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This paper presents a novel 3D eye movement analysis algorithm for binocular eye tracking
within Virtual Reality. The user’s gaze direction, head position and orientation are tracked to
allow recording of the user’s fixations within the environment. While the linear signal anal-
ysis approach is itself not new, its application to eye movement analysis in three dimensions
advances traditional 2D approaches since it takes into account the 6 degrees of freedom of
head movements and is resolution independent. Results indicate that the 3D eye movement
analysis algorithm can successfully be used for analysis of visual process measures in Virtual
Reality. Process measures can not only corroborate performance measures, but can also lead
to discoveries of reasons for performance improvements. In particular, analysis of users’ eye
movements in VR can potentially lead to further insights into the underlying cognitive pro-
cesses of VR participants.

Background

A common goal of eye movement analysis is the detection
of fixations in the eye movement signal over the given stim-
ulus or within stimulus Regions Of Interest (ROIs). Most
techniques rely on the measurement of visual angle, where it
is often tacitly assumed the head is located at a fixed distance
to, and usually also perpendicular to, the stimulus screen.
Applicable signal analysis techniques can be grouped into
three broad categories: position-variance, velocity-based,
and ROI-based. A good classification of current techniques
is given by Salvucci and Goldberg (2000) (an earlier classi-
fication by Anliker (1976) is also relevant).

In position-variance schemes, the visual angle is used to
threshold the stationary portion of the signal (e.g., in terms of
position). For example, if gaze remains invariant in an area
subtending 2-5

�
visual angle for 300 ms, then this portion of

the signal is deemed a fixation. In velocity-based schemes,
the speed of successive data points is used to distinguish fixa-
tions from saccades (the fast, often ballistic, eye movements
used to reposition the fovea). The latter analysis is usually
accomplished by thresholding eye movement velocity, ex-
pressed in degrees visual angle per second. Anywhere the
signal exhibits fast velocity (above threshold), this portion
of the signal is deemed a saccade, and conversely, every-
where else, the signal can be considered a fixation (or some
other type of relatively slow eye movement such as smooth
pursuit). The velocity-based saccade detection method can
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therefore be used as a type of delineation scheme to find fix-
ations in the eye movement signal, and is adopted as the un-
derlying strategy for eye movement analysis in Virtual Re-
ality (VR). It should be noted that for identifying fixations
in raw eye movement data recorded at a fixed sampling rate
both position-variance and velocity-based schemes are virtu-
ally identical.

The traditional two-dimensional eye movement analysis
approach starts by measuring the visual angle of the object
under inspection between a pair (or more) of raw eye move-
ment data points in the time series (i.e., composed of a se-
quence of the so-called Point Of Regard, or POR, denoted
by

�
xi � yi � ). Given the distance between successive POR data

points, r ��� � xi � yi ��� � x j � y j � � , the visual angle, η, is calcu-
lated by the equation: η � 2tan � 1 � r 	 2D �
� where D is the
(perpendicular) distance from the eyes to the viewing plane,
as shown in Figure 1. The arctangent approach assumes that
D is measured along the line of sight, which is assumed to
be perpendicular to the viewing plane. In general, however,
the assumption of a perpendicular visual target plane does
not hold. This has a significant implication on the measure-
ment of visual angle, since the farther eye movements are
made away from the central axis, the smaller the visual an-
gle. Upon further inspection of Figure 1, the visual angle
corrected for this foreshortening effect is calculated as:

θ � β � α � tan � 1 r � d
D

� tan � 1 d
D
�

where d � r 	 2 is the distance of the POR center from the
projected central view axis. For large d (and constant r and
D), η  θ. That is, the traditional arctangent approach over-
estimates the visual angle at off-axis locations. An alternate
calculation of the corrected visual angle θ can be made di-
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Figure 1. 2D geometry.

rectly by examining the relationship between view vectors:

θ � cos � 1
�
P � C ��� � Q � C �

� � P � C � � � � Q � C � � �

where P, Q, and C define the three-dimensional ex-
tents of the POR and head center, respectively, e.g., P ��
d � 0 � D � and Q � �

d � r� 0 � D � if C defines the origin and gaze
is recorded along the horizontal viewing axis. The vector-
based approach forms the basis of our 3D eye movement
analysis.

The method of calculation of the visual angle notwith-
standing, eye movement analysis generally depends on the
size of fixated element r, which in turn is dependent on the
viewing distance D. Note that r and D, expressed in like units
(e.g., pixels or inches), are dependent on the resolution of the
screen on which the POR data was recorded. A conversion
factor is usually required to convert one measure to the other
(e.g., screen resolution in dots per inch (dpi) converting D
to pixels). The visual angle θ and the difference in times-
tamps ∆t between the POR data points allows velocity-based
analysis, since θ 	 ∆t gives eye movement velocity in degrees
visual angle per second.

We present a velocity-based eye movement analysis
algorithm in three dimensions, applicable to the three-
dimensional eye movement data recorded during immer-
sion in a Virtual Environment (VE) (Duchowski, Medlin,
Gramopadhye, Melloy, & Nair, 2001). Traditional 2D eye
movement analysis methods can be applied directly to raw
POR data in the eye tracker reference frame. As a result,
identified fixations could then be mapped to world coordi-
nates to locate fixated ROIs within the VE. We choose a dif-
ferent approach by mapping raw POR data to world coor-
dinates first, followed by eye movement analysis in three-

space. We favor this approach since the calculated gaze
points in three-space provide a composite three-dimensional
representation of both left and right eye movements. Ap-
plying the traditional 2D approach prior to mapping to (vir-
tual) world coordinates suggests a component-wise analysis
of left and right eye movements (in the eye tracker’s refer-
ence frame) possibly ignoring depth (as generally would be
the case with monocular eye tracking). In three dimensions,
depth information, derived from binocular eye tracking, is
implicitly taken into account prior to analysis.

The paper is organized as follows. First, we describe our
operational platform and derive applicable gaze vector calcu-
lations including a 2D-to-3D mapping required for the calcu-
lation of gaze points in the VE. Device and software calibra-
tion techniques, developed specifically to address the use of
a binocular eye tracker, are then discussed. The novel 3D eye
movement analysis algorithm is then presented followed by
an evaluation of the algorithm featuring a comparative anal-
ysis of several velocity and acceleration filters for saccade
detection. Finally, we describe our application testbed: a Vir-
tual Environment used for aircraft visual inspection training
and discuss results obtained from experiments conducted in
the VE.

Eye Tracking in Virtual Reality

Our primary rendering engine is a dual-rack, dual-pipe,
Silicon Graphics Onyx2 R

�
InfiniteReality2TM system with 8

raster managers and 8 MIPS R
�

R12000TM processors, each
with 8MB secondary cache.1 It is equipped with 8Gb of main
memory and 0.5Gb of texture memory.

Multi-modal hardware components include a binocular
eye tracker mounted within a Virtual Research V8 Head
Mounted Display. The V8 HMD offers 640 � 480 pixel reso-
lution per eye with individual left and right eye feeds. HMD
position and orientation tracking is provided by an Ascen-
sion 6 Degree-Of-Freedom (6DOF) Flock Of Birds (FOB).
The HMD is shown in Figure 2(inset), with the FOB sensor
just visible on top of the helmet. A 6DOF tracked, hand-held
mouse provides a means to represent a virtual tool for the
user in the environment.

