
LCdr. Michael Shumberger, USN (ret), Dr. Andrew Duchowski, and Mr. Kevin Charlow

Human Factors Engineering in Command, Control &
Intelligence (C2I) User Interface Development Processes:

Use of Eye Tracking Methodology

ABSTRACT
The Space and Naval Systems Center Charleston
(SSC-C) engineers and supports warfighter
focused Command, Control and Intelligence
(C2I) applications through continuous process
and product improvement. This paper discusses
implementing the Usability Engineering Life-
Cycle (UELC) [Mayhew] for C2I software
development at SSC-C. Human Factors
concepts, as they relate to software
development, are briefly reviewed with
references to international standards. Following
the discussion of general HFE concepts, specific
User-Centered Design (UCD) tasks and metrics
are introduced into the SSC-C Software
Development Process. Lastly, we discuss the use
of eye tracking methodology in the Software
Development Process, as applied in the context
of UCD as an instantiation of a Human Factors
Engineering (HFE) process.

1. INTRODUCTION
The Space and Naval Systems Center Charleston
(SSC-C) is responsible for providing
engineering support to Navy, Department of
Defense (DoD), and other government agencies.
SSC-C’s mission is to “… engineer, deliver, and
support fully integrated, interoperable
information technology systems, through
dedicated warfighter focus, professional
employee development, industry partnership,
and continuous process and product
improvement.” As such, SSC-C performs
acquisition, systems engineering, software
engineering, and security engineering functions
in accordance with the Defense Acquisition
System Directive, 5000.1 and the Operation of
the Defense Acquisition System Instruction,
5000.2.

Best industry practices indicate that the optimal
approach to developing quality, cost effective
system support is through use of rigorous,
disciplined development processes.
Accordingly, SSC-C has defined a Software
Development Process that combines the
processes and activities of international standard
ISO/IEC 12207, Software Life-Cycle Processes
with the best practices of Systems Engineering
Institute’s (SEI) Capability Maturity Model®
Integration (CMMI®) for Systems Engineering
and Software Engineering, Version 1.1, Staged
Representation.

This paper discusses implementing the Usability
Engineering Life-Cycle (UELC) [Mayhew] for
software development at SSC-C. Human Factors
concepts, as they relate to software development
are briefly reviewed with references to the
ISO/IEC 9126 and ISO/IEC 9241-11 standards.
Following the discussion of general HFE
concepts, specific User-Centered Design (UCD)
tasks and metrics are introduced into the SSC-C
Software Development Process. Lastly, we
discuss the use of eye tracking methodology in
the Software Development Process, as applied in
the context of UCD as an instantiation of a
Human Factors Engineering (HFE) process.

2. PURPOSE
Where practicable and cost effective, system
designs shall minimize or eliminate system
characteristics that require excessive cognitive,
physical, or sensory skills; entail extensive
training or workload-intensive tasks; result in
mission-critical errors; or produce safety or
health hazards. The purpose of the Human
Factors Engineering (HFE) Process Model for
Software Development is to assist the Project
Engineer by ensuring that human factors
engineering/cognitive engineering is employed

during systems engineering over the life of the
program to provide for effective human-machine
interfaces and to meet Human-Systems
Integration (HSI) requirements. The HFE
processes allow flexibility while clearly defining
activities that are required for process discipline,
consistency, and management insight. These
activities, as supported by international
standards and accepted practices, shape a new
engineering field at the crossroads of software
engineering and human-computer interaction,
the field of Usability Engineering (UE).

At the core of UE practices lies iterative
evaluation of the software being developed and
conducted throughout the life of the software
system. Evaluation of the system depends on
qualitative and quantitative metrics obtained
during testing, performed throughout the
software design process. This is a key point: if
user feedback is obtained only at the end of the
development process, e.g., upon delivery, it is
likely that a great deal of effort may be wasted if
intended users are not satisfied with the
delivered software product. UE thus attempts to
ensure user satisfaction, along with software
Compliance (to standards), Operability,
Understandability, Learnability, and
Attractiveness (COULA attributes) by requiring
user involvement in software quality evaluation
at early stages of the process. Since the software
product under development will not be complete
and available for full testing at the outset, UE
relies on early conceptual renditions of the
product prior to its full implementation. Such
early renditions may consist of pencil-and-paper
sketches of the User Interface (UI), early UI
mock-ups, or early functioning prototypes of the
UI.

