Longitudinal Evaluation of Discrete Consecutive Gaze Gestures for Text Entry

Jacob O. Wobbrock†, James Rubinstein‡, Michael W. Sawyer‡, and Andrew T. Duchowski‡

†University of Washington and ‡Clemson University

ETRA 08
26-28 March 2008

(Wobbrock et al., 2008)
Motivation

- Motivated by Isokoski (2000)’s work desire to circumvent dwell time, we developed EyeWrite
- A new system for eye-typing that uses gestures similar to hand-printed letters
- EyeWrite is based on EdgeWrite’s unistroke alphabet (Wobbrock et al., 2003; Wobbrock & Myers, 2006b)
- EyeWrite reduces the need for eye-tracker accuracy, a large screen footprint, and tedium
Motivation

- Motivated by Isokoski (2000)’s work desire to circumvent dwell time, we developed EyeWrite
- A new system for eye-typing that uses gestures similar to hand-printed letters
- EyeWrite is based on EdgeWrite’s unistroke alphabet (Wobbrock et al., 2003; Wobbrock & Myers, 2006b)
- EyeWrite reduces the need for eye-tracker accuracy, a large screen footprint, and tedium
Motivation

- Motivated by Isokoski (2000)’s work desire to circumvent dwell time, we developed EyeWrite
- A new system for eye-typing that uses gestures similar to hand-printed letters
- EyeWrite is based on EdgeWrite’s unistroke alphabet (Wobbrock et al., 2003; Wobbrock & Myers, 2006b)
- EyeWrite reduces the need for eye-tracker accuracy, a large screen footprint, and tedium
Motivation

Motivated by Isokoski (2000)’s work desire to circumvent dwell time, we developed EyeWrite

A new system for eye-typing that uses gestures similar to hand-printed letters

EyeWrite is based on EdgeWrite’s unistroke alphabet (Wobbrock et al., 2003; Wobbrock & Myers, 2006b)

EyeWrite reduces the need for eye-tracker accuracy, a large screen footprint, and tedium
On-screen Keyboards

- Dwell-time on-screen keyboards usually need layouts with large keys (Majaranta & Räihä, 2007)
- They often require a large screen footprint (e.g., Tobii Technology’s (2007) patent-pending MyTobii or the ERICA system (Hutchinson et al., 1998))
- One reason is the need for large keys—size facilitates selection (Fitts’ Law), esp. in the presence of noise
Dwell-time on-screen keyboards usually need layouts with large keys (Majaranta & Räihä, 2007).

They often require a large screen footprint (e.g., Tobii Technology’s (2007) patent-pending MyTobii or the ERICA system (Hutchinson et al., 1998)).

One reason is the need for large keys—size facilitates selection (Fitts’ Law), esp. in the presence of noise.
On-screen Keyboards

- Dwell-time on-screen keyboards usually need layouts with large keys (Majaranta & Räihä, 2007)
- They often require a large screen footprint (e.g., Tobii Technology’s (2007) patent-pending MyTobii or the ERICA system (Hutchinson et al., 1998))
- One reason is the need for large keys—size facilitates selection (Fitts’ Law), esp. in the presence of noise
Besides dwell-time, input can be performed by gaze gestures

- Isokoski’s (2000)’s MDITIM used discrete, consecutive gestures
- MDITIM’s gestures did not necessarily resemble roman letters

- Other well-known system is Dasher (Ward & MacKay, 2002)
 - Dasher’s zooming display is modeless—no dwell time needed
 - Very fast input times have been reported with word completion feature (25-34 wpm)

- Other gestural approaches include Urbina and Huckauf’s (2007) pEYEdit, with which 6-10 wpm rates have been reported
Besides dwell-time, input can be performed by gaze gestures

- Isokoski’s (2000)’s MDITIM used discrete, consecutive gestures
- MDITIM’s gestures did not necessarily resemble roman letters

- Other well-known system is Dasher (Ward & MacKay, 2002)
 - Dasher’s zooming display is modeless—no dwell time needed
 - Very fast input times have been reported with word completion feature (25-34 wpm)

- Other gestural approaches include Urbina and Huckauf’s (2007) pEYEEdit, with which 6-10 wpm rates have been reported
Other Forms of Input

- Besides dwell-time, input can be performed by gaze gestures
 - Isokoski’s (2000)’s MDITIM used discrete, consecutive gestures
 - MDITIM’s gestures did not necessarily resemble roman letters
- Other well-known system is Dasher (Ward & MacKay, 2002)
 - Dasher’s zooming display is modeless—no dwell time needed
 - Very fast input times have been reported with word completion feature (25-34 wpm)
- Other gestural approaches include Urbina and Huckauf’s (2007) pEYEdit, with which 6-10 wpm rates have been reported
Background