The eye tracker is a video-based, corneal reflection unit,
built jointly by Virtual Research and ISCAN. Each of the
binocular video eye trackers is composed of a miniature cam-
era and infrared light sources, with the dual optics assemblies
connected to a dedicated personal computer (PC). The IS-
CAN RK-726PCI High Resolution Pupil/Corneal Reflection
Processor uses corneal reflections (first Purkinje images) of
infra-red LEDs mounted within the helmet to measure eye
movements. Figure 2 shows the dual cameras and infra-red
LEDs of the binocular assembly. Mounted below the HMD

1 Silicon Graphics, Onyx2, InfiniteReality, are registered trade-
marks of Silicon Graphics, Inc.
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Figure 2. Binocular eye tracker optics (with HMD inset above).

lenses, the eye imaging cameras peer upwards through a hole
cut into the lens stem, capturing images of the eyes reflected
by a dichroic mirror placed behind the HMD lenses. The
processor typically operates at a sample rate of 60 Hz, how-
ever while in binocular mode our measured sample rate de-
creases to 30 Hz. The subject’s eye position is determined
with an accuracy of approximately 0.3 degrees over a � 20
degree horizontal and vertical range using the pupil/corneal
reflection difference. The maximum spatial resolution of the
calculated POR provided by the tracker is 512 � 512 pixels
per eye.

The binocular eye tracking assembly allows the measure-
ment of vergence eye movements, which in turn provides the
capability of calculating the three-dimensional virtual coor-
dinates of the viewer’s gaze. Using the vendor’s proprietary
software and hardware, the PC calculates the subject’s real-
time POR from the video eye images. In the current VR con-
figuration, the eye tracker is treated as a black box delivering
real-time eye movement coordinates (xl � yl � t) and (xr � yr � t)
over a 19.2 Kbaud RS-232 serial connection, and can be con-
sidered as an ordinary positional tracking device.

Eye Tracker Coordinate Mapping

Several processing steps are required to accurately calcu-
late the user’s gaze within the environment. Once the gaze
direction has been obtained, the resultant gaze vector is used
to identify fixated regions in the environment by first cal-
culating the gaze/environment intersection points and then
applying signal analysis techniques to identify fixations.

Given the extents of both application and eye tracker
screen coordinates, a simple linear interpolation mapping is
used to map raw POR data to the graphics screen coordinates
(Duchowski et al., 2000). Specifically, 2D eye tracker data
expressed in eye tracker screen coordinates must be mapped
to the 2D dimensions of the near viewing frustum. The

3D viewing frustum employed in the perspective viewing
transformation is defined by the parameters left, right,
bottom, top, near, far. Figure 3 shows the dimensions
of the eye tracker screen (left) and the dimensions of the
viewing frustum (right). To convert the eye tracker coordi-
nates

�
x � � y � � to graphics coordinates

�
x � y � the following lin-

ear interpolation mapping is used:

x � left � x � � right � left �
512

(1)

y � bottom �
�
512 � y � � � top � bottom �

512
(2)

Since the eye tracker origin is at the top-left of the screen and
the viewing frustum’s origin is at the bottom-left (a common
discrepancy between imaging and graphics applications), the
term

�
512 � y � � in Equation (2) handles the necessary y-

coordinate mirror transformation.

The above coordinate mapping assumes that the eye
tracker coordinates are in the range � 0 � 511 � . In practice, the
usable, or effective, coordinates will be dependent on: (a) the
size of the application window, and (b) the position of the ap-
plication window. Proper mapping between eye tracker and
application coordinates is achieved through the measurement
of the application window’s extents in the eye tracker’s refer-
ence frame. This is accomplished by using the eye tracker’s
own fine-grained cursor movement and cursor location read-
out.

To obtain the extents of the application window in the eye
tracker’s reference frame, the application window’s corners
are measured with the eye tracker’s cursor. These window
extents are then used in the linear mapping equation. Fig-
ure 4 illustrates an example of a 600 � 450 application win-
dow as it would appear on the eye tracker scene monitor.
Based on the measurements shown in Figure 4, the linear
coordinate mapping is:

x � x � � 51�
482 � 51 � 1 �

�
600 � (3)

y � 449 � y � � 53�
446 � 53 � 1 �

�
450 � (4)

While seemingly trivial, this mapping is key to proper calcu-
lation of the gaze vector in world coordinates from raw POR
data and is also essential for alignment of target points dis-
played by the application program during calibration of the
eye tracker. Correct registration between eye tracker and im-
age coordinates is achieved if the linearly mapped computer-
generated calibration target points align with the calibration
points generated by the eye tracker. Because both coordi-
nates are ultimately subject to the same optical distortions
of the HMD (e.g., pin-cushion effect), the linear mapping is
sufficient for coordinate registration (Duchowski, 1998).
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Figure 3. Eye tracker to 3D viewing frustum screen coordinate mapping.
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Figure 4. Mapping measurement example.

Gaze Vector Calculation

The calculation of gaze in three-space depends only on the
relative positions of the two eyes on the horizontal axis. The
parameters of interest are the three-dimensional virtual coor-
dinates,

�
xg � yg � zg � , which can be determined from traditional

stereo geometry calculations (Horn, 1986). Figure 5 illus-
trates the basic binocular geometry. Helmet tracking deter-
mines both helmet position and the (orthogonal) directional
and up vectors, which determine head-centric coordinates.
The helmet position is the origin, the helmet directional vec-
tor is the optical z-axis, and the helmet up vector is the y-axis.

Given instantaneous eye tracked coordinates,
�
xl � yl � and�

xr � yr � , in the left and right image planes (mapped from

(x  ,y  ,z  )g gg

left eye

(x  ,y  )r r

l(x  ,y  )l

(x  ,y  ,z  )h h h

b
right eye

f

Figure 5. Basic binocular geometry.

eye tracker screen coordinates to the near view plane), and
head-tracked head position coordinates,

�
xh � yh � zh � , the coor-

dinates of the gaze point,
�
xg � yg � zg � , are determined by the

relations:

xg � �
1 � s � xh � s

�
xl � xr � 	 2 (5)

yg � �
1 � s � yh � s

�
yl � yr � 	 2 (6)

zg � �
1 � s � zh � s f (7)
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where s � b 	 � xl � xr � b � , b is the interpupillary distance at
parallel vergence (looking at an infinitely distant object), and
f is the distance to the near viewing plane along the head-
centric z-axis.

Note that since the vertical eye tracked coordinates yl and
yr are expected to be equal (since gaze coordinates are as-
sumed to be epipolar), the vertical coordinate of the central
view vector defined by

�
yl � yr � 	 2 is somewhat extraneous;

either yl or yr would do for the calculation of the gaze vec-
tor. However, since eye tracker data is also expected to be
noisy, this averaging of the vertical coordinates enforces the
epipolar assumption.