UE practices are not without cost, however. In
general, evaluation of the UI at any stage
requires effort. Effort may be needed to endow
the software with additional functionality (e.g.,
recording of user actions, eye movements,
and/or UI events), development of prototypical
UI components, and performance of formal
usability tests (i.e., human subject experiments).
Besides additional potential coding effort,
additional knowledge of experimental design
and statistical analysis may be required. Hence,
UE practices generally require addition of

considerable effort in the development process,
particularly during early stages of the process,
specifically during design phases. However, the
expected benefit of adoption of UE practices is
greater user satisfaction and widespread
adoption of the eventual software product.

A significant advantage obtained through UE
can lead to evaluation of the Software
Development Process at CMMI Process
Maturity Level 4. A capability level 4 process is
a quantitatively managed defined process that is
controlled using statistical and other quantitative
techniques. In general, UE involves three global
strategies [Mayhew]:

• Early focus on users and tasks

• Empirical measurement (software
evaluation)

• Iterative design

Usability is a measurable characteristic of a
product user interface that is present to a greater
or lesser degree. To achieve usability, software
design needs to take into account and be tailored
around a number of factors, including:

• Cognitive, perceptual, and motor capabilities
and constraints of intended users

• Special and unique characteristics of the
intended users

• Unique characteristics of the users’ physical
and social work environment

• Unique characteristics and requirements of
users’ tasks supported by the software

• Unique capabilities and constraints of the
chosen software and/or hardware and platform

Usability Engineering is a discipline that
provides structured methods for achieving
usability with roots in several disciplines
including cognitive psychology, experimental
psychology, ethnography, and software
engineering. Cognitive psychology is the study
of human perception (vision, hearing, etc.) and
cognition (memory, learning, reasoning, etc.).
UE draws knowledge about these aspects of
human information processing and applies it to

software design. Basing software design on this
knowledge leads to software whose functionality
is intuitive (understandability), software that is
easier to learn (learnability), easier to use
(operability), visually and functionally
appealing (attractiveness). Experimental
psychology uses empirical methods to measure
human behavior. UE draws on these methods to
measure user performance and satisfaction with
the software interface. Software engineering
defines application requirements, goals, and
iterative testing cycles until goals are met.
Basing software design on this methodology
leads to software designed under an engineering-
like process and software that is compliant
(compliancy) with the guidelines and standards
identified by the process.

3. USABILITY ENGINEERING
PROCESSES AND STANDARDS
It has been observed that the user interface is
often the single most important factor in the
success of a software project. It has been
estimated that between approximately 50% and
80% of all source code developed is concerned
with the human-computer interface. [Avouris]
There are a wide variety of development and
evaluation techniques that have been shown to
lead to more usable software applications.

Figure 1: ISO 9126 Quality Life Cycle Model

ISO/IEC Standard 9126 relates to software
quality and development of measures as they
pertain to the context of use of the software. At
the same time many practical techniques for
measuring usability have been proposed in the
interactive software development lifecycle.
Usability was originally related to making
systems easy to use and easy to learn, as well as
supporting the users during their interaction with
computer equipment. There have been however
many attempts to relate the term to more
attributes and metrics.

Figure 2: Usability as an Attribute of Software
Quality According to ISO 9126. [Avouris]

In ISO/IEC 9241-11 draft standard Usability is
defined as the "extent to which a product can be
used with effectiveness, efficiency and
satisfaction in a specified context of use" (ISO
9241). [Avouris] The attributes which a product
requires for usability depend on the nature of the
user, task, and environment. A product has
therefore no intrinsic usability, only a capability
to be used in a particular context. Usability
cannot be assessed by studying a product in
isolation. There are three potential ways in
which the usability of a software product could
be measured, according to (ISO 9241):

• By analysis of the features of the product,
required for a particular context of use. Usability
could be measured by assessing the product
features required in a particular context,
meaning, for example, how particular interface
features are used during specific tasks.

• By analysis of the process of interaction.
Usability could be measured by modeling the
interaction between a user carrying out a task
with a product. This approach leads to cognitive
modeling, providing insights into a user’s
cognitive processes during software use.

• By analyzing the effectiveness and
efficiency, which results from use of the product
in a particular context, and measuring the
satisfaction of the users of the product. These are
direct measures of the attributes of usability. If a
product is more usable in a particular context,
usability measures will be better (see Figure 1).