Other Forms of Input

- Besides dwell-time, input can be performed by gaze gestures
 - Isokoski’s (2000)’s MDITIM used discrete, consecutive gestures
 - MDITIM’s gestures did not necessarily resemble roman letters
- Other well-known system is Dasher (Ward & MacKay, 2002)
 - Dasher’s zooming display is modeless—no dwell time needed
 - Very fast input times have been reported with word completion feature (25-34 wpm)
- Other gestural approaches include Urbina and Huckauf’s (2007) pEYEEdit, with which 6-10 wpm rates have been reported
Other Forms of Input

- Besides dwell-time, input can be performed by gaze gestures
 - Isokoski’s (2000)’s MDITIM used discrete, consecutive gestures
 - MDITIM’s gestures did not necessarily resemble roman letters
- Other well-known system is Dasher (Ward & MacKay, 2002)
 - Dasher’s zooming display is modeless—no dwell time needed
 - Very fast input times have been reported with word completion feature (25-34 wpm)
- Other gestural approaches include Urbina and Huckauf’s (2007) pEYEdit, with which 6-10 wpm rates have been reported
Other Forms of Input

Besides dwell-time, input can be performed by gaze gestures
- Isokoski’s (2000)’s MDITIM used discrete, consecutive gestures
- MDITIM’s gestures did not necessarily resemble roman letters

Other well-known system is Dasher (Ward & MacKay, 2002)
- Dasher’s zooming display is modeless—no dwell time needed
- Very fast input times have been reported with word completion feature (25-34 wpm)

Other gestural approaches include Urbina and Huckauf’s (2007) pEYEdit, with which 6-10 wpm rates have been reported
Besides dwell-time, input can be performed by gaze gestures
- Isokoski’s (2000)’s MDITIM used discrete, consecutive gestures
- MDITIM’s gestures did not necessarily resemble roman letters

Other well-known system is Dasher (Ward & MacKay, 2002)
- Dasher’s zooming display is modeless—no dwell time needed
- Very fast input times have been reported with word completion feature (25-34 wpm)

Other gestural approaches include Urbina and Huckauf’s (2007) pEYEEdit, with which 6-10 wpm rates have been reported
Why Gestures?

- Pros and cons of mouse gestures well documented
- Precise target acquisition is circumvented (Dulberg et al., 1999)
- Gestures can be faster than point-and-click
- Consecutive (compound) gestures, however, are slower since they carry an inherent multi-stroke handicap
- EyeWrite’s weighted average number of strokes per character (with initial and terminating saccades) is 4.52
Why Gestures?

- Pros and cons of mouse gestures well documented
- Precise target acquisition is circumvented (Dulberg et al., 1999)
 - Gestures can be faster than point-and-click
 - Consecutive (compound) gestures, however, are slower since they carry an inherent multi-stroke handicap
- EyeWrite’s weighted average number of strokes per character (with initial and terminating saccades) is 4.52
Why Gestures?

- Pros and cons of mouse gestures well documented
- Precise target acquisition is circumvented (Dulberg et al., 1999)
- Gestures can be faster than point-and-click
 - Consecutive (compound) gestures, however, are slower since they carry an inherent multi-stroke handicap
 - EyeWrite’s weighted average number of strokes per character (with initial and terminating saccades) is 4.52
Why Gestures?

- Pros and cons of mouse gestures well documented
- Precise target acquisition is circumvented (Dulberg et al., 1999)
- Gestures can be faster than point-and-click
- Consecutive (compound) gestures, however, are slower since they carry an inherent multi-stroke handicap
- EyeWrite’s weighted average number of strokes per character (with initial and terminating saccades) is 4.52
Why Gestures?

- Pros and cons of mouse gestures well documented
- Precise target acquisition is circumvented (Dulberg et al., 1999)
- Gestures can be faster than point-and-click
- Consecutive (compound) gestures, however, are slower since they carry an inherent multi-stroke handicap
- EyeWrite’s weighted average number of strokes per character (with initial and terminating saccades) is 4.52
EyeWrite

- EyeWrite is EdgeWrite (Wobbrock et al., 2003) for the eyes
- To our knowledge, first letter-like text entry system for the eyes
- Two important styles for input
 - Alphabet resembles roman characters, enhancing memorability
 - Input mode is based on crossing, not pointing
- Three design iterations (Wobbrock et al., 2007)
 - v1.0: mimicked EdgeWrite with literal trace between input areas
 - v2.0: vector-based approach—worked well but decoupled stroke corner from POG
 - v3.0: returned tight coupling but drew stylized arcs
- Short self-study set window to 400 × 400 size with dwell time set to 269 ms for segmentation with a 1.5 adaptive dwell time multiplier
EyeWrite

