. (3),

K; = - (3)
0d Oqa

which is similar to Eq. (1) save for the duration and amplitude accumulators.
These are used to continuously expand on the current fixation’s duration or
the current saccade amplitude’s distance, depending on the current gaze point’s
classification. In the present situation, a simple (I-VT) velocity-based classified
is used by employing the Savitzky-Golay filter to obtain the velocity of the most
recent point buffer (maintained by the filter) when the current gaze point g; is
added to the filter. In practice, two filters are used, one for each of the z- and
y-components of the (2D) gaze position.

Moreover, evaluation of the current point as either a fixation or saccade
will trigger one of the following four state transitions: saccade-saccade, saccade-
fixation, fixation-fixation, fixation-saccade. If the transition is regressive (i.e.,
saccade-saccade or fixation-fixation) then the appropriate means and variance
are updated.

In the case of a saccade-saccade transition, @ is updated by accumulating
the difference (amplitude) of the current point g; and the most recent point
(since it must also be a point that had been classified as a saccade). In the case
of a fixation-fixation transition d is updated by accumulating the difference in
timestamps of g; and the most recent point since the latter would have been
classified as part of a fixation.

In the case of transition from fixation to saccade, d is added to the duration
ring buffer and reset to 0. Similarly, in the case of transition from saccade to
fixation, a is appended to the amplitude ring buffer and then reset to 0.
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(a) Ambient movement consisting largely of sac- (b) Focal movement consisting largely of fixa-
cadic gaze points transitioning from a fixation, tional gaze points transitioning from a saccade,
K=-0.7. K =0.3.

Fig. 3: Screen captures of simulation showing buffered gaze eye movements classified
into saccades or fixations and real-time visualization of K displayed as a smoothed
sinusoid, inspired by RealEye (http://realeye.io) sp, z.0.0.

Note that IC as defined above is unbounded. For example, assume a fixation
of infinite duration. Without an end to the fixation, d tends to infinity and thus
also drives K to infinity. Similarly, a continuous saccade that never ends tends a
to infinity and thus drives IC to negative infinity. To mitigate this situation and
to normalize K, the logistic function L/(1 + e~**) can be used to bound K to
the [—1 : 1] range as is often done in neural networks by “squashing” activation
functions [7]. To do so, set L = 2, the supremum of the values of the function
to set the range between asymptotes to [—1 : 1]. The choice of k is important
here as it determines the logistic growth rate or steepness of the curve (bounding
input values x =K; over a shorter or wider range). A reasonable choice is k=.125
yielding the function shown in Fig. 2. Real-time behavior of K in a simulation of
gaze is shown in Fig. 3, where K continuously varies between the [—1 : 1] bounds
in response to focal/ambient (simulated) eye movement, as expected.

2.2 Gaze Entropy

Given a set of Areas Of Interest (AOIs) S = {I,...,s}, with s =|S| denoting
their number, gaze transition entropy is given by Eq. (4),

1
H; = D pi Y pijlogy pij (4)

log, s
8255 jes

where p; is the simple probability of viewing the i*® AOI (i.e., 1/s), p;; is the
conditional probability of viewing the j*" AOI given the previous viewing of
the i** AOL i.e., transitioning from the i*" to the j'" AOI Transition entropy
H,; provides a measure of statistical dependency in the spatial pattern of gaze
represented by the transition matrix, P =(p;;)sxs, which, in turn, is constructed
from a sequence x = (zg,...,%;, Tit1,...,%y) of observed fixated (or simply
glanced) AOIs, where x; € S. The observed probability of gaze transition p;; is
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H_t=05

(a) Relatively high entropy, H; =0.5, when it should be lower since transitions are largely confined
to only a subset of AOIs.

017 017 017 017 017 017
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(b) Near maximum entropy, H; = 0.8, since most transitions are equally likely although gaze is
largely confined to a single AOI. In this case entropy should be 0.

Fig. 4: Screen captures of eye movement simulation over a 3 x2 grid, with transition
matrix at left with observed (instantaneous) transition probabilities between AOIs and
grid at right with buffered simulated gaze. These screen captures serve to expose the
inadequacy of the uniform distribution in the normalization assumption used by Krejtz
et al. [12] which results in a counter-intuitive estimation of gaze entropy. See Sec. 2.3
for an improved reformulation of entropy that corrects this problem.

simply obtained by examining the transition between x;,x;;+; in the sequence
and accumulating the observation in transition matrix P at the appropriate
matrix position.