To enable collection of fixated points in the environment,
it is necessary to calculate the intersection of the user’s gaze
with the environmental polygons. To calculate gaze direction
the gaze point is expressed parametrically as a point on a ray
with origin

�
xh � yh � zh � , with the ray emanating along a vector

scaled by parameter s. That is, rewriting Equations (5)–(7),

xg � xh � s

�
xl � xr

2
� xh �

yg � yh � s

�
yl � yr

2
� yh �

zg � zh � s
�
f � zh �

or, in vector notation,

g � h � sv � (8)

where h is the head position, v is the central gaze vector and
s is the scale parameter as defined previously. The view vec-
tor v is obtained by subtracting the helmet position from the
midpoint of the eye tracked x-coordinate and focal distance
to the near view plane, i.e.,

v � �� � xl � xr � 	 2�
yl � yr � 	 2

f

��
���� xh

yh

zh

��
(9)

� m � h

where m denotes the left and right eye coordinate midpoint.
To align the gaze vector with the current head orientation,
it is first transformed to the instantaneous head-centric ref-
erence frame (instantaneous head orientation). This is ac-
complished by multiplying the gaze vector v by the orien-
tation matrix returned by the head tracker. Given the three-
dimensional gaze vector, v, specified by Equation (9), Equa-
tion (8) gives the coordinates of the gaze point parametrically
along a ray originating at the head position

�
xh � yh � zh � . The

depth of the three-dimensional gaze point in world coordi-
nates is valid only if s  0.

Calculating Gaze Intersection Points

The computed gaze direction vector v is used for calculat-
ing gaze/polygon intersections via traditional ray/polygon in-
tersection calculations commonly used in ray tracing (Glass-
ner, 1989). These points, termed here as Gaze Intersec-
tion Points (GIPs) for brevity, are each found on the clos-
est polygon to the viewer intersecting the gaze ray, assuming
all polygons are opaque. Adapted to gaze in VR, this tech-
nique is similar to the traditional ray-casting approach to se-
lection in virtual environments (Bowman & Hodges, 1997).
For comparison, Tanriverdi and Jacob (2000) used a similar
gaze-based ray-casting method for selection of objects. In
their comparison of selection modalities, Tanriverdi and Ja-
cob showed that interaction with eye movements was faster
than interaction with hand-pointing (using a 3D mouse). Our
gaze-based selection mechanism is similar, however, our
derivation of the gaze ray is slightly different due to our use
of binocular eye tracking optics.

Each gaze/polygon intersection point is found on the clos-
est polygon to the viewer intersecting the gaze ray, assuming
all polygons are opaque. This polygon is found by testing
all polygons in the scene for intersection with the gaze ray.
To find the intersection point g of the gaze ray with the clos-
est polygon, a new interpolant t is obtained by calculating
the gaze ray intersections with all scene polygons. All such
intersections are examined for which t  0.2 Note that the
ray/polygon intersection algorithm only returns the intersec-
tion point of the ray and the infinite plane defined by the
polygon’s face normal. Because the normal defines a plane
of infinite extent, the point g must be tested against all of the
polygon’s edges to establish whether the point lies inside the
polygon. This is an instance of a solution to the well-known
“point-in-polygon” problem. If the point g is bounded by the
perpendicular planes defined by the polygon’s edges, then g
lies within the polygon, otherwise it lies on the plane defined
by the face normal, but outside the polygonal region. The re-
sulting algorithm generates a scanpath constrained to lie on
polygonal regions within the virtual environment. Provided
the number of polygons is sufficiently small, the algorithm
executes in real-time.

Device and Software Calibration

In practice, determination of the scalar s (dependent on
inter-pupillary distance, b) and focal distance f used in Equa-
tions (5)–(7) is difficult. Inter-pupillary distance is not easily
measured in VR since the left and right eye tracking com-
ponents function independently. That is, there is no common
reference point. Physical measurement of inter-pupillary dis-
tance outside VR, e.g., at the start of the viewing session, is

2 If t � 0, the polygon may intersect the gaze ray, but behind the
viewer.
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of course possible, however, conversion of such a measure-
ment to VR coordinates is problematic (i.e., virtual coordi-
nates are often unitless but generally homogeneously scal-
able depending on the required mapping between virtual and
real dimensions). Preliminary experiments were conducted
to informally gauge this problem. Calculated GIPs were
compared against raw POR video footage. Frame-by-frame
visual inspection of video footage revealed a discrepancy be-
tween calculated GIPs and the visual features subjects ap-
peared to be fixating. Since this error appeared to be variable
between but consistent within subjects and thought to be re-
lated to the unknown inter-pupillary distance, a 3D calibra-
tion procedure was designed to estimate the inter-pupillary
distance scaling factor s empirically. The calibration proce-
dure is currently specific to our application testbed (see be-
low).

Eye Movement Analysis

Operating directly on GIP data in (virtual) world coordi-
nates, our initial fixation detection algorithm was based on
an estimate of velocity. Given raw gaze intersection points
in three dimensions, the velocity-based thresholding calcula-
tion is in principle identical to the traditional 2D approach,
with the following important distinctions:

1. The head position, h, must be recorded to facilitate the
calculation of the visual angle.

2. Given two successive GIP data points in three-space,
pi � �

xi � yi � zi � and pi � 1 � �
xi � 1 � yi � 1 � zi � 1 � , and the head po-

sition at each instance, hi and hi � 1, the estimate of instanta-
neous visual angle at each sample position, θi, is calculated
from the dot product of the two gaze vectors defined by the
difference of the gaze intersection points and averaged head
position:

θi � cos � 1 vi � vi � 1

� vi � � vi � 1 � � i � � 0 � n � � (10)

where n is the sample size and vi � pi � h and h is the aver-
aged head position over the sample time period. Head posi-
tion is averaged since the eyes can accelerate to reach a tar-
get fixation point much more quickly than the head (Watson,
Walker, & Hodges, 1997).

With visual angle, θi, and timestamp difference between
pi and pi � 1, the same velocity-based thresholding is used as
in the traditional 2D case. No conversion between screen
resolution and distance to target is necessary because all cal-
culations are performed in world coordinates.

Although the algorithm generalizes to the use of wider fil-
ters (by changing the subscript i � 1 to i � k for k  1) for im-
proved smoothing, in our previous work we relied on a short
2-tap filter to estimate velocity. That is, using Equation (10)
to calculate θi, only two successive data points were used to
calculate eye movement velocity. This is analogous to the

p

θ

i
p

i+1

h i

h i+1h

Figure 6. Eye movement analysis in 3D.

calculation of velocity using a convolution filter with coef-
ficients � 1 � 1 � , i.e., a 2-tap Finite Impulse Response (FIR)
filter.

A preliminary study was conducted to evaluate the 3D eye
movement analysis algorithm. Results indicated that due to
the somewhat noisy signal analysis approach, the algorithm
underestimated the identified number of fixations and fix-
ation durations (Duchowski et al., 2001). This result was
not wholly unexpected. The velocity-based saccade detec-
tion method is known to be a weak fixation detector when
used in isolation. However, it is often a necessary first step
to locating slow-moving eye movements which can then be
processed further to isolate and group fixation points.

Furthermore, as expected, we noted a high degree of noise
in the data. The two main sources of noise are most likely the
eye tracker and the short filter used in the velocity-based al-
gorithm. The eye tracker is inherently somewhat noisy, and
frequently delivers null POR values, usually coinciding with
blinks. Sample data with null values for either the left or
right POR was previously automatically eliminated by our
algorithm. Over all trials, we observed an estimated mean
10% data loss. Considering mean trial durations of 177s
and a sample rate of 30 Hz, this data loss rate is quite high.
The short filter used in the velocity-based analysis is another
source of noise. The filter is mathematically appropriate for
gauging velocity (when applied to saccade amplitude), but
due to its short length, it is known to be quite noisy. For
more robust off-line fixation analysis a longer filter should
be used. In the following sections, we compare results of
the short filter to longer versions of velocity and acceleration
filters.