- EyeWrite is EdgeWrite (Wobbrock et al., 2003) for the eyes
- To our knowledge, first letter-like text entry system for the eyes
- Two important styles for input
 - Alphabet resembles roman characters, enhancing memorability
 - Input mode is based on crossing, not pointing
- Three design iterations (Wobbrock et al., 2007)
 - v1.0: mimicked EdgeWrite with literal trace between input areas
 - v2.0: vector-based approach—worked well but decoupled stroke corner from POG
 - v3.0: returned tight coupling but drew stylized arcs
- Short self-study set window to 400×400 size with dwell time set to 269 ms for segmentation with a 1.5 adaptive dwell time multiplier
EyeWrite

- EyeWrite is EdgeWrite (Wobbrock et al., 2003) for the eyes
- To our knowledge, first letter-like text entry system for the eyes
- Two important styles for input
 - Alphabet resembles roman characters, enhancing memorability
 - Input mode is based on crossing, not pointing
- Three design iterations (Wobbrock et al., 2007)
 - v1.0: mimicked EdgeWrite with literal trace between input areas
 - v2.0: vector-based approach—worked well but decoupled stroke corner from POG
 - v3.0: returned tight coupling but drew stylized arcs
- Short self-study set window to 400×400 size with dwell time set to 269 ms for segmentation with a 1.5 adaptive dwell time multiplier
EyeWrite

- EyeWrite is EdgeWrite (Wobbrock et al., 2003) for the eyes
- To our knowledge, first letter-like text entry system for the eyes
- Two important styles for input
 - Alphabet resembles roman characters, enhancing memorability
 - Input mode is based on crossing, not pointing
- Three design iterations (Wobbrock et al., 2007)
 - v1.0: mimicked EdgeWrite with literal trace between input areas
 - v2.0: vector-based approach—worked well but decoupled stroke corner from POG
 - v3.0: returned tight coupling but drew stylized arcs
- Short self-study set window to 400×400 size with dwell time set to 269 ms for segmentation with a 1.5 adaptive dwell time multiplier
EyeWrite is EdgeWrite (Wobbrock et al., 2003) for the eyes.

To our knowledge, first letter-like text entry system for the eyes.

Two important styles for input:
- Alphabet resembles roman characters, enhancing memorability.
- Input mode is based on crossing, not pointing.

Three design iterations (Wobbrock et al., 2007):
- v1.0: mimicked EdgeWrite with literal trace between input areas.
- v2.0: vector-based approach—worked well but decoupled stroke corner from POG.
- v3.0: returned tight coupling but drew stylized arcs.

Short self-study set window to 400×400 size with dwell time set to 269 ms for segmentation with a 1.5 adaptive dwell time multiplier.
EyeWrite

- EyeWrite is EdgeWrite (Wobbrock et al., 2003) for the eyes
- To our knowledge, first letter-like text entry system for the eyes
- Two important styles for input
 - Alphabet resembles roman characters, enhancing memorability
 - Input mode is based on crossing, not pointing
- Three design iterations (Wobbrock et al., 2007)
 - v1.0: mimicked EdgeWrite with literal trace between input areas
 - v2.0: vector-based approach—worked well but decoupled stroke corner from POG
 - v3.0: returned tight coupling but drew stylized arcs
- Short self-study set window to 400×400 size with dwell time set to 269 ms for segmentation with a 1.5 adaptive dwell time multiplier
EyeWrite

- EyeWrite is EdgeWrite (Wobbrock et al., 2003) for the eyes
- To our knowledge, first letter-like text entry system for the eyes
- Two important styles for input
 - Alphabet resembles roman characters, enhancing memorability
 - Input mode is based on crossing, not pointing
- Three design iterations (Wobbrock et al., 2007)
 - v1.0: mimicked EdgeWrite with literal trace between input areas
 - v2.0: vector-based approach—worked well but decoupled stroke corner from POG
 - v3.0: returned tight coupling but drew stylized arcs
- Short self-study set window to 400×400 size with dwell time set to 269 ms for segmentation with a 1.5 adaptive dwell time multiplier
EyeWrite

- EyeWrite is EdgeWrite (Wobbrock et al., 2003) for the eyes
- To our knowledge, first letter-like text entry system for the eyes
- Two important styles for input
 - Alphabet resembles roman characters, enhancing memorability
 - Input mode is based on crossing, not pointing
- Three design iterations (Wobbrock et al., 2007)
 - v1.0: mimicked EdgeWrite with literal trace between input areas
 - v2.0: vector-based approach—worked well but decoupled stroke corner from POG
 - v3.0: returned tight coupling but drew stylized arcs
- Short self-study set window to 400x400 size with dwell time set to 269 ms for segmentation with a 1.5 adaptive dwell time multiplier
EyeWrite

