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Abstract— Fitting an ellipse to the iris boundaries accounts
for the projective distortions present in off-axis images of the
eye and provides the contour fitting necessary for the dimen-
sionless mapping used in leading iris recognition algorithms.
Previous iris segmentation efforts have either focused on fitting
circles to pupillary and limbic boundaries or assigning labels
to image pixels. This paper approaches the iris segmentation
problem by adapting the Starburst algorithm to locate pupillary
and limbic feature pixels used to fit a pair of ellipses. The
approach is evaluated by comparing the fits to ground truth.
Two metrics are used in the evaluation, the first based on
the algebraic distance between ellipses, the second based on
ellipse chamfer images. Results are compared to segmentations
produced by ND IRIS over randomly selected images from the
Iris Challenge Evaluation database. Statistical evidence shows
significant improvement of Starburst’s elliptical fits over the
circular fits on which ND IRIS relies.

I. INTRODUCTION

Except for several relatively unique approaches, e.g., [3],
[16], common iris segmentation methods model the iris as a
pair of circles [5]. Although the inner and outer boundaries of
the iris may be roughly approximated by circles, they rarely
appear as true circles in images [9]. The iris image is subject
to perspective projection. It is approximately planar. Any
circle that lies in a plane not fronto-parallel to the camera
will appear elliptical in the image plane. The segmentation
model must account for such distortions. A general ellipse
model is therefore more appropriate than a restricted circular
model to compensate for this type of distortion.

The Starburst algorithm was introduced by Li, Babcock,
and Parkhurst for the purpose of eye tracking [14]. For
such an application, Starburst’s main objective is to identify
feature points on the limbus for subsequent localization of the
pupil center. Starburst then fits an ellipse to the limbic pixels,
operating under the implicit assumption that the center of
that ellipse coincides with the pupil center. The pupil center
is then used for estimating the point of gaze, or POG, of a
viewer wearing the eye tracking apparatus.

In this paper we adapt the Starburst algorithm for the
purpose of iris segmentation. The novelty behind our adapta-
tion is the simultaneous identification of both pupillary and
limbic boundaries, fitting ellipses to both contours, thereby
producing an iris segmentation suitable for subsequent iris
recognition as well as eye tracking applications. Such contour
fitting is an essential component of iris recognition [8].
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Fig. 1. Modeling iris segmentation (patterned on actual image, see Fig. 13).

We also present a technique for eyelid detection. It has
been shown that localization of the eyelid improves accuracy,
reliability, and efficiency by reducing the search area for both
pupillary and limbic features and by eliminating distracting
features like eyelashes [22]. We utilize active contours to
detect the eyelids and demonstrate improved accuracy of iris
segmentation.

The third contribution of this paper is the introduction of
two comparisons to ground truth for evaluating the contour
fitting algorithm: the first based on the root sum squared
metric of algebraic distance between fit ellipses, the second
based on comparison of ellipse chamfer images. We use these
metrics to compare our algorithm’s elliptical segmentations
to those of ND IRIS, a readily available iris segmentation
algorithm [17]. We test images randomly selected from the
publicly available Iris Challenge Evaluation (ICE) database.
We present strong statistical evidence showing improved
elliptical fit accuracy of our approach over ND IRIS. Com-
putation time requirements of the two algorithms are roughly
equivalent.

II. BACKGROUND
Daugman [7] models the iris as an elastic sheet stretched

between the pupil and limbus contours, assigning a pair
of dimensionless coordinates (r, θ) to each pixel at (x, y),
as shown in Fig. 1. This mapping can be represented as
I(x, y) → I(r, θ) where x(r, θ) and y(r, θ) are linear
combinations between the pupillary boundary and the limbus,
I(r, θ) = (1 − r)Ip(θ) + rIs(θ), with Ip and Is denoting
pixels along the pupil and limbus contours, respectively.

Image segmentation algorithms may be classified as either
labeling or fitting. We consider labeling algorithms to be
those that segment an image into groups by assigning labels
indicating to which group a pixel belongs. Examples include
graph cuts, level sets, and watershed. We consider fitting
algorithms to be those that fit a parametrized model to image



pixels. Examples include the Hough transform, snakes, and
Starburst.