As noted by Krejtz et al. [12], maximum entropy equal to log, s is reached
when the distribution of transitions is uniform for each AOI. Minimal entropy
of 0 describes a fully deterministic Markov chain. The higher the entropy, the
more randomness there is in the viewing transitions. A good way to intuitively
interpret entropy is to consider it as “expected surprise” of a given transition.
Minimum entropy of 0 implies no surprise, while maximum entropy suggest
maximum surprise. The term —p;;logy p;; in Eq. (4) is formally known as the
surprisal [8].
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Krejtz et al. [12] used gaze entropy as a means of comparison of one transition
matrix to another. This has often been done where a transition matrix repre-
sented gaze transitions over a set of AOIs during a given experimental trial,
thus allowing comparison of H; between trials. Other variations allow similar
comparisons but between user groups, where H; can be used to compare gaze
patterns between, for example, expert and novice pilots [2].

Note that entropy is generally tied to AOIs pre-defined in the scene. In the
case of expert and novice pilots [2], AOIs can be defined over the instrument
panel, front window, etc. This is the typical context-sensitive setup which relies
on careful consideration of AOI placement and their dimensions (e.g., if they are
not of uniform size, larger AOIs may be prone to drawing a greater proportion of
gaze simply due to their size, relative to smaller AOIs). However, a context-free
approach can also be considered if the user’s gaze dispersion is of primary inter-
est, irrespective of what is in the scene. This can be accomplished by specifying
a virtual (uniform) grid of AOT cells in front of the user and then computing
transitions between them.

Real-time implementation of gaze entropy relies on the choice of when to
update the transition matrix and when to compute entropy from the matrix.
Updating the matrix, in turn, relies on its initialization (during every update)
and then its subsequent accumulation of observed probabilities of AOI transi-
tions. These are maintained as a list (buffer) of recently visited AOIs. Note that
the larger this buffer, the longer the system “memory”. Hence, the buffer size is a
user-adjustable parameter which will affect how quickly H; changes in response
to observed transitions. Currently, this is set to 125 with the number of AOIs
set to an arbitrarily-sized mxn grid. If the number of AOIs is manageable (e.g.,
4-12), matrix update and computation of H; can be done fairly quickly allowing
real-time performance.

As with computation of I, H; is sensitive to when it is performed, i.e., during
which state transition. Currently, the sequence of visited AOIs is updated given
every transition except saccade — saccade. Fig. 4 shows real-time eye movement
simulation with both the real-time transition matrix and H;.

Notice that H; is artificially inflated, e.g., few or even no transitions yield
large entropy. This results in a counter-intuitive interpretation of H; and is due
to the assumption made in constructing the transition matrix, namely in the
instance when no transitions are observed from some given AOI to any other.
In this instance, the gaze transition observations are imputed to 1/|S| yielding
equally likely probability transition from the AOI to any other. This uncertainty,
if observed in many AOIs, will lead to an inflated entropy estimate. Below, this
problem is addressed and a corrected version of gaze entropy is proposed.

2.3 Corrected Gaze Entropy Computation

Krejtz et al.’s [12] original formulation for gaze entropy computation employs
entropy normalization, namely the division of p;;/log, s found in Eq. (4). In the
event of no observed transitions for any given AQOI, its row entries in the transi-
tion matrix were set to 1/s. Originally this was done to prevent matrix row sum



8 A. Duchowski et al.

H_t=00

(a) Zero entropy, Hy =0.0, with gaze fixed within a single AOI, yielding steady self-transitions, as
it should be, since no transitions between any other AOIs do not contribute towards entropy.

Ht=07

(b) High entropy, H, =0.7, as expected, since most transitions are almost as likely with gaze quickly
moving between the AOIs, making it is difficult to predict the next AOI. There are no “empty” AOIs
for which no transitions are observed.

Fig. 5: Screen captures of eye movement simulation over a 2 x 2 grid and corrected
transition matrix at left with observed (instantaneous) transition probabilities between
AOIs and grid at right with buffered simulated gaze.

division by zero. This is shown in Fig. 4(b) which results in a counter-intuitive
estimation of gaze entropy when gaze is “stuck” in a specific AOI. This is because
all other AOIs, for which no transition is actually observed, still assume equal
probability of subsequent transitions. In the case of offline analysis, when gener-
ally most AOIs are eventually fixated over (relatively) long trials, these “empty”
AOI transitions do not greatly influence the gaze entropy computation. However,
in real-time implementation, “empty” AOIs tend to overpower the computation
of the sole observed transition (self-transition within an AOI if the fixation is
sufficiently long).