- EyeWrite is EdgeWrite (Wobbrock et al., 2003) for the eyes
- To our knowledge, first letter-like text entry system for the eyes
- Two important styles for input
 - Alphabet resembles roman characters, enhancing memorability
 - Input mode is based on crossing, not pointing
- Three design iterations (Wobbrock et al., 2007)
 - v1.0: mimicked EdgeWrite with literal trace between input areas
 - v2.0: vector-based approach—worked well but decoupled stroke corner from POG
 - v3.0: returned tight coupling but drew stylized arcs
- Short self-study set window to 400×400 size with dwell time set to 269 ms for segmentation with a 1.5 adaptive dwell time multiplier
EyeWrite

- EyeWrite is EdgeWrite (Wobbrock et al., 2003) for the eyes
- To our knowledge, first letter-like text entry system for the eyes
- Two important styles for input
 - Alphabet resembles roman characters, enhancing memorability
 - Input mode is based on crossing, not pointing
- Three design iterations (Wobbrock et al., 2007)
 - v1.0: mimicked EdgeWrite with literal trace between input areas
 - v2.0: vector-based approach—worked well but decoupled stroke corner from POG
 - v3.0: returned tight coupling but drew stylized arcs
- Short self-study set window to 400×400 size with dwell time set to 269 ms for segmentation with a 1.5 adaptive dwell time multiplier
Based on four corners

Similar to Isokoski’s (2000) MDITIM but EyeWrite’s alphabet resembles handwritten letters
Based on four corners

Similar to Isokoski’s (2000) MDITIM but EyeWrite’s alphabet resembles handwritten letters
Comparison with Click-N-Type

- **Click-N-Type settings:**
 - resized for height to match that of EyeWrite
 - width squeezed in as far as app would allow (> 400)
 - dwell time set to 330 ms

- Longitudinal study spanned 15 sessions
 - Participants performed no more than 2 sessions per day
 - If 2 sessions in one day, at least a 2 hour break required
 - No more than 48 hours could elapse between sessions
 - Participants paid $5 at the end of each session
 - $50 bonus paid out if all sessions completed

- Hypothesis assumed learning effect and better EyeWrite typing performance once the alphabet was learned
Comparison with Click-N-Type

- Click-N-Type settings:
 - resized for height to match that of EyeWrite
 - width squeezed in as far as app would allow (> 400)
 - dwell time set to 330 ms

- Longitudinal study spanned 15 sessions
 - Participants performed no more than 2 sessions per day
 - If 2 sessions in one day, at least a 2 hour break required
 - No more than 48 hours could elapse between sessions
 - Participants paid $5 at the end of each session
 - $50 bonus paid out if all sessions completed

- Hypothesis assumed learning effect and better EyeWrite typing performance once the alphabet was learned
Comparison with Click-N-Type

- **Click-N-Type settings:**
 - resized for height to match that of EyeWrite
 - width squeezed in as far as app would allow (> 400)
 - dwell time set to 330 ms

- Longitudinal study spanned 15 sessions
 - Participants performed no more than 2 sessions per day
 - If 2 sessions in one day, at least a 2 hour break required
 - No more than 48 hours could elapse between sessions
 - Participants paid $5 at the end of each session
 - $50 bonus paid out if all sessions completed

- Hypothesis assumed learning effect and better EyeWrite typing performance once the alphabet was learned
Comparison with Click-N-Type

- **Click-N-Type settings:**
 - resized for height to match that of EyeWrite
 - width squeezed in as far as app would allow (> 400)
 - dwell time set to 330 ms

- Longitudinal study spanned 15 sessions
 - Participants performed no more than 2 sessions per day
 - If 2 sessions in one day, at least a 2 hour break required
 - No more than 48 hours could elapse between sessions
 - Participants paid $5 at the end of each session
 - $50 bonus paid out if all sessions completed

- Hypothesis assumed learning effect and better EyeWrite typing performance once the alphabet was learned
Comparison with Click-N-Type

- **Click-N-Type settings:**
 - resized for height to match that of EyeWrite
 - width squeezed in as far as app would allow (> 400)
 - dwell time set to 330 ms

- **Longitudinal study spanned 15 sessions**
 - Participants performed no more than 2 sessions per day
 - If 2 sessions in one day, at least a 2 hour break required
 - No more than 48 hours could elapse between sessions
 - Participants paid $5 at the end of each session
 - $50 bonus paid out if all sessions completed

- Hypothesis assumed learning effect and better EyeWrite typing performance once the alphabet was learned
Comparison with Click-N-Type

- Click-N-Type settings:
 - resized for height to match that of EyeWrite
 - width squeezed in as far as app would allow (> 400)
 - dwell time set to 330 ms

- Longitudinal study spanned 15 sessions
 - Participants performed no more than 2 sessions per day
 - If 2 sessions in one day, at least a 2 hour break required
 - No more than 48 hours could elapse between sessions
 - Participants paid $5 at the end of each session
 - $50 bonus paid out if all sessions completed

- Hypothesis assumed learning effect and better EyeWrite typing performance once the alphabet was learned
Comparison with Click-N-Type