Daugman’s elastic sheet model necessitates the use of a
curve fitting algorithm [8], e.g., snakes [9]. ND IRIS uses
the Hough transform for segmentation [17]. We present the
applicability of Starburst.

In [13] the ideas of ray casting, locating two feature points
per ray, and filtering by distance were introduced. In [20]
Starburst was augmented with luminance delineation. In this
paper we combine these notions into a single algorithm that
is capable of accurately fitting ellipses to both the pupillary
and limbic boundaries.

A simple ray-based algorithm resembling Starburst was
used as a post processing step in a graph cuts approach to
iris segmentation, presumably to bolster results when graph
cuts failed [19]. As a labeling algorithm, graph cuts does not
support the elastic sheet model. Its utility is limited to the
creation of a mask as is currently done by statistical infer-
ence [9]. No comparison between graph cuts and statistical
inference was made in [19], however. Sufficient detail of the
ellipse fitting algorithm was also lacking.

III. ELLIPTICAL IRIS SEGMENTATION

Starburst is a randomized local search algorithm used in
eye tracking. Starburst was developed by Li et al. [15] to
compensate for the high degree of noise present in low cost
off-the-shelf cameras. The original algorithm proved to be a
stable way to track the eye under NIR illumination yet there
were three main sources of error: the algorithm had diffi-
culty distinguishing between the pupillary boundary and the
limbus, specular reflections caused erroneous feature points,
and eyelashes and eyelids introduced noise and occlusion.

By incorporating luminance information Starburst was
better able to distinguish between the pupillary and limbic
boundaries [20]. Independently in [13], the start point of
the rays was constrained to any location on the pupil and
each ray generated two feature points. The point closest to
the origin of the ray would be assigned rank of one and
the farther point a rank of two. This rank assignment helps
distinguish between pupillary and limbic boundaries.

Luminance and rank based delineation of feature points
may be combined to discard many feature points that result
from specular reflections. In this paper we implement a
snakes algorithm to find upper and lower eyelid boundaries.
These boundaries mask out the feature search neighborhood
beyond the eyelids and eyelashes.

A. General Description

Our adaptation of Starburst, outlined in Fig. 2, requires
an image of an eye and coordinates of an initial point near
the pupil center. Rays are cast away from the initial point
in a star-like pattern. The gradient is calculated along each
ray and used to identify feature points on the pupillary
and limbic boundaries. These feature points are used to
randomly compute a (potentially large) number of ellipses.
These ellipses are evaluated and the best are selected as the
pupillary and limbic contours.
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Fig. 2. Algorithm flow.

Fig. 3. Eye image after thresholding (left) and chamfer operations (right).

B. Detailed Description

1) Image Pre-processing: We preprocess the image by
convolution with Gaussian filters. We first use a simple
smoothing filter then a gradient detection filter. We use the
resulting gradient vectors for both feature detection and el-
lipse fitting. Starburst requires an initial location from which
to begin searching. The ICE database does not provide such
initial points. We therefore begin with a simple threshold
algorithm that locates a seed point.

2) Start Point Detection: We find the start point in two
steps. First, the darkest 5% of pixels are set to black; all
others are set to white. This is done to isolate the pupil as it
is a dark part of the image and covers slightly less than 5%
of the image (see Fig. 3, left). We find that eyelashes and
other hair are often as dark as the pupil, but cover very little
area.

Second, we calculate the chamfer image using 3, 4 weight-
ing [4] so that the darkest pixel is the pixel farthest from any
white pixel (see Fig. 3, right). Since eyelashes and other hair
are long and thin while the pupil is round the location of the
darkest pixel is most likely within the pupillary boundary
and a good start point for the remainder of our algorithm.

This simple thresholding algorithm will fail when the
eyelashes are accentuated by heavy mascara and the pupil
is simultaneously occluded by bright specular reflections.
Nevertheless it is effective on a majority of the ICE database.