Velocity and Acceleration Filtering

To address excessive noise in the eye movement signal
collected in previous studies we began by replacing our 2-tap
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FIR filter with a 5-tap FIR filter, shown in Figure 7(a). Due to

+2

+1

+3

−1

−2

−3

+1

+2

+3

(a) 5-tap velocity filter. (b) 7-tap acceleration filter.
Figure 7. FIR filters.

its longer sampling window, the filter is more effective at sig-
nal smoothing (anti-aliasing). We also compared the results
of the velocity filter’s utility versus the use of an acceleration
filter, following the work of Tole and Young (1981). The
acceleration filter is shown in Figure 7(b), and is convolved
with eye movement velocity data as obtained via either the
2-tap or 5-tap velocity filter. The filter responses resemble
the real velocity and acceleration curves for a saccade char-
acterized in Figure 8.

Our new algorithm calculates the velocity and accelera-
tion at each instantaneous estimate of visual angle, θi. Note
that θi is effectively a measure of instantaneous eye move-
ment magnitude (i.e., amplitude), and therefore implicitly
represents eye movement velocity. That is, the signal re-
sembles the positively oriented velocity peaks shown in Fig-
ure 8(b). Withholding division by the time difference be-
tween successive samples (∆t) facilitates the measurement
of velocity with arbitrarily long filters.

Velocity is obtained via convolution with pattern-
matching FIR filters of variable length. When convolved,
these filters respond to sampled data with profiles matching
that of the filter. These filters, denoted by hk, are essentially
unnormalized low-pass filters which tend to smooth and am-
plify the underlying signal. Division by the duration of the
sampling window yields velocity, i.e.,

θ̇i � 1
∆t

k

∑
j � 0

θi � jh j � i � � 0 � n � k ���

expressed in deg/s, where k is the filter length, ∆t � k � i. We
compare the performance of the 5-tap filter to the previously
implemented 2-tap filter with coefficients � 1 � 1 � below.

Acceleration is obtained via a subsequent convolution of
velocity, θ̇i, with the acceleration filter, g j, shown in Fig-
ure 7(b). That is,

θ̈i � 1
∆t

k

∑
j � 0

θ̇i � jg j � i � � 0 � n � k � �

where k is the filter length, ∆t � k � i. The acceleration fil-
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Figure 8. Characteristic saccade signal and filter responses.

ter is essentially an unnormalized high-pass differential fil-
ter. The resulting value, θ̈i, expressed in deg/s2, is checked
against threshold A. If the absolute value of θ̈i is greater than
A, then the corresponding gaze intersection point pi is treated
as the beginning of a saccade. Scanning ahead in the con-
volved acceleration data, each subsequent point is tested in
a similar fashion against threshold B to detect the end of the
saccade. Two additional conditions are evaluated to locate a
saccade, as given by Tole and Young. The four conditions
are listed and illustrated in Figure 9.

Note that our velocity and acceleration filters differ from
those used by Tole and Young. This is because Tole and
Young applied their filters (the reverse of ours, essentially)
to the positional eye movement signal (p), while our filters
are applied to the signal amplitude (θ). Pseudocode of the
technique is presented in Algorithm 1.
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T

T

B

A

max

min

1.
�
θ̈i
�  A

2.
�
θ̈i � j

�  B
3. sgn

�
θ̈i � j ���� sgn

�
θ̈i �

4. Tmin � j � i � Tmax

Figure 9. Acceleration thresholding.

Algorithm 1 Acceleration-based saccade detection.

Input: p
�
n � , gaze intersection points, h

�
k � , g

�
k � , velocity

and acceleration filters, respectively
Output: classification of each pi as fixation or saccade

1: // calculate instantaneous visual angle
2: for i � 0 to n � 1 do
3: θi � cos � 1 � vi � vi � 1 	 � vi � � vi � 1 � �
4: end for
5: // initialize accumulation arrays (convolution results)
6: for i � 0 to n � k � 1 do
7: θ̇i � θ̈i � 0
8: end for
9: // convolve with vel. filter

10: for i � 0 to n � k � 1 do
11: for j � 0 to k do
12: θ̇i � θ̇i � θi � j � h j

13: end for
14: end for
15: // convolve with acc. filter
16: for i � 0 to n � k � 1 do
17: for j � 0 to k do
18: θ̈i � θ̈i � θ̇i � j � g j

19: end for
20: end for
21: for i � 0 to n � k � 1 do
22: // condition 1
23: if

�
θ̈i
���

A then
24: // condition 4 (implicit in loop)
25: for j � i � Tmin to

�
n � k � � i � �

j � i �	� Tmax do
26: // conditions 2 & 3
27: if

�
θ̈i � j

���
B � sgn

�
θ̈i � j �
�� sgn

�
θ̈i � then

28: for l � i to j do
29: pl � saccade
30: end for
31: else
32: pi � f ixation
33: end if
34: end for
35: end if
36: end for

Parameter Estimation

Thresholds are needed for saccade velocity, acceleration,
and duration, since our fixation detection algorithm relies on
the detection of saccades. While eventually determined em-
pirically, algorithm fine tuning was guided by a review of
the literature, briefly summarized here for context. While
scanpath characteristics may be task-dependent, i.e., differ-
ing when looking at pictures than when reading, for the pur-
pose of initial estimation of parameters, we assumed that,
when looking at pictures, normal scanpaths are character-
ized by a number of saccades similar in amplitude to those
exhibited during reading. This is largely a matter of conve-
nience since reading eye movement characteristics are better
established and more readily available than eye movement
characteristics for scene viewing.

The duration of saccades is related in a nonlinear manner
to their amplitude over a thousandfold range (3 � –50

�
) (Bahill,

Clark, & Stark, 1975). Saccades of less than 15 or 20 de-
grees in magnitude are physiologically the most important
since most naturally occurring saccades fall in this region.
The saccade “main sequence” describes the relationships be-
tween saccade duration, peak velocity, and magnitude (am-
plitude). Because saccades are generally stereotyped, the re-
lationship between saccade amplitude and duration can be
modeled by the linear equation ∆t � 2 � 2θ � 21 (Knox, 2001).
Peak velocity reaches a soft saturation limit up to about 15
or 20 degrees, but can range up to about 50

�
, reaching ve-

locity saturation at about 1000 deg/s (Clark & Stark, 1975).
In practice, the main sequence relationship between ampli-
tude and velocity can be modeled by the asymptotic equation
θ̇ � λ

�
1 � e � θ � 15 � , with velocity upper limit (asymptote λ) set

to 750 deg/s (Hain, 1999). For saccade detection via velocity
filtering, we chose a threshold of 130 deg/s for both 2-tap
and 5-tap filters. Using the asymptotic model of the main se-
quence relationship between saccade amplitude and velocity
(limited by 750 deg/s), we reasoned that this threshold would
effectively detect saccades of amplitude roughly greater than
3
�
. User-adjustable threshold settings for the velocity filter

are shown in Figure 10(a) (bottom-right quadrant).
Saccade detection via acceleration filtering requires set-

ting a larger number of parameters. In our current implemen-
tation, we have chosen values of 10 ms and 300 ms for Tmin

and Tmax, respectively, to cover a fairly wide range of sac-
cade acceleration impulse pairs. The choice of the remaining
threshold for saccade acceleration was made difficult since
no applicable models of saccadic acceleration (e.g., a main
sequence) could readily be found. In fact, unlike commonly
listed limits of amplitude, duration, and velocity, there seems
to be some disagreement regarding upper limits of accelera-
tion. Peak acceleration has been reported to average at about
30,000 deg/s2 in saccades of 10

�
with a saturation limit of

35,000 deg/s2 for θ � 15
�
, while other findings are given of

20
�

saccades with average peak acceleration of 26,000 deg/s2
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Figure 10. User interface prior to (a, left), and following (b, right) binocular scale factor adjustment.