- **Click-N-Type settings:**
 - resized for height to match that of EyeWrite
 - width squeezed in as far as app would allow (> 400)
 - dwell time set to 330 ms

- **Longitudinal study spanned 15 sessions**
 - Participants performed no more than 2 sessions per day
 - If 2 sessions in one day, at least a 2 hour break required
 - No more than 48 hours could elapse between sessions
 - Participants paid $5 at the end of each session
 - $50 bonus paid out if all sessions completed

- Hypothesis assumed learning effect and better EyeWrite typing performance once the alphabet was learned
Click-N-Type settings:
- resized for height to match that of EyeWrite
- width squeezed in as far as app would allow (> 400)
- dwell time set to 330 ms

Longitudinal study spanned 15 sessions
- Participants performed no more than 2 sessions per day
- If 2 sessions in one day, at least a 2 hour break required
- No more than 48 hours could elapse between sessions
- Participants paid $5 at the end of each session
- $50 bonus paid out if all sessions completed

Hypothesis assumed learning effect and better EyeWrite typing performance once the alphabet was learned
Comparison with Click-N-Type

- **Click-N-Type settings:**
 - resized for height to match that of EyeWrite
 - width squeezed in as far as app would allow (> 400)
 - dwell time set to 330 ms

- **Longitudinal study spanned 15 sessions**
 - Participants performed no more than 2 sessions per day
 - If 2 sessions in one day, at least a 2 hour break required
 - No more than 48 hours could elapse between sessions
 - Participants paid $5 at the end of each session
 - $50 bonus paid out if all sessions completed

- Hypothesis assumed learning effect and better EyeWrite typing performance once the alphabet was learned
Comparison with Click-N-Type

- **Click-N-Type settings:**
 - resized for height to match that of EyeWrite
 - width squeezed in as far as app would allow (> 400)
 - dwell time set to 330 ms

- Longitudinal study spanned 15 sessions
 - Participants performed no more than 2 sessions per day
 - If 2 sessions in one day, at least a 2 hour break required
 - No more than 48 hours could elapse between sessions
 - Participants paid $5 at the end of each session
 - $50 bonus paid out if all sessions completed

- Hypothesis assumed learning effect and better EyeWrite typing performance once the alphabet was learned
Comparison with Click-N-Type

- **Click-N-Type settings:**
 - resized for height to match that of EyeWrite
 - width squeezed in as far as app would allow (> 400)
 - dwell time set to 330 ms

- **Longitudinal study spanned 15 sessions**
 - Participants performed no more than 2 sessions per day
 - If 2 sessions in one day, at least a 2 hour break required
 - No more than 48 hours could elapse between sessions
 - Participants paid $5 at the end of each session
 - $50 bonus paid out if all sessions completed

- Hypothesis assumed learning effect and better EyeWrite typing performance once the alphabet was learned
Experimental Details

- Data captured with TextTest and analyzed with StreamAnalyzer (Wobbrock & Myers, 2006a)
- Real-time \((x, y)\) POG calculated as average of valid (validity code 0) left and right gaze points, smoothed over last 5 data points
- Eight participants (4 M, 4 F), age range [20-25], mean 21.8
- Participants asked to balance speed and accuracy during input (e.g., try character twice before moving on)
- Apparatus was the Tobii ET-1750
- Experimental design was within-subjects with one two-level factor for input technique (EyeWrite, Click-N-Type)
Experimental Details

- Data captured with TextTest and analyzed with StreamAnalyzer (Wobbrock & Myers, 2006a)
- Real-time \((x, y)\) POG calculated as average of valid (validity code 0) left and right gaze points, smoothed over last 5 data points
- Eight participants (4 M, 4 F), age range [20-25], mean 21.8
- Participants asked to balance speed and accuracy during input (e.g., try character twice before moving on)
- Apparatus was the Tobii ET-1750
- Experimental design was within-subjects with one two-level factor for input technique (EyeWrite, Click-N-Type)
Experimental Details

- Data captured with TextTest and analyzed with StreamAnalyzer (Wobbrock & Myers, 2006a)
- Real-time \((x, y)\) POG calculated as average of valid (validity code 0) left and right gaze points, smoothed over last 5 data points
- Eight participants (4 M, 4 F), age range [20-25], mean 21.8
 - Participants asked to balance speed and accuracy during input (e.g., try character twice before moving on)
- Apparatus was the Tobii ET-1750
- Experimental design was within-subjects with one two-level factor for input technique (EyeWrite, Click-N-Type)
Experimental Details

- Data captured with TextTest and analyzed with StreamAnalyzer (Wobbrock & Myers, 2006a)
- Real-time \((x, y)\) POG calculated as average of valid (validity code 0) left and right gaze points, smoothed over last 5 data points
- Eight participants (4 M, 4 F), age range [20-25], mean 21.8
- Participants asked to balance speed and accuracy during input (e.g., try character twice before moving on)
 - Apparatus was the Tobii ET-1750
 - Experimental design was within-subjects with one two-level factor for input technique (EyeWrite, Click-N-Type)
Data captured with TextTest and analyzed with StreamAnalyzer (Wobbrock & Myers, 2006a)