3) Feature Detection: We use dot products to calculate
the component of the gradient collinear with rays pointing
radially away from the start point (see Fig. 4, left). The objec-
tive is to mark feature points at the locations where the rays
exit dark regions. Each ray marks feature points at the two
largest gradient peaks within an experimentally determined
epsilon distance. The term rank is used to indicate which of
the two points is closer to the origin of the ray. A rank 1
feature point is closer to the origin and expected to be on
the pupillary boundary. A rank 2 feature point is further from
the origin and expected to be on the limbus.



Fig. 4. Rays used to detect feature points (left), with point culling due to hardcoded a priori constraint on ray direction when eyelid detection is not
used (middle), and classified feature points (right; with pupil green, limbus blue, junk black).

Feature detection without lid detection (see below) as-
sumes a priori that eyelids exist above and below the start
point and that eyelids occlude the top and bottom portions
of the limbus. This assumption leads to (hardcoded) culling
of the top 1/3 and bottom 1/4 of candidate feature points,
following sorting by their y-values (see Fig. 4, middle). As
a result, these top and bottom feature points are not used for
subsequent ellipse fitting.

Surviving feature points are classified into three categories:
pupil, limbus, and junk. We begin by sorting the points by
their corresponding luminance. We expect 50% of them to
be on the pupil. The luminance of pixels on the pupil is less
than those on the limbus. Any feature point of rank 1 with
low luminance is labeled as a pupil point. Those that are of
rank 2 with high luminance are labeled as limbus points. All
others are labeled as junk (see Fig. 4, right).

4) Ellipse Fitting: Once we have detected and classified
our feature points we fit ellipses to the feature set. By
selecting five pupil points at random we can create a 5× 5
system of equations from the general quadratic expression
for an ellipse:

ax2 + by2 + cx + dy + exy + f = 0. (1)

We set the f coefficient to an arbitrary value and use
Gaussian elimination to compute the remaining coefficients.

Once an ellipse is generated it must be evaluated. We
generate many such ellipses, evaluate them all, and take the
mean value of the best few to be our final contour. It may
seem strange to average several rather than simply retaining
the single best. Yet the average yields better results due to the
randomized nature of the algorithm. There is some degree
of independence between the results and each is affected by
random noise in the input. The resulting random error may
be minimized by averaging the result of multiple trials.

The evaluation of the ellipse is equal to the mean evalua-
tion of all the pixels through which it passes. A good pixel is
one that is on or near the peak of a strong gradient pointing
toward the center of the ellipse. First, we detect edges in the
image with the Canny edge detector to find pixels on a peak
gradient. Next, we blur the edge detected image slightly to
find pixels near a peak. For each pixel we compute the dot
product of the unit vector pointing from that pixel toward
the center of the ellipse and the gradient at that pixel. This

Fig. 5. Edge image (left) and ellipse fit to pupil (right).

is multiplied by the corresponding pixel in our edge image
(see Fig. 5).

The following expression describes our ellipse evaluation
where ∇(x, y) is the gradient, E(x, y) is the edge value, the
unit vector ν(x, y) points toward the ellipse center at pixel
location (x, y), and the ellipse passes through n pixels:∑

∀(x,y) on ellipse

E(x, y) (∇(x, y) · ν(x, y))
n

Note that the solution of the 5 × 5 system of equations
and the subsequent evaluation of the generated ellipse may
be computationally prohibitive if the number of systems
solved and ellipses evaluated is very high. We improve the
probability of generating a good ellipse by selecting feature
points in an intelligent way.

We have noticed that inferior combinations of points
include points that are spatially clustered. We have imple-
mented a heuristic algorithm that encourages selection of
points that are spatially distant (see pseudo-code in Alg. 1).

FeatureSelect(feature point set S)
limit = 10
while |S| < 5
select a point P ′ at random
for all points P ∈ S

if ∠P ′ − ∠P < π/limit
discard P ′ and pick a new one
limit += 0.5

else add P ′ to set S

Alg. 1. Algorithm for selecting feature points, with ∠ denoting the angle
of the ray that detects point P .



Fig. 6. Detection of upper (left) and lower eyelid (right).