According to standard ISO/IEC 9126, usability
is an attribute of software quality. According to
this standard, the term is used to refer to the
capability of a product to be used easily. This

corresponds with the definition of usability as a
software quality: "a set of attributes of software
which bear on the effort needed for use and on
the individual assessment of such use by a stated
or implied set of users". This is related to the
capability of the software product to be
understood, learned, used and be attractive to the
user, when used under specified conditions. It is
observed that there is an inter-relation between
some aspects of product functionality, reliability
and efficiency that will also affect usability, but
for the purposes of ISO/IEC 9126 are not
classified as usability. It is also observed that
users may include operators, end users and
indirect users who are under the influence of or
dependent on the use of the software. Usability
should address all of the different user
environments that the software may affect,
which may include preparation for usage and
evaluation of results.

Usability is further analyzed in standard
ISO/IEC 9126 in Understandability,
Learnability, Operability, Attractiveness and
Compliance. These are briefly described in the
following:

• Understandability is defined as the
capability of the software product to enable the
user to understand whether the software is
suitable, and how it can be used for particular
tasks and conditions of use. This attribute will
depend on the documentation and initial
impressions given by the software.

• Learnability is the capability of the software
product to enable the user to learn its
application.

• Operability is the capability of the software
product to enable the user to operate and control
it. Aspects of suitability, changeability,
adaptability and installability may affect
operability. Also this attribute corresponds to
controllability, error tolerance and conformity
with user expectations as defined in ISO 9241-
10. For a system, which is operated by a user,
the combination of functionality, reliability,
usability and efficiency can be measured
externally by quality in use.

• Attractiveness is the capability of the
software product to be attractive to the user. This
refers to attributes of the software intended to
make the software more attractive to the user,
such as the use of color and the nature of the
graphical design.

• Compliance to standards and guidelines
refers to the capability of the software product to
adhere to standards, conventions, style guides or
regulations relating to usability.

In Figure 3 the key quality factors according to
ISO 9126 are shown.

Figure 3: Usability Factors

4. USABILITY ENGINEERING
METRICS
Many attempts have been reported to further
analyze software usability in more practical
measurable terms. Usability has been analyzed
in terms of: easiness and speed of learning of
system use, efficiency to use, easiness to
remember system use after certain period of
time, reduced number of user errors and easy
recovery from them, subjective satisfaction of
users. [Nielsen] While the emphasis in SSC-C
UE techniques is on ease of measure of usability
factors, some provision is made to accommodate
various classes of users, like novice (easiness
and speed of learning), occasional users
(remember use) and expert users (efficiency of
use). Many frameworks have been proposed to
measure usability according to these dimensions
and evaluate interactive software systems. Also
many attempts have been made to relate these

aspects with system performance. For instance,
measure of performance can be considered the
measure of improved learning, e.g., better
understanding by the user of the task and better
relation of the task to the available tools and
operators. An overview of techniques to measure
usability-related factors is included in the
following sections.

4.1 Inspection Methods
Usability inspection methods are evaluation
methods involving usability experts examining
the software UI. Many inspection methods can
be based on specifications that have not
necessarily been implemented yet, so they can
be performed early in the software lifecycle,
though some methods also address issues like
the overall system usability concerning the final
prototype. The main methods of this category
are:

• Heuristic evaluation involves usability
specialists who judge whether each dialogue
element follows established usability principles
(the "heuristics").

• Cognitive walkthrough uses a detailed
procedure to simulate task execution at each step
through the dialogue, determining if the
simulated user's goals and memory content can
be assumed to lead to the next correct action.

• Pluralistic walkthrough uses group meetings
where students, developers, and usability experts
step through a learning scenario, discussing each
dialogue element.

• Feature inspection lists sequences of
features used to accomplish typical tasks, checks
for long sequences, cumbersome steps, steps that
would not be natural for students to try, and
steps that require extensive knowledge/
experience in order to assess a proposed feature
set.

• Standards inspection, during which experts
inspect the interface for compliance with certain
standards. This can involve user interface
standards as well as domain-specific software
standards, departmental standards if they exist,
etc.

• Guidelines checklists help ensure that
usability principles will be considered in a
design. Usually, checklists are used in
conjunction with a usability inspection method.
The checklist gives the inspectors a basis by
which to compare the product.

4.2 Testing Methods
Tests measure system performance against pre-
defined criteria. These criteria are defined
according to the usability attributes, suggested
by the usability standards and empirical metrics
discussed in the previous section. Typically
individual users are observed performing
specific tasks with the system. Data are
collected on measured performance. For
example, time required to complete the task or
number of errors made. Selection of appropriate
users and representative tasks is essential. Also
a properly designed and organized usability
laboratory is important. The most widely
accepted usability testing techniques are:

• Thinking Aloud Protocol is a technique
widely used during usability testing. During the
course of a test, the participant is asked to
vocalize his/her thoughts, feelings, and opinions
while interacting with the software, performing a
task - part of a user scenario. This technique
may be particularly difficult to use with some
user groups, like young students, who are
distracted by the process, however it provides a
valuable insight to user cognitive processes,
while interacting with the software.