Real-time \((x, y)\) POG calculated as average of valid (validity code 0) left and right gaze points, smoothed over last 5 data points

Eight participants (4 M, 4 F), age range [20-25], mean 21.8

Participants asked to balance speed and accuracy during input (e.g., try character twice before moving on)

Apparatus was the Tobii ET-1750

Experimental design was within-subjects with one two-level factor for input technique (EyeWrite, Click-N-Type)
Experimental Details

- Data captured with TextTest and analyzed with StreamAnalyzer (Wobbrock & Myers, 2006a)
- Real-time \((x, y)\) POG calculated as average of valid (validity code 0) left and right gaze points, smoothed over last 5 data points
- Eight participants (4 M, 4 F), age range [20-25], mean 21.8
- Participants asked to balance speed and accuracy during input (e.g., try character twice before moving on)
- Apparatus was the Tobii ET-1750
- Experimental design was within-subjects with one two-level factor for input technique (EyeWrite, Click-N-Type)
Speed

- **Speed measured as words per minute**
- Input technique as well as session used as fixed factors in 2-way repeated measures ANOVA (with subject as random factor; see Baron and Li (2007) for examples in R)
- Over last 14 sessions, average speed for EyeWrite was 4.87 wpm and 7.03 for Click-N-Type ($F(1,189) = 113.42, p < 0.01$)
- Session also significant ($F(13,189) = 7.52, p < 0.01$)
- Each method improved about equally, with no technique \times session interaction ($F(13,189) = 0.74, p = 0.74$, n.s.)
Speed

- Speed measured as words per minute
- Input technique as well as session used as fixed factors in 2-way repeated measures ANOVA (with subject as random factor; see Baron and Li (2007) for examples in R)
- Over last 14 sessions, average speed for EyeWrite was 4.87 wpm and 7.03 for Click-N-Type ($F(1,189) = 113.42, p < 0.01$)
- Session also significant ($F(13,189) = 7.52, p < 0.01$)
- Each method improved about equally, with no technique × session interaction ($F(13,189) = 0.74, p = 0.74, n.s.$)
Speed measured as words per minute
Input technique as well as session used as fixed factors in 2-way repeated measures ANOVA (with subject as random factor; see Baron and Li (2007) for examples in R)
Over last 14 sessions, average speed for EyeWrite was 4.87 wpm and 7.03 for Click-N-Type ($F(1,189) = 113.42, p < 0.01$)
Session also significant ($F(13,189) = 7.52, p < 0.01$)
Each method improved about equally, with no technique \times session interaction ($F(13,189) = 0.74, p = 0.74, \text{n.s.}$)
Speed

- Speed measured as words per minute
- Input technique as well as session used as fixed factors in 2-way repeated measures ANOVA (with subject as random factor; see Baron and Li (2007) for examples in R)
- Over last 14 sessions, average speed for EyeWrite was 4.87 wpm and 7.03 for Click-N-Type ($F(1,189) = 113.42, p < 0.01$)
- Session also significant ($F(13,189) = 7.52, p < 0.01$)
- Each method improved about equally, with no technique \times session interaction ($F(13,189) = 0.74, p = 0.74$, n.s.)
Speed measured as words per minute
Input technique as well as session used as fixed factors in 2-way repeated measures ANOVA (with subject as random factor; see Baron and Li (2007) for examples in R)
Over last 14 sessions, average speed for EyeWrite was 4.87 wpm and 7.03 for Click-N-Type \((F(1,189) = 113.42, p < 0.01)\)
Session also significant \((F(13,189) = 7.52, p < 0.01)\)
Each method improved about equally, with no technique \(\times\) session interaction \((F(13,189) = 0.74, p = 0.74, \text{n.s.})\)
Accuracy: Uncorrected Errors

- Uncorrected errors are ones left in final text entry
- They are precisely at odds with speed
- Over last 14 sessions, average uncorrected error rate for EyeWrite was 2.21% and 4.62% for Click-N-Type ($F(1,189) = 3.83$, $p = 0.05$)
- Effect is seen mainly in the first 5 sessions; effect no longer significant over last 9 sessions
Accuracy: Uncorrected Errors

- Uncorrected errors are ones left in final text entry
- They are precisely at odds with speed
- Over last 14 sessions, average uncorrected error rate for EyeWrite was 2.21% and 4.62% for Click-N-Type ($F(1,189) = 3.83, p = 0.05$)
- Effect is seen mainly in the first 5 sessions; effect no longer significant over last 9 sessions
Accuracy: Uncorrected Errors