(Becker, 1989). Since we followed Tole and Young’s accel-
eration filtering algorithm (incidentally, these authors report
acceleration limits approaching 80,000 deg/s2), we decided
to start with the authors’ recommended thresholds for sac-
cade acceleration. User-adjustable threshold settings for the
acceleration filter are shown in Figure 10(b) (bottom-right
quadrant).

Tole and Young (1981) point out that variable noise char-
acteristics depend on the subject’s actions (e.g., different
noise profile while gritting teeth). To adapt to such sig-
nal changes the authors recommend an adaptive thresholding
technique which dynamically adjusts the threshold, based on
the current estimate of noise level. Indeed, we also noted
a very large peak-to-peak acceleration signal variance (see
below). Following Tole and Young’s recommendation, we
decided to implement an adaptive thresholding technique in
an effort to automatically set acceleration thresholds A and
B:

A � B � 1 � 000 �
���� 1
k

k

∑
i � 0

�
θ̈i � k � 2 deg/s2 �

where k is the number of samples in time T proportional to
the length of the acceleration filter, that is,

T � filter length
sampling rate

� 9
30 Hz

� 300 ms �

This is a slightly different implementation of adaptive thresh-
olding than Tole and Young’s. Our threshold value is slightly
lower and its adaptive adjustment relies on explicit calcula-
tion of the acceleration Root Mean Squared (RMS). Also, our
sampling window for this purpose is also much shorter from
the authors’ recommended window of T  4 sec. Finally,
in our implementation, the adaptive technique currently em-

ploys a “look-ahead” scan of the acceleration data, suitable
for off-line analysis. Changing the i � k subscript to i � k pro-
vides a “look-behind” scan which can be employed in real-
time systems.

Fixation Grouping

The above algorithm classifies each GIP as either part of
a fixation or saccade. Once each GIP has been classified,
each string of consecutive fixation GIPs is condensed to a
single fixation point by finding the centroid of the group.
However, due to the nature of the new algorithm, we ob-
served that at times isolated noisy GIPs were also included
in fixation groups. To prevent the inclusion of such out-
lying points we implemented a simple check to verify that
each fixation group’s duration is greater than or equal to the
minimum theoretical fixation duration (i.e., 150 ms (Irwin,
1992)). This parameter is also user-adjustable, and is shown
in Figures 10(a) and (b) (top-right quadrant).

Eye Movement Data Mirroring

Although our new eye movement analysis algorithm is
mathematically more robust at handling signal noise, our sys-
tem is still susceptible to noise generated by the eye tracker.
In particular, our eye tracking equipment randomly drops
POR data. In some cases (e.g., during a blink), null POR
values are recorded for both left and right eyes. However, in
some instances, only one eye’s POR is null while the other is
not. We believe this occurs due to calibration errors. To ad-
dress this problem we developed a heuristic mirroring tech-
nique of the non-null POR eye movement data. The table
below shows an example of this technique. The left eye POR
at time t � 1 is recorded as an invalid null point.
Time Left Eye Right Eye
t ��� 0 � 5 � 0 � � 0 � 3 � 0 �
t 	 1 � 0 � 0 � � 0 � 4 � 0 �

dx 
 xrt � 1 � xrt 
 0 � 4 � 0 � 3 
 0 � 1
dy 
 yrt � 1 � yrt 
 0 � 0 � 0 � 0 
 0 � 0
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To estimate a non-null left eye coordinate at t � 1, the differ-
ence between successive right eye POR values is calculated
and used to update the left eye POR values at t � 1, as shown
in the equation above, giving

�
xlt � 1 � ylt � 1 � �

� � 0 � 5 � dx � 0 �
dy � � � � 0 � 4 � 0 � � Note that this solution assumes static ver-
gence eye movements. It is assumed that the eyes remain
at a fixed interocular distance during movement. That is,
this heuristic strategy will clearly not account for vergence
eye movements occurring within the short corrective time
period.

Algorithm Evaluation

Evaluation of the eye movement analysis algorithm was
conducted by two studies: a short pilot study to evaluate the
data mirroring technique followed by a comparative evalua-
tion of several saccadic filter combinations in the context of
our chosen application testbed (see following section).

Data Mirroring

A short study was conducted to measure the performance
of our new heuristic data mirroring technique. A subject was
asked to don the HMD and the eye tracker was carefully cali-
brated to ensure minimal loss of either of the eyes’ POR dur-
ing the experiment. The 3D calibration scenario was loaded
and the subject was asked to look at each numbered calibra-
tion point. The experiment duration was 44.4s. Following
immersion, it was noted that less than 0.005% of the gener-
ated data contained missing POR information for either eye.
The POR file was copied, and monocular POR data is manu-
ally decimated at random points in the data stream. Overall,
15% of the data was artificially decimated to simulate noise
caused by problematic calibration.

Table 1 compares the results of the mirroring technique
over the artificially altered POR data file. The first column

Table 1
Mirroring algorithm.

Original
Data

No
Mirroring Mirroring

Experiment Duration 44.4 s 44.4 s 44.4 s
Usable Data 44.0 s 37.5 s 44.0 s
Fixation Count 71 62 75
Mean Fixation Duration 159 ms 196 ms 144 ms

of Table 1 lists eye movement data statistics over the un-
altered data. Using the 2-tap velocity-based algorithm, the
second and third columns compare the effects of the mirror-
ing heuristic. The eye mirroring technique recovers nearly
all of the 15% of the artificially decimated data. Using re-
covered data, the velocity-based algorithm reported an in-
crease in fixation counts of 17% (75 fixations vs. 62 fix-
ations with no mirroring). This suggests that the recov-
ered data, following the heuristic mirroring technique, fairly

closely resembles the original (nearly lossless) signal. In
other words, the heuristic mirroring technique allows the es-
timation of monocular data that would normally be lost due
to eye tracker miscalibration.

Preliminary Filter Comparison

Using the nearly lossless data obtained from the 44.4s im-
mersion experiment above, we compared 6 different filter
combinations: both 2-tap and 5-tap velocity filters, and the
7-tap acceleration filter applied to velocity following either
2-tap or 5-tap velocity filtering, with and without adaptive
thresholding. Fixation count (following grouping), mean fix-
ation duration, proportional time spent in fixations, and vi-
sual representations of the scanpath were compared to eval-
uate the different filters. All algorithms employed the data
mirroring technique discussed above. Results from velocity
filtering are listed in Table 2 and those from acceleration fil-
tering in Table 3. Figure 11 shows typical plots of the eye
movement signal and filter responses.

According to accepted saccade amplitude estimates, we
expected the measured instantaneous eye movement ampli-
tude (θ) to range up to about 20

�
. Our observed data ranges

up to 136
�
(M: 1.5

�
, SD: 9.7

�
, median: 0.3

�
), which appear

to be within normal limits, except for a few outliers (possibly
due to head motion or head/eye tracking instrument noise)
(see Figure 11(a)). Our observed velocity averages at 106
deg/s (SD: 635 and 451 deg/s), depending on the filter (see
Table 2 and also Figures 11(b) and 11(c)). Our observed ac-
celeration averages at 4,453 deg/s2 (SD: 22,475 deg/s2) and
3,966 deg/s2 (SD: 17,470 deg/s2), depending on the velocity
filter used (see Table 3 and also Figure 11(d)).