An improved reformulation of entropy computation that corrects this prob-
lem requires that:

1. AOIs for which no transitions are observed should not be counted,
2. normalization is adjusted to the number of AOIs for which transitions actu-
ally observed, and
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H_t=10

Fig. 6: Maximum entropy, H; = 1.0, with gaze outside all AOIs. The normalization
assumption used by Krejtz et al. [12] makes sense in this special case, leading to an
intuitive estimation of entropy.

3. gaze entropy normalization introduced by Krejtz et al. [12] is preserved for
the special case of transition matrix when gaze does not fall on any AOIs.

To handle the fist requirement, entries p;; are set to 0 for any row in P which
did not accumulate any observed transitions. In the computation of entropy,
if a matrix row sums to 0, it will not be included in the entropy computation
(preventing division by zero).

To handle the second requirement, the normalization factor of log, s is ad-
justed to log, § where § is set to the number of non-zero sum rows of P instead
of setting s to the number of AOIs, i.e., s=|S| as before.

Results of the implementation of these corrections are shown in Fig. 5. Notice
that computation of H; is now consistently intuitive, with zero entropy when gaze
if fixed within a specific AOI, low entropy when gaze transitions between a few
AOIs, and high entropy when gaze transitions among many AOIs.

Finally, in the special case of no observed transitions between any AOIs, i.e.,
all rows of P sum to zero, the imputation p;; =1/log, s, Vi, j yields a uniformly
distributed transition matrix P which results in maximum normalized entropy
H;=1, as shown in Fig. 6.

3 Effects of User-Adjustable Parameters

There are only a few user-adjustable parameters that govern real-time compu-
tation of K and gaze entropy. Both metrics depend on the length of ring buffers
used to store the recent history of sampled gaze points, K; itself (mainly used for
visualization rendering), and, for computation of gaze entropy, the sequence of
observed AOIs. Ring buffers are realized through the use of double-ended queues.
For both metrics, the length of the ring buffers, i.e., window size w =125, pro-
duces reasonable behavior. The window size does not necessarily reflect a tem-
poral window, since computation does not necessarily rely on completion of, say,
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every 125 ms. However, assuming a sampling rate of 60 Hz, the window size can
be thought of as 125 x 1/60 & 2 seconds worth of system memory. Manipulation
of the window size will affect latency of metric computation.

For computation of I, k = 0.125 is used in the logistic normalization and
in this instance reflects what is considered a short sampling period of 125 ms,
which, in turn, is based on the hypothesized 2-8 Hz environmental sampling
conducted by the human attention network [3, 6].

For simulation of real-time computation of context-free gaze transition en-
tropy, in addition to the window size (w =125), a grid is used to denote AOIs
with size (m xn), currently set to m = 3,n = 2, yielding m xn number of
AOIs, which requires an mn X mn transition matrix. As pointed out by Krejtz
et al. [12], a more finely grained grid, with greater m xn dimensions yields di-
minishing returns. First, with a large number of AOIs, the estimate of entropy
is drawn from a very sparse matrix, producing very low values of H;. In this
situation, stationary entropy H,; may be a more suitable estimate of entropy
(see Krejtz et al. [12] for details). Second, the larger the transition matrix, the
slower the computation.

4 Conclusion

Real-time implementation of gaze-based 2™? order metrics, namely the K coeffi-
cient and gaze entropy H; exposed inadequacies of their prior offline implemen-
tations, especially in the case of the latter. Key contributions of the derivation
of real-time X and H; include:

1. adjusting computation of K to instantaneously update the coefficient given
real-time (z,y,t) gaze data without the need for a strictly temporally win-
dowed approach, its normalization via the logistic function, and

2. correcting computation of H; by removing an earlier design decision to im-
pute the gaze transition matrix with uniform probability in the absence of
observed transitions.

These innovations lead to fairly intuitive interpretations of simulated gaze. Fu-
ture work is needed to validate both metrics via real-time controlled experi-
ments. Moreover, since real-time implementations are sensitive to the length of
the history buffer, such experimentation is needed to fine-tune user-adjustable
parameters, e.g., grid dimension for context-free gaze entropy estimation and
buffer length for real-time X responsiveness.
Both metrics are suitable for future context-free implementation in eye-tracking

systems that do not rely on knowledge of the scene, e.g., as a means for gaze-
based biometric measurement of gaze behavior.
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