• Co-discovery is a type of usability testing
where a group of users attempt to perform tasks
together while being observed, simulating
typical work process, where most people have
someone else available for help. This can be
particularly suitable in many work scenarios.

• Performance measurement. Some usability
tests are targeted at determining hard,
quantitative data. Most of the time this data is in
the form of performance metrics, e.g., required
time to execute specific tasks. The ISO 9241
promotes in particular a usability evaluation
approach based on measured performance of
pre-determined usability metrics.

• In-field, or ethnographic studies concern
observation of the users performing their tasks in
their usual environment of study/work. These
techniques have the advantage of the natural
user performance and group interaction however
they present limitations in terms of measuring
performance, since the necessary testing
equipment cannot be used in a typical
workplace.

4.3 Inquiry Methods
Inquiry methods (based on questionnaire and
interview protocols) prompt the users by asking
direct questions about the system. The users’
ability (or lack of) to answer questions can help
evaluators decide about parts of the system
interface that present difficulties for the users.

While inquiry methods can be used to measure
various usability attributes, their most common
use relates to measurement of user satisfaction.
A known technique for measuring user
satisfaction is through SUMI, the Software
Usability Measurement Inventory, developed by
a research group of the University College Cork,
to measure user satisfaction, and hence assess
user perceived software quality. SUMI is an
internationally standardized 50-item
questionnaire, available in several languages. It
takes a maximum of 10 minutes to complete and
needs only small user sample sizes.

The results that SUMI provides are based on an
extensive standardization database built from
data of various software products such as word
processors, spreadsheets, CAD packages,
communications programs etc. SUMI results
have been shown to be reliable, and to
discriminate between different kinds of software
products. In particular, the SUMI database
allows evaluation of a product against what is
considered to be the prevailing market norm,
and the statistical background to SUMI enables
the analyst to pinpoint quite precisely the
relative standing of the product being assessed
to the market as a whole. SUMI results are
analyzed into 5 sub-scales: Affect, Efficiency,
Helpfulness, Control, and Learnability. These
scales have been derived by an iterative process
of factor analysis of large databases, and present

a view of subjective usability for which there is
a high level of empirical support.

5. USABILITY ENGINEERING
WITHIN THE SOFTWARE
DEVELOPMENT PROCESS
For inclusion of selected relevant UE techniques
(testing methods), an appropriate Software
Development Life-Cycle must be followed
during the Software Development Process. The
Usability Engineering Life-Cycle (UELC)
[Mayhew], composed of tasks given in Figure 4,
provides a suitable alternative to the traditional
life-cycle models (waterfall, incremental,
evolutionary, and spiral). Thus the UELC
satisfies the original goal of flexibility specified
in the SSC-C SDP Manual while simultaneously
providing HFE principles as an option to the
process.

Figure 4: Usability Engineering Life-Cycle
[Mayhew]

The decision to apply HFE principles, by virtue
of selection of the UELC, must be made early, at
Process Implementation. Following selection of
the UELC, this particular life-cycle model
immediately suggests application of related HFE
methods and metrics at several task levels
(including but not limiting to design, validation,
and verification).

5.1 Process Implementation
During the Process Implementation activity, if
HFE is to be applied to the Software
Development Process, selection of the UELC
must be made here along with appropriate

standards (ISO/IEC 9126 and ISO 9241). UELC
tasks can then be mapped to the Software
Development Process if the development
process activities are considered as follows:

• Requirement Analysis:

o System Requirements Analysis

o System Architectural Design

o Software Requirements Analysis

o Software Architectural Design

• Design/Test/Development:

o Software Detailed Design

o Software Coding and Testing

o Software Integration

o Software Qualification Testing

o System Integration

o System Qualification Testing

• Installation:

o Software Installation

o Software Acceptance Support

System Requirements Analysis
Following the UELC, the following tasks are
specified during System Requirements Analysis:

User Profiles: The purpose of this task is to
establish user characteristics around which the
User Interface (UI) design must be tailored.
This is accomplished via questionnaires
distributed to users and via interviews with
stakeholders. Results of this task are
documented in questionnaire/review forms, a
data summary, and reported analysis and
conclusions.