The 2-tap velocity filter performed surprisingly well
against other filter combinations (outperforming the constant
thresholding acceleration filter). However, visual inspection
of the resulting scanpath revealed that both the 2-tap and 5-
tap velocity filters appear to miss short-duration fixations.
The adaptive thresholding acceleration-based technique gen-
erates the best overall results detecting fixations of longest
duration. It is also more complicated to use since it re-
quires estimation and control of a larger number of param-
eters. Compared to 150-650 ms fixation durations reported
as common during reading (Irwin, 1992), our fixation dura-
tions (17 detected fixations with mean duration of 1.9 sec) are
quite long. Although reading eye movements may resemble
those during picture viewing (Bahill et al., 1975), there may
be at least three reasons for our findings: (1) our analysis
technique effectively eliminates low-amplitude saccades, (2)
the sampling rate of our eye tracking apparatus is too low,
or (3) contrary to the above assumption, eye movements in
VR may exhibit different characteristics than in reading—it
has been noted that eye movements recorded during volun-
tary head rotation are remarkably free of saccades, implying
the vestibulo-ocular system is involved in combing the gen-
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Table 2
Velocity algorithm comparisons.

Statistics 2-tap 5-tap
fixation groups 30 21
mean fixation duration (ms) 1079 1450
time spent in fixations 73% 69%
min θ̇ (deg/s) 0 1
max θ̇ (deg/s) 12,385 5,592
M θ̇ (deg/s) 106 106
SD θ̇ (deg/s) 635 451

Table 3
Acceleration algorithm comparisons.

2-tap 5-tap
Statistics adaptive constant adaptive constant
fixation groups 20 17 17 14
mean fixation duration (ms) 1633 1583 1937 1983
time spent in fixations 74% 61% 74% 63%
min θ̈ (deg/s2) -257,653 -182,037
max θ̈ (deg/s2) 248,265 167,144
M θ̈ (deg/s2) 4,453 3,966
SD θ̈ (deg/s2) 22,475 17,470

eration of saccades (saccadic restraint) (McDonald, Bahill,
& Friedman, 1983). In reading, there is a distinctive pattern
of successive saccades on the words of the text, reflecting
the serial processing of the information. In picture viewing,
by contrast, there is no canonical scanpath for particular ob-
jects (i.e., there is no particular ‘right way’ to look at objects)
(Kennedy, 1992). Kennedy suggests that the reading task
is composed almost exclusively of saccades, while picture
viewing is composed of shifts, pursuits, and drifts. There
may be context differences at play. Continuing the debate
about context effects for scenes and sentences, Kroll (1992)
states that while there may be similarities between the two
tasks, the tasks are very different. Eye movements in read-
ing are to a large extent driven by the well-known, practiced
task. In VR, viewers’ eye movement strategies may differ
significantly from those adopted for reading.

Application: A Virtual
Environment for Aircraft Visual

Inspection Training

Aircraft inspection and maintenance are an essential part
of a safe, reliable air transportation system. Training has
been identified as the primary intervention strategy in im-
proving inspection performance (Gramopadhye, Bhagwat,
Kimbler, & Greenstein, 1998). If training is to be suc-
cessful, inspectors need to be provided with training tools
to help enhance their inspection skills. In response to this
need, a diagnostic eye tracking Virtual Reality (VR) system
was developed for the purpose of recording process measures

(head and eye movements) as well as performance measures
(search time and success rate) during immersion in a VR
aircraft inspection simulator (Duchowski et al., 2000). The
VR simulator utilizes the binocular eye tracker to record the
user’s dynamic Point Of Regard (POR) within the virtual en-
vironment during visual inspection.

The goal of the construction of the virtual environment is
to match the appearance of the physical inspection environ-
ment, an aircraft cargo bay, shown in Figure 12. The phys-
ical environment is a complex three-dimensional cube-like
volume, with airframe components (e.g., fuselage ribs) ex-
posed for inspection. A typical visual inspection task of the
cargo bay involves searching for surface defects such as cor-
rosion and cracks. The model of the virtual inspection envi-
ronment was patterned after a simple three-dimensional en-
closure (e.g., a cube), specified by the dimensions of the real
inspection environment (i.e., an aircraft’s cargo bay). The
model is built entirely out of planar polygons. There are two
pragmatic reasons for this design choice. First, since the rep-
resentation of the true complexity of the airframe structure
is avoided, fast display rates are possible. Second, planar
polygons (quadrilaterals) facilitate texture mapping.

Raw output from the eye tracker is shown in Figure 13,
where the left and right eye POR is represented by a small
circle and small crosshair, respectively, superimposed by the
eye tracker’s scene imaging hardware. The VR scene image
signal is split (via VGA active passthrough) prior to HMD
input, and diverted to the eye tracker. Thus the eye tracker
and HMD simultaneously display the same image seen by the
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Figure 11. Eye movement signal and filter responses.

Figure 12. Aircraft cargo bay physical environment.

user in the HMD. In addition, each scene image generated by
the eye tracker contains the superimposed POR indicator and
a status bar at the bottom indicating current pupil diameter,
horizontal and vertical POR coordinates, and the video frame
counter (HH:MM:SS:FF). Note that the images shown in the
figure were captured 3 seconds apart.

While our graphical environment is relatively simple, it
appears to be sufficiently realistic for the purposes of inspec-
tion training. An experiment conducted to evaluate the sub-
jective quality of the simulator attempted to measure the de-
gree of presence felt by participants immersed in the envi-
ronment (Vora et al., 2001). Analysis of responses to a mod-
ified version of Witmer and Singer’s (1998) Presence Ques-
tionnaire revealed that the system scored high on presence-
related questions. Visual aspects of the environment, sense
of objects, anticipation of system response, surveying, and
experience in the environment all contributed to a reported
high level of involvement in VR. Although student subjects
were not qualified inspectors, on average they indicated their
experience in the virtual environment to be consistent with a
walkthrough of a real aircraft prepared for inspection. We ex-
pect trained inspectors will find the simulator similarly con-
sistent with the real environment, at least in the context of
simulating the visual search task. We realize our simulator is
not necessarily photo-realistic (e.g., due to limited resolution
of the HMD, coarse and flat appearance of texture maps),
however, since the purpose of the simulator is to train search
behavior, we believe the simulator is sufficiently functionally
realistic for this purpose.

Filter Comparison, Process Measures & Training
Effects

An experiment was conducted to measure the training ef-
fects of the VR aircraft inspection simulator. The objectives
of the experiment included: (1) comparative analysis of dif-
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Figure 13. Raw eye tracker output: (a, left) left eye POR, (b, right) right eye POR.

ferent saccadic filter combinations, (2) validation of perfor-
mance measures used to gauge training effects, and (3) eval-
uation of the eye movement data as cognitive feedback for
training. Assuming eye movement analysis correctly iden-
tifies fixations and the VR simulator is effective for train-
ing (i.e., a positive training effect can be measured), the
number of detected fixations are expected to decrease with
the adoption of an improved visual search strategy (Drury,
Gramopadhye, & Sharit, 1997) (e.g., following training).

Stimulus. The airframe inspection simulation featured in-
spection of an aircraft cargo bay with dimension similar to
that of a real cargo bay of an L1011 aircraft. Texture maps
used in the virtual aircraft cargo bay were created from pho-
tographs of an actual cargo bay (see above).