- Uncorrected errors are ones left in final text entry
- They are precisely at odds with speed
- Over last 14 sessions, average uncorrected error rate for EyeWrite was 2.21% and 4.62% for Click-N-Type ($F(1,189) = 3.83, p = 0.05$)
- Effect is seen mainly in the first 5 sessions; effect no longer significant over last 9 sessions
Accuracy: Uncorrected Errors

- Uncorrected errors are ones left in final text entry
- They are precisely at odds with speed
- Over last 14 sessions, average uncorrected error rate for EyeWrite was 2.21% and 4.62% for Click-N-Type \((F(1,189) = 3.83, p = 0.05)\)
- Effect is seen mainly in the first 5 sessions; effect no longer significant over last 9 sessions
Corrected errors are made and corrected during entry
- Corrected error rate reflects extent of method being error-prone
- Over last 14 sessions, average corrected error rate for EyeWrite was 10.05% and 9.54% for Click-N-Type ($F(1,189) = 0.42$, n.s.)
- Effect balanced over 14 sessions, crossing over midway
- During sessions 2-6, effect in favor of Click-N-Type, switching to EyeWrite over sessions 7-15
Accuracy: Corrected Errors

- Corrected errors are made and corrected during entry
- Corrected error rate reflects extent of method being error-prone
- Over last 14 sessions, average corrected error rate for EyeWrite was 10.05% and 9.54% for Click-N-Type ($F(1,189) = 0.42$, n.s.)
- Effect balanced over 14 sessions, crossing over midway
- During sessions 2-6, effect in favor of Click-N-Type, switching to EyeWrite over sessions 7-15

![Corrected Error Rate Chart](chart.png)

Wobbrook et al. (UoW/Clemson)
Accuracy: Corrected Errors

- Corrected errors are made and corrected during entry
- Corrected error rate reflects extent of method being error-prone
- Over last 14 sessions, average corrected error rate for EyeWrite was 10.05% and 9.54% for Click-N-Type \(F(1,189) = 0.42 \), n.s.
- Effect balanced over 14 sessions, crossing over midway
- During sessions 2-6, effect in favor of Click-N-Type, switching to EyeWrite over sessions 7-15
Corrected errors are made and corrected during entry
Corrected error rate reflects extent of method being error-prone
Over last 14 sessions, average corrected error rate for EyeWrite was 10.05% and 9.54% for Click-N-Type ($F(1,189) = 0.42, \text{n.s.}$)
Effect balanced over 14 sessions, crossing over midway
During sessions 2-6, effect in favor of Click-N-Type, switching to EyeWrite over sessions 7-15
Accuracy: Corrected Errors

- Corrected errors are made and corrected during entry
- Corrected error rate reflects extent of method being error-prone
- Over last 14 sessions, average corrected error rate for EyeWrite was 10.05% and 9.54% for Click-N-Type ($F(1,189) = 0.42$, n.s.)
- Effect balanced over 14 sessions, crossing over midway
- During sessions 2-6, effect in favor of Click-N-Type, switching to EyeWrite over sessions 7-15
Subjective Impressions

- Participants noted significant preferences for EyeWrite in terms of ease of use \((z = 49.00, p < .001)\), perceived speed \((z = 47.00, p < .01)\), and fatigue \((z = -51.00, p < .001)\).
- Perceived ease of use and speed increased over sessions for both methods while perceived (ocular) fatigue decreased.
- EyeWrite was thought more difficult only during 1st session.
- It is remarkable that a gestural alphabet would be so quickly learned and thought as easier to use than an on-screen keyboard.
Subjective Impressions

- Participants noted significant preferences for EyeWrite in terms of ease of use ($z = 49.00, p < .001$), perceived speed ($z = 47.00, p < .01$), and fatigue ($z = -51.00, p < .001$).
- Perceived ease of use and speed increased over sessions for both methods while perceived (ocular) fatigue decreased.
- EyeWrite was thought more difficult only during 1st session.
- It is remarkable that a gestural alphabet would be so quickly learned and thought as easier to use than an on-screen keyboard.
Subjective Impressions

- Participants noted significant preferences for EyeWrite in terms of ease of use ($z = 49.00, p < .001$), perceived speed ($z = 47.00, p < .01$), and fatigue ($z = -51.00, p < .001$).
- Perceived ease of use and speed increased over sessions for both methods while perceived (ocular) fatigue decreased.
- EyeWrite was thought more difficult only during 1st session.
- It is remarkable that a gestural alphabet would be so quickly learned and thought as easier to use than an on-screen keyboard.