Contextual Task Analysis: The purpose of this
task is to devise a user-centered model of work
as it is currently performed and to extract from
this the usability requirements for the product.
This can be accomplished by conducting
contextual observations or interviews, by
brainstorming task scenarios, or other
techniques. A task analysis document is issued
at the end of this task.

Software Requirements Analysis
Usability Goals Setting: The purpose of this task
is to establish qualitative and quantitative
usability goals that will drive UI design. A
subset of high-priority goals may be quantified
to be used in usability testing as acceptance
criteria. Both qualitative and quantitative
usability goals are documented as a result of this
task.

Software Architectural Design
Platform Capabilities/Constraints: Establish the
capabilities and constraints of the technology
platform, which will limit UI design alternatives.
User Interface capabilities and constraints are
studied with respect to the chosen technology
platform and these are documented as a result.

Software Detailed Design
If HFE is to be incorporated into the Software
Development process, this activity requires
expansion at the three design levels of the
UELC. Level I is concerned with the design of a
Conceptual Model (CM) of the intended UI.
Level II is concerned with the design of Screen
Design Standards (SDS) for the intended UI.
Level III is concerned with a Detailed UI Design
(DUID). It must be noted that each level
requires evaluation of each of the CM, SDS, and
DUID. This evaluation, both qualitative and
quantitative, is critical for adoption of HFE
principals.

Software Detailed Design Level I

Work Reengineering: This subtask reengineers
the current user work model for the purposes of
realizing the potential of automation and
effective support of mission-critical goals, while
minimizing retraining and maximizing
operability. The reengineered work model,
resulting from this task, can be validated with
the card sorting technique or with Task Scenario
walkthroughs.

Conceptual Model Design: A coherent and rule-
based, high-level UI design framework is
established that sets the stage for design at lower
levels. The resultant Conceptual Model Design
(CMD) may be adapted from platform style
guides (e.g., MS Windows, Apple Macintosh).

Conceptual Mock-ups: These preliminary mock-
ups, possibly as rough as paper-and-pencil
mock-ups or running prototypes support
evaluation, refinement, and validation of the
CMD.

Iterative Evaluation of Conceptual Model: This
tasks aims to formally evaluate, refine, and
validate the CMD through stages of evaluation
plan, recorded evaluation data, analysis of data,
and results in reporting of conclusions and
recommendations for design changes.

Software Detailed Design Level II

Screen Design Standards: The objective of this
task is to establish and define a set of design
standards that, along with the CMD, will set the
stage for Detailed User Interface Design. SDS
may be adapted from platform style guides (e.g.,
MS Windows, Apple Macintosh).

Screen Design Standards Prototyping: Running
prototypes representing Screen Design
Standards, resulting from this task, support the
evaluation, refinement, and validation of the
SDS.

Iterative SDS Evaluation: This tasks aims to
formally evaluate, refine, and validate the SDS
through stages of evaluation plan, recorded
evaluation data, analysis of data, and results in
reporting of conclusions and recommendations
for design changes.

Style Guide Development: Documentation of the
CMD, the SDS, and the output from all the
Requirements Analysis tasks results in one,
evolving document, the Style Guide which
contains the final validated CMD and SDS as
well as the main results of all Requirements
Analysis tasks.

Software Detailed Design Level III

Detailed User Interface Design: Design the
complete, detailed UI, and provide the resultant
DUID specification. The Style Guide standards
are applied to design the UI at all levels of
functionality.

Iterative DUID Evaluation: Evaluate, refine, and
validate key subsets of the DUID through formal
usability testing or usability inspection methods
through stages of evaluation plan, recorded

evaluation data, analysis of data. The DUID
evaluation tasks results conclusions and
recommendations for design changes.

Software Qualification Testing
User Feedback: Obtain usability data, applying
one (or more) of a variety of objective
evaluation techniques to obtain feedback from
actual experienced users of the developed
software. Available techniques include formal
usability testing, questionnaires, interviews,
focus groups, and usage studies. Results are fed
back into the UI design for later releases of this
or related software.

System Qualification Testing
User Feedback: Obtain usability data, applying
one (or more) of a variety of objective
evaluation techniques to obtain feedback from
actual experienced users of the developed
software. Available techniques include formal
usability testing, questionnaires, interviews,
focus groups, and usage studies. Results are fed
back into the UI design for later releases of this
or related software.

6. EYE TRACKING
There are a variety of techniques for carrying
out each UELC task. The Usability Engineering
(and hence HFE) tasks identified by the UELC
should be carried out in a particular order and
integrated within the existing software
development process. For any particular UELC
task, the usability practitioner (designer,
developer, tester) has a set of techniques to
choose from to accomplish the basic goals of
that task.