For user interaction with the virtual environment, and per-
formance measurement during immersion, a 6DOF mouse
was used as a multi-modal device (see above). The 6DOF
mouse allows subjects to perform a pointing and clicking
function to indicate selection. The criterion task consisted
of inspecting the simulated aircraft cargo bay in search of
defects. Several defects can occur in a real environment situ-
ation. Three types of defects were selected to create inspec-
tion scenarios:

1. Corrosion: represented by a collection of gray and
white globules on the inner walls of the aircraft cargo bay
and located roughly at knee level.

2. Cracks: represented by a cut in any direction on the
structural frames inside the aircraft cargo bay.

3. Damaged conduits: shown as either broken or delami-
nated electrical conduits in the aircraft cargo bay.
Figure 14(a) shows an example of corrosion defects, with tar-
get defects highlighted in Figure 14(b) (highlighted defects
are shown to the operator but are not typically displayed for
the subject).

Performance and Process Measures. Data for perfor-
mance and cognitive feedback measures was collected using
search timing and eye movement information, respectively.
The following performance measures were collected:

1. Search time from region presentation to fault detection.
2. Incremental stop time when subjects terminated the

search in a region by deciding the region does not contain
faults.

3. Number of faults detected (hits), recorded separately
for each fault type.

4. Number of faults that were not identified (misses).
Fixation analysis enabled the collection of cognitive feed-

back measures, which were provided to subjects during the
training session. Cognitive feedback measures were based
on the eye movement parameters that contribute to search
strategies as defined by Megaw and Richardson (1979), in-
cluding: (1) total number of fixations; (2) mean fixation du-
ration; (3) percentage area covered; and (4) total trial time.
Cognitive feedback measures were graphically displayed off-
line by rendering a 3D environment identical to the aircraft
cargo bay which was used during immersive trials. This dis-
play represented the scanpaths of each trial to indicate the
subject’s visual search progression.

Subjects. To gauge training effects eighteen graduate stu-
dents were chosen as subjects, all in the 20-25 year old age
group. Subjects were screened for 20/20 corrected vision.
Subjects were randomly assigned to three different groups
(6 per group): Performance Feedback Group (PFG), Cogni-
tive Feedback Group (CFG), and Cognitive + Performance
Feedback Group (CPFG). Subjects received different forms
of feedback during training sessions before and after trials
(see below).

To examine eye movement results from different filter
combinations, data was used from seven subjects aged be-
tween 20 and 30 years of age, selected randomly from a pop-
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Figure 14. Registering ROIs in VR: (a, left) simulated corrosion; (b, right) highlighted environmental defects.

ulation of graduate and undergraduate students at Clemson
University. Subjects were screened for 20/20 corrected vi-
sion.

Experimental Design. The training study used a 3 � 2
experimental design with 3 groups (PFG, CFG, and CPFG)
and 2 trials (before-training and after-training). Six subjects
were placed in each of the three groups. Grouping allowed
testing of between-subject factors, while within-subject fac-
tors were tested between trials. Performance and cognitive
feedback measures together constitute 8 dependent variables,
with training scenarios (immersion in different defect inspec-
tion scenarios) serving as the independent variable (training
treatment).

A 4 � 2 complete block experimental design was used
to compare saccadic filter combinations with subjects acting
as blocking factors. The 4 algorithm groups represented the
following filter combinations: both 2-tap and 5-tap velocity
filters, and the 7-tap acceleration filter applied to velocity fol-
lowing either 2-tap or 5-tap velocity filtering, with adaptive
thresholding.

Calibration Procedure. Prior to each experimental trial
the user must first complete two short calibration trials: (1) a
5-point 2D calibration sequence to calibrate the eye tracker,
and (2) the 3D calibration to enable accurate GIP calculation.
The 3D software calibration procedure relies on a specially
marked environment, containing 9 clearly visible fixation tar-
gets, illustrated in Figure 15. The 9 numerical targets are dis-
tributed on 5 walls of the environment to allow head position
to be taken into account during analysis. Without a precise
estimate of b and f , computed GIPs may appear stretched or
compressed in the horizontal or vertical direction, as shown
in Figure 15(a) (only 5 targets are visible in the figure).

To shorten the trial duration eye movement data is stored
for off-line analysis. The scalar parameter s is obtained man-

ually through the use of a simple interface, shown in Fig-
ure 10 (adjustment sliders are in the upper-left quadrant of
the GUI—note the different scale factors in the two screen-
shots). As the operator manipulates the scale factor sliders,
GIP data is re-calculated and displayed interactively. The
goal is to align the calculated GIP locations with the environ-
mental targets which the user was instructed to fixate during
calibration. An example of this type of adjustment is shown
in Figure 15(b). Notice that the GIPs (represented by trans-
parent spheres) are now better aligned over the targets than
the raw data in Figure 15(a). Once determined, the scale fac-
tor s is used to adjust each participant’s eye movement data
in all subsequent trials.

Training Procedure. Each subject was requested to com-
plete a consent form and demographic questionnaire. Writ-
ten and oral instructions were provided to ensure subjects’
understanding of the experiment. All subjects were given
information about their required task. Following device
and software calibration, subjects were then shown the en-
tire search area of the virtual aircraft cargo bay and were
provided with graphical and verbal descriptions of possible
types of defects. Subjects were then presented with a famil-
iarization task similar to the actual trials in the Virtual Reality
simulator and were shown how to use the 6DOF mouse for
pointing at and selecting targets.

The before-training criterion task was an unpaced visual
inspection search task. Subjects searched for defects on the
walls, floor, and the ceiling of the simulated 3D cargo bay.
The entire search task was divided into a series of six sub-
tasks listed in Table 4. To cancel out order effects, all six
participants in each group completed their assigned subtasks
following a counterbalanced order using a 6 � 6 Latin square
design. Treatments were randomly assigned to each of the
six participants.
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Figure 15. Detected fixations (2-tap vel. filter, ungrouped) prior to (a, left), and following (b, right) binocular scale factor adjustment.

Table 4
Description of subtasks.
# Scenario Task Description
1 No (zero) defect Search entire area with no defects
2 Single defect Find corrosion defects
3 Single defect Find crack defects
4 Single defect Find damaged conduit defects
5 Multiple defect Find all three defects
6 No (zero) defect Search entire area with no defects

On completion of the before-training trials, all subjects
underwent respective training sessions for each of the three
groups. The first step in the training sessions was comple-
tion of a multi-defect search task. Subjects received feedback
training according to the respective feedback training groups:

� Performance Feedback Group. Subjects in this
group received performance measures feedback performance
(search times, errors).

� Cognitive Feedback Group. Subjects in this group
received two forms of cognitive feedback: statistical and
graphical. Statistical feedback included the number of fix-
ations, mean fixation duration, number of fixations in ROIs,
mean fixation duration in the ROIs, and percentage area cov-
ered. For graphical feedback, subjects viewed a graphical
visualization of their scanpaths representing their search pat-
terns with fixation indices showing their visual search pro-
gression.

� Cognitive + Performance Feedback Group. Subjects
in this group received both forms of feedback, performance
feedback training as well as cognitive feedback training.
On completion of the training sessions, all subjects per-
formed an after training criterion task. This subtask was
counterbalanced to eliminate order effects.

Results

Process Measures & Training Effects. Analysis of vari-
ance (ANOVA) showed no significant differences between
subjects (feedback groups). However, ANOVA showed sig-
nificant differences in mean search time, percentage de-
fects detected, incremental stopping time, and total trial time
within subjects.