![Graphs showing perceived speed, ease of use, and fatigue over sessions for keyboard and EyeWrite.](image-url)
Subjective Impressions

- Participants noted significant preferences for EyeWrite in terms of ease of use ($z = 49.00, p < .001$), perceived speed ($z = 47.00, p < .01$), and fatigue ($z = -51.00, p < .001$).
- Perceived ease of use and speed increased over sessions for both methods while perceived (ocular) fatigue decreased.
- EyeWrite was thought more difficult only during the 1st session.
- It is remarkable that a gestural alphabet would be so quickly learned and thought as easier to use than an on-screen keyboard.
Discussion

- Click-N-Type is faster than EyeWrite, at the expense of accuracy
- Thus, a speed-accuracy tradeoff is observed
- It seems that once familiar with gestures, participants were more willing to correct errors with EyeWrite than with Click-N-Type
- It is plausible they did so because they perceived EyeWrite the faster input modality even though it was not
- EyeWrite’s small screen footprint may be an advantage over off-screen targets due to smaller saccade requirement
- Eye-typing may not necessarily the best application of EyeWrite
- Other applications may include web browsing, as per Moyle and Cockburn’s (2005) study showing 11%–18% speed increase over mouse gestures (on certain tasks)
Discussion

- Click-N-Type is faster than EyeWrite, at the expense of accuracy
- Thus, a speed-accuracy tradeoff is observed
- It seems that once familiar with gestures, participants were more willing to correct errors with EyeWrite than with Click-N-Type
- It is plausible they did so because they perceived EyeWrite the faster input modality even though it was not
- EyeWrite’s small screen footprint may be an advantage over off-screen targets due to smaller saccade requirement
- Eye-typing may not necessarily the best application of EyeWrite
- Other applications may include web browsing, as per Moyle and Cockburn’s (2005) study showing 11%–18% speed increase over mouse gestures (on certain tasks)
Discussion

- Click-N-Type is faster than EyeWrite, at the expense of accuracy.
- Thus, a speed-accuracy tradeoff is observed.
- It seems that once familiar with gestures, participants were more willing to correct errors with EyeWrite than with Click-N-Type.
- It is plausible they did so because they perceived EyeWrite the faster input modality even though it was not.
- EyeWrite’s small screen footprint may be an advantage over off-screen targets due to smaller saccade requirement.
- Eye-typing may not necessarily the best application of EyeWrite.
- Other applications may include web browsing, as per Moyle and Cockburn’s (2005) study showing 11%–18% speed increase over mouse gestures (on certain tasks).
Discussion

- Click-N-Type is faster than EyeWrite, at the expense of accuracy.
- Thus, a speed-accuracy tradeoff is observed.
- It seems that once familiar with gestures, participants were more willing to correct errors with EyeWrite than with Click-N-Type.
- It is plausible they did so because they perceived EyeWrite the faster input modality even though it was not.
- EyeWrite’s small screen footprint may be an advantage over off-screen targets due to smaller saccade requirement.
- Eye-typing may not necessarily the best application of EyeWrite.
- Other applications may include web browsing, as per Moyle and Cockburn’s (2005) study showing 11%–18% speed increase over mouse gestures (on certain tasks).
Click-N-Type is faster than EyeWrite, at the expense of accuracy. Thus, a speed-accuracy tradeoff is observed. It seems that once familiar with gestures, participants were more willing to correct errors with EyeWrite than with Click-N-Type. It is plausible they did so because they perceived EyeWrite the faster input modality even though it was not. EyeWrite’s small screen footprint may be an advantage over off-screen targets due to smaller saccade requirement. Eye-typing may not necessarily the best application of EyeWrite. Other applications may include web browsing, as per Moyle and Cockburn’s (2005) study showing 11%–18% speed increase over mouse gestures (on certain tasks).
Discussion

- Click-N-Type is faster than EyeWrite, at the expense of accuracy.
- Thus, a speed-accuracy tradeoff is observed.
- It seems that once familiar with gestures, participants were more willing to correct errors with EyeWrite than with Click-N-Type.
- It is plausible they did so because they perceived EyeWrite the faster input modality even though it was not.
- EyeWrite’s small screen footprint may be an advantage over off-screen targets due to smaller saccade requirement.
- Eye-typing may not necessarily the best application of EyeWrite.
- Other applications may include web browsing, as per Moyle and Cockburn’s (2005) study showing 11%–18% speed increase over mouse gestures (on certain tasks).
Discussion

- Click-N-Type is faster than EyeWrite, at the expense of accuracy
- Thus, a speed-accuracy tradeoff is observed
- It seems that once familiar with gestures, participants were more willing to correct errors with EyeWrite than with Click-N-Type
- It is plausible they did so because they perceived EyeWrite the faster input modality even though it was not
- EyeWrite’s small screen footprint may be an advantage over off-screen targets due to smaller saccade requirement
- Eye-typing may not necessarily the best application of EyeWrite
- Other applications may include web browsing, as per Moyle and Cockburn’s (2005) study showing 11%–18% speed increase over mouse gestures (on certain tasks)
Questions

- Thank you
- Questions?
Questions

- Thank you
- Questions?
For Further Reading I

For Further Reading II