It should be stressed that the focus of the UELC
is evaluation. Evaluation can occur at each level
of the design/test/develop iterative cycle of the
UELC. As an example, at any evaluation stage
where an objective evaluation technique is
needed, eye tracking may be used to obtain
quantifiable metrics concerning users’ scanpaths
(see below) which offer insights into users’
cognitive processes. An example of a scanpath
is provided in Figure 5.

Figure 5: Example Eye Tracked Scanpath of a
User Viewing a UI.

Eye tracking, with the quantitative metrics of
number and duration of fixations as shown in
Figure 5, can be applied at any of the evaluation
stages to evaluate the software in terms of
general usability criteria, e.g., attractiveness,
operability, learnability, and understandability.
Of course eye tracking may not by itself fully
validate these criteria, however, depending on
the task, it may provide good quantitative data
supporting the criteria in certain cases. Other
techniques, e.g., Talk Aloud Protocol, may be
used as alternative techniques, or in concert with
eye tracking, or in combination with other
methods.

It should also be pointed out that application of
the UELC to the software development process
is flexible and adaptable. As shown in Figure 4,
depending on the constraints imposed on testing
(e.g., limited resources, equipment, time,
manpower), certain tasks can be omitted in the
UELC. For example, smaller projects might not
require the complete iterative cycles presented in
levels I and II of the UELC. Following the
dotted paths in the diagram, under certain
circumstances, it may be possible to jump from
Conceptual Model Design to Screen Design
Standards without creating CM mockups or
performing iterative CM or SDS evaluation.

Furthermore, for already completed projects, it
may be possible to apply a subset of the UELC
tasks by, for example, obtaining user feedback
through usability testing as suggested in the
Installation stage of the UELC.

Eye Movement indicators provide insight into
system failures or anomalies that are attributed
to operational causes rather than to hardware or
software discrepancies. Eye movements provide
a measure of the operational process (vs.
operational performance). Analysis of these
indicators identifies where system usability
could be improved. Examination of related
errors often identifies corrective actions to
reduce or eliminate the errors. For example, a
recurring operator error may be caused by an
error in an operations manual, difficulty reading
a display, or inadequate training, all of which
can be fixed after the problem is identified.

Eye movements should be analyzed to determine
if a specific type of interface component is too
complex or a specific function is not being
adequately taught. For example, scanpath, hot
spot, or visual area coverage plots may help
characterize the user interface components in
terms of its “visual complexity”, potentially
posing usability problems.

Eye movement recording is dependent on the
particular software product under investigation.
This is due to the variability of the product’s
display presentation (stimulus) and manner of
interaction. Examples may be graphical displays
of maps or static simulations of user interface
mock-ups (static images in both cases), web
pages, or arbitrary desktop applications. Several
COTS applications are available to record eye
movements over most forms of stimulus
displays, however, the granularity and control of
eye movement data will depend on the
synchronization available between the eye
tracking software (server to be precise) and the
application under investigation.

Visual Attention is an indicator of a user’s
distribution of visual attention over a user
interface. This indicator, in combination with
other usability indicators can help corroborate
and explain a user’s satisfaction (or
dissatisfaction) with operation of a user
interface. For example, combined with verbal
comments made by users during a Talk Aloud
protocol usability evaluation session, scanpaths
can resolve deictic references made by the user
(e.g., “I’m looking at this but I can’t figure out
what it’s supposed to do.”).

UI Visual Layout is an eye movement-related
indicator that can be used to supplement other
indicators of user effectiveness. The UI Visual
Layout indicator, as generated by aggregate eye
movement representations (visual area coverage)
may show which UI components were seen or
missed by the user(s). Using graphical
representations such as scanpaths, hot spots, or
area coverage provides insight into what the user
was attending to at any particular moment in
time. It may thus be possible to infer portions of
the UI that are frequently attended to, or
conversely, unattended (and hence
underutilized). Furthermore, comparison of this
indicator between users (between subjects
experimental design) may offer insights into
commonalities or discrepancies between
different user groups (e.g., experts vs. novices).

Cognitive Load is an eye movement
indicator that may facilitate estimation of
the user’s efficiency during operation of a
software product. Quantitative data
provided along with scanpaths, hot spots, or
area coverage (e.g., number of fixations,
fixation durations, direction of fixations,
etc.), if available, can lead to statistical
estimates of efficiency of the user. For
example, significant dwell time over
specific UI components may suggest
difficulty in understandability of the
component. Similarly, exceedingly long
fixations over such components may
indicate problems for operability and
learnability. Comparison of eye movements
between users (between subjects
experimental design) may provide more
powerful statistics in identification of such
visually and hence mentally demanding
components.