Filter Comparison: Number of Fixations. A two-factor
ANOVA for number of fixations revealed no significant trial
� filter interaction effect. The trial factor was found to be
statistically significant (F

�
7 � 49 � � 38 � 84, p � 0 � 001) indi-

cating there was a difference in the mean number of fixations
between before- and after-training trials. Similarly, the algo-
rithm factor was found to be significant (F

�
7 � 49 � � 20 � 64,

p � 0 � 001) indicating there was difference in the number of
fixations identified by each filter combination.

Further post hoc analysis revealed there was a significant
reduction in the number of fixations between before- and
after-training trials and this was evident for all four algo-
rithms. A significant difference was found in the compu-
tation of number of fixations between the 2-tap velocity fil-
ter and the other filter combinations. It was found that the
2-tap velocity filter generated the highest number of fixa-
tions whereas the 7-tap acceleration filter generated the low-
est number of fixations. The 5-tap velocity filter found a sig-
nificantly different number of fixations from both the acceler-
ation filters. There was no significant difference between the
mean numbers of fixations found by either of the acceleration
filters.

Filter Comparison: Fixation Durations. A 2-factor
ANOVA for fixation durations revealed no significant trial �
filter interaction effect. The trial factor was not found to be
significant indicating no significant change in the mean fix-
ation durations between the before- and after-training trials.
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The computation for duration by different filters was found
to be statistically different from each other (F

�
7 � 49 � � 7 � 91,

p � 0 � 001).
Further post hoc analysis found no statistical difference

between the two velocity filters or between the two accelera-
tion filters in computation of fixation durations. There was a
statistical difference in the computation of fixation durations
between the velocity filters and the acceleration filters. The
2-tap velocity filter found the shortest durations and the 7-tap
acceleration filter detected the longest durations.

A 2-factor ANOVA of raw fixation points revealed no sig-
nificant trial � filter interaction effects and no significant fil-
ter main effects. The trial factor was found to be significant
(F
�
7 � 49 � � 8 � 61, p � 0 � 001). Further post hoc analysis re-

vealed that there was no significant difference between the
mean raw fixation points as labeled by all four filters for any
of the trials (before or after). The overall mean data for num-
ber of fixations, fixation durations and raw fixation points is
provided in Table 5.

Filter Comparison: 3D Visualization. Figures 16(b, right)
and 17 show typical “raindrop” visualizations of the re-
sulting analysis following fixation grouping. The radius
of each fixation sphere is proportional to fixation dura-
tion. Figure 16(b,right) shows the resulting scanpath fol-
lowing 2-tap velocity-based analysis (the scanpath resulting
from 5-tap velocity filtering is not shown but is similar).
Figure 17 (a, left) shows the resulting scanpath following
acceleration-based analysis with adaptive thresholding, Fig-
ure 17 (b, right) shows acceleration-based analysis without
adaptive thresholding. Both acceleration-based methods bet-
ter represent long fixations due to localization of fewer sac-
cades.

Discussion

Analysis indicates that, overall, training in the VR aircraft
simulation has a positive effect on subsequent search perfor-
mance in VR, although there is apparently no difference in
the type of feedback given to subjects. Cognitive feedback,
in the form of visualized scanpaths, does not appear to be
any more effective than performance feedback. It may be
that the common most effective contributor to training is the
immersion in the VR environment, that is, the exposure to
the given task, or at least to the simulated task.

Whether the eye tracker, by providing cognitive feedback,
contributes to the improvement of inspection performance is
inconclusive. Users may benefit just as much from perfor-
mance feedback alone. However, the eye tracker is a valu-
able tool for collecting process measures. Analysis of re-
sults leads to two observations. First, mean fixation times do
not appear to change significantly following training. This
is not surprising since eye movements are to a large extent
driven by physiology (i.e., muscular and neurological func-

tions) and cognitive skill. In this case the search task itself
may not have altered cognitive load per se, rather, prior expe-
rience in the simulator may have facilitated a more efficient
search in subsequent trials. Second, the number of fixations
decrease following training. These results generally appear
to agree with the expectation of reduced number of fixations
with the adoption of an improved visual search strategy (e.g.,
due to learning or familiarization of the task). The implica-
tion of reduced number of fixations (without an increase in
mean fixation time) suggests that, in the post-training case,
subjects tend to employ a greater number of saccadic eye
movements. That is, an improved visual search strategy may
be one where subjects inspect the environment more quickly
(perhaps due to familiarity gained through training), reduc-
ing the time required to visually rest on particular features.

Conclusion

The paper presented new developments for eye movement
analysis in 3D, specifically dealing with improved noise sup-
pression. The paper described (1) the use of velocity and ac-
celeration filters for eye movement analysis in three-space,
(2) the utility of adaptive thresholding and fixation grouping,
and (3) a heuristic method to recover lost eye movement data
due to miscalibration. Results indicate that heuristic data
mirroring is an effective strategy for recovering lost short-
duration eye movement data. Fixation grouping appears to
be an effective means for elimination of spurious fixation
outliers following analysis. Provided proper thresholds are
selected, both velocity-based and acceleration-based filter-
ing approaches appear to generate acceptable results. While
velocity-based analysis is easier to deal with, it is more sensi-
tive to noise (i.e., resulting in classification of a greater num-
ber of saccades). Under different circumstances (e.g., with
12-bit sampled data), velocity filters in general (and the 2-
tap filter in particular) may perform more accurately (Bahill
& McDonald, 1983). In contrast, due to the greater degree
of freedom in parameter estimation, the acceleration-based
technique can be adjusted to be less sensitive to smaller am-
plitude saccades, resulting in a more robust approach to fix-
ation detection.

From our experiments conducted in our chosen eye-
tracked Virtual Reality application, we note that performance
measures quantify the level of improvement of subjects’ in-
spection performance (i.e., how the subject performed). If
improvement can be shown, then we may conclude that train-
ing contributes to performance improvement and addition-
ally that the VR simulator is a suitable environment for train-
ing. In addition, process measures can not only corroborate
performance gains, but can also lead to discoveries of rea-
sons for performance improvements (i.e., what the subject
performed). In particular, tracking the users’ eyes can po-
tentially lead to further insights into the underlying cognitive
processes of human inspectors.
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Table 5
Mean and SD data for number of fixations, fixation duration
and raw fixation points.

Number of Fixations Fixation Durations (ms) Raw Fixation Points
Algorithm Before After Before After Before After
2-tap vel. 172.00 138.81 805.31 946.33 4212.36 3253.40

(51.13) (56.85) (301.88) (317.27) (1069.77) (1661.24)
5-tap vel. 148.19 117.86 934.62 881.86 4081.90 3325.12

(45.9) (42.66) (392.55) (360.47) (1206.74) (1615.10)
2-tap vel./7-tap acc. 131.74 100.52 1089.67 1331.64 4152.98 3592.00

(34.92) (42.39) (339.66) (898.67) (1167.68) (1621.45)
5-tap vel./7-tap acc. 117.71 87.36 1306.60 1578.79 4482.21 3657.00

(34.48) (33.97) (468.59) (1021.86) (1159.30) (1575.83)

Figure 16. Raw data (a, left), 2-tap velocity-based analysis (b, right).

Figure 17. Acceleration-based (5-tap) analysis, with (a, left) adaptive thresholding, and (b, right), without.
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