7. EYE MOVEMENTS:
ANALYSIS GUIDANCE AND
EXAMPLE

As an example of eye movement analysis, a user
task under investigation was performed while
operating the Marine Air-Ground Task Force

(MAGTF) Intelligence Collections Applications
(MICA) Command and Control Personal
Computer (C2PC) software component,
following the Software Acceptance Testing
specifications. Specifically, in this case SAT1-
033 “Add Named Areas of Interest (NAIs) to a
Requirement” was performed.

Usability metrics for this task were selected
from the Testing and Inquiry Methods specified
in the SSC-C Software Development Process
Manual [SSC-C DSWDPROC-MAN-1.2].
These metrics comprised a subset of measures
used to describe the SEE (Satisfaction,
Effectiveness, Efficiency) usability attributes of
the software system.

7.1 Testing methods
Performance measurement required obtaining
the following categorized measures, selected
from the PSM [PSM, Version 4.0b]:

• User Effectiveness (e.g., accuracy)

o User Interface (UI) Visual Layout
(Aggregate Eye Movements: Spatial
Distribution of Fixations)

• User Efficiency (e.g., speed)

o Cognitive Load (Eye Movements)

7.2 Inquiry methods
The chosen inquiry method, based on a usability
questionnaire, prompted the user by asking
direct questions about user’s satisfaction with
the system:

• User Satisfaction

Because a formal questionnaire was not
administered in the pilot evaluation, only
anecdotal observations can be made based on a
loose talk-aloud testing protocol.

7.3 Analysis
UE metrics observed during software operation
are related and in some cases dependent on each
other. In this case, usability evaluation of the
software product was prompted by verbal
remarks made by the subject during test.

7.3.1 User Satisfaction
The user indicated that considerable time was
spent on changing the application’s default
colors for identification of selected NAI regions
(e.g., boxes, rectangles placed on the map
displayed by C2PC).

Although informal, the frequency of
discretionary use indicator of user satisfaction
appeared to be too high leading to dissatisfaction
with this subtask. In effect, user impressions
suggested that performance of this particular
color-changing task interfered with the task’s
main objective (NAI identification).

7.3.2 User Effectiveness
The UI Visual Layout indicator suggests that a
disproportionately large number of fixations fell
on the NAI property dialog box and related color
palette dialog boxes during the course of the task
(see Figures 6 and 7).

7.3.3 User Efficiency
Cognitive load, as indicated by the proportion of
fixations on specific user interface features (in
this case the property box and color palette)
suggest that a significant amount of time was
devoted to these features (see Figure 8).
Because in this case this was not a subtask
directly related to the task objective, these
particular interface features can be seen as
distracting to the task at hand.

It must be emphasized that the data in this
instance (number of fixations atop the property
box and color palette) is confounded by the
presence of fixations atop interface regions
below the dialog box at times when the dialog
box was not visible.

Figure 6: Scanpaths indicating sequentially
fixated elements of the interface. Circles of a
larger diameter indicate relatively longer dwell
times. In this instance, telltale eye movement
patterns can be seen over the directory view and
relatively long fixations are evident over the color
property dialog box and color palette.

Figure 7: Hot spots with analyst-selected Areas of
Interest (AoIs) indicate aggregate fixations over
the interface. In this case, the property box and
color palette appear to be viewed heavily by the
user. NOTE: because these are aggregate views of
fixations over a dynamically changing interface, it
must be noted that the diagrams show fixations
atop “legitimate” regions of the interface, i.e., the
map surface below the property box. Due to the
program’s dynamic nature, it must be understood
that the property box was only in view for brief
periods of time.

Fixation count

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

pro
pe

rty
_b

ox
_o

n_
map

co
lor

_p
ale

tte

dir
ec

tor
y_

vie
w

men
u_

ba
r

top
_to

olb
ar

sid
e_

too
lba

r

bo
tto

m_to
olb

ar

AOI

Fi
xa

tio
n

co
un

t

NAI Definition

Return to menu

Figure 8: Fixation count comparison over selected
AOIs.

Recommendations from this preliminary
evaluation pilot test suggest that the color of
NAI regions (e.g., boxes, rectangles, etc. used to
represent them) should either be the appropriate
color (red in this case) by default, or should be
set via a suitable “Preferences” menu item by the
user a priori. That is, there should either be a
preference setting for NAI region colors, and/or
the Software Acceptance Test criteria should
include this setting.

Note that the above example is extremely
limited in scope. Anecdotal observations are
provided from a short test case performed by a
single user. No comparisons between users
were made and thus the above recommendations
are rather crude, at best. However, the above
example is illustrative of the quantitative
measurement potential of eye tracking
methodology.

8. CONCLUSION
Collecting data on usability attributes such as
satisfaction, effectiveness, and efficiency,
augments the software development process by
considering Human Factors during an iterative
design cycle. Usability Engineering (UE)
metrics generally consist of performance and
process measures related to the user. For
example, error timing may correspond to the
installation of new equipment or to changes in
the operational procedures. Appropriate uses of
an eye tracker may aid in the collection of
general UE performance metrics as well as
leading to insights about the user’s cognitive
processes during software use and evaluation.
In general, however, eye movement indicators
alone cannot provide a comprehensive analysis
of usability.

9. REFERENCES
Government Documents

• SSC-C Software Development Process
Manual

• SSC-C Measurement and Analysis Process
Manual

• SSC-C Process and Product Quality
Assurance Process Manual

• SSC-C Requirements Development Process
Manual

• SSC-C Validation Process Manual

• SSC-C Verification Process Manual

• CJCSI 3170.01B, Requirements Generation
System, Chairman of the Joint Chiefs of Staff

• SSC-C (CODE 60) Business Framework

Non-Government Documents

• Avouris, N. M., “An Introduction to
Software Usability”, Proc. 8th Panhellenic
Conference on Informatics, Nicosia, November
2002. URL:

• CMMI® for Systems Engineering and
Software Engineering (CMMI®-SE/SW,

Version 1.1), Staged Representation, January 11,
2002, Software Engineering Institute,
CMU/SEI-2002-TR-002

• Mayhew, Deborah J., The Usability
Engineering Lifecycle: A Practitioner’s
Handbook for User Interface Design, Academic
Press, 1999.

• Nielsen, J., Usability Engineering,
Academic Press, London, 1993.

• ISO 9001:2000, Quality systems - Models
for quality assurance in design, development,
production, installation and servicing

• Shebalin, Paul V., “Software Development
Standards and the DoD Program Manager,”
Defense Acquisition University, Acquisition
Review Quarterly, Summer 1994.

10. BIOGRAPHY
Michael Shumberger, LCDR USN (ret)

Mr. Shumberger is a Senior Systems Engineer
with Eagan McAllister & Associates Inc. and
provides direct support for SPAWARSYSCEN,
Charleston (SSCC). He has over 28 years
comprehensive DoD experience, with over nine
(9) years experience in systems engineering in
support of SPAWAR programs. He received his
M.Sc. Electrical Engineering from the Naval
Postgraduate School, a B.Sc. Chemistry and
B.A. Business Administration from the
University of Puget Sound. Additional training
& certifications include: Department of Defense
Acquisition Workforce Professional Program
Management Level II & Systems Planning,
Research, Development and Engineering Level
II, and Naval Engineering Duty Officer. Current
areas of research and engineering include
Human Factors Engineering (HFE),
Capability/Cost analysis for various Branches of
the Chief of Naval Operations, and modeling
and simulation architecture.

Andrew Duchowski, PhD

Dr. Duchowski is an associate professor of
Computer Science at Clemson University. He
received his B.Sc. ('90) and Ph.D. ('97) degrees
in Computer Science from Simon Fraser

University, Burnaby, Canada, and Texas A&M
University, College Station, TX, respectively.
His research and teaching interests include
visual attention and perception, eye movements,
computer vision, graphics, and virtual
environments. He joined the Computer Science
faculty at Clemson in January, 1998 and is
currently investigating gaze-contingent
perceptual graphics and collaborative virtual
reality systems.

Mr. Kevin Charlow

Mr. Charlow is the Enterprise Technologies
Manager in the Enterprise Systems Solutions
Division at Space and Naval Warfare Systems
Center (SPAWARSYSCEN), Charleston, SC.
He has a B.Sc. in Computer Engineering degree
from Clemson University and an MBA from
Webster University. He provides program
management and engineering support to the
Navy Modeling and Simulation Office (NMSO)
and the Office of Naval Research (ONR) in
areas of Verification, Validation and
Accreditation (VV&A); Live, Virtual and
Constructive M&S to support training and
experimentation; M&S standards and tools; and
human factors engineering.