C. Eyelid Detection Algorithm
We use the snake algorithm to detect eyelids. Snakes, first

introduced by Kass et al. [12], can be used to extract contours
from images, or track objects in video. The location of the
contour is determined by an ordered set of control points. The
snake algorithm minimizes an energy function that depends
on the snake’s position:

energy =
∑

all edges

data + elasticity + stiffness.

We consider data to be large where the image gradient
magnitude is small. For each control point we define an
initial and terminal location. The elasticity term of our
function is large when the control points are far from their
respective terminal positions. The final term enforces our
assumptions about the shape of the contour. We define
stiffness to be large when the curvature deviates from what
we would expect of an eyelid. We allow control points to
move only in the vertical direction.

The algorithm is implemented through the use of dynamic
programming [1]. A 9 × n table of (prev , energy) pairs is
populated. Each column in the table corresponds to a pair
of control points (vi, vi+1), and each row corresponds to
possible movement ((a, b), (c, d)) for the points. A particular
entry in column i row j contains the best total energy for
all points 1 through i if points vi, vi+1 move as indicated
by row j. Note that only three rows of the i − 1 column
are consistent with any particular entry of column i. This
is because both columns contain vi. These three consistent
rows correspond to the three possible movements of vi−1.

We compute the energy of entry i, j as

energy i,j = ‖∇(vat (a,b)
i )‖+ α‖vat (c,d)

i − fin(vi)‖2 +

min
k:k�j

(
β‖vat (c,d)

i+1 − 2v
at (a,b)
i−1 + vat k

i−1‖2 + Θ(k)
)

,

where α and β are experimentally determined constants (α =
β = 0.25 in the current implementation), Θ(k) is the energy
entry from consistent rows of the previous column, k � j
means k is consistent with j, fin(vi) is a terminal location
of vi, and ‖∇(vat (a,b)

i )‖ is the gradient magnitude. The first
term is the data term, the second is the elasticity , and the
third is the stiffness . An example of the resultant eyelid
detection is shown in Fig. 6.

D. Combined Algorithm
Now that we have described all the major components

of our iris segmentation algorithm we explain how they are
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Fig. 7. Combined algorithm flow.

Fig. 8. Masked feature search region resulting from automatic eyelid
detection (left) and final segmentation (right).

assembled into a complete iris segmentation system. The
refined algorithm flow is shown in Fig. 7.

The first step of the algorithm is to find a start point on the
pupil. This is done using luminance threshold combined with
chamfer distance. Although this start point is nearly always
on the pupil, specular reflections usually push it away from
center.

As the pupil is more salient in the image than the limbus
we locate its boundary first. The off-center nature of our start
point introduces a bias in our pupil localization. This first
invocation of the Starburst algorithm is sufficient for two
purposes. First, the center of the resulting ellipse is much
closer to the pupil center than our initial start point. Second,
we are able to scale our ellipse down slightly and mask out
the specular reflection. Scaling is easily accomplished by
slightly increasing the constant term of our coefficients.

Masking is accomplished by setting values of all gradient
vectors located within the ellipse to zero. We then run
a second iteration of Starburst with the new start point,
and with the masked image as input. This second iteration
produces a better fit because the feature points are more
evenly distributed around the appropriate boundary rather
than clustering mostly to one side.

Next we use snakes to find the eyelids. The snakes do not
precisely locate the eyelids, instead they are used to mask
out areas where we are unable to find good limbic feature
points. After the eyelids are detected we run a final iteration
of Starburst to locate the limbus. Feature points beyond the
eyelids are discarded and only pixels between the eyelids
are used during ellipse evaluation. An example of the final
segmentation is shown in Fig. 8.

It should be noted that our implementation of snakes often
fails to properly mask the eyelids and eyelashes and that in
most cases hardcoded constraints relating the eyelid position
to the pupil location work just as well. Nevertheless, the fact
that the automatic snake algorithm performs as well as our



hardcoded a priori constraint on ray direction (as seen in
the experimental results below) demonstrates the potential
of this approach.

IV. EVALUATION OF THE ALGORITHM

We have manually segmented 245 images from the ICE
database with closed contours modeled by ellipses, to serve
as ground truth for comparison of Starburst to ND IRIS.
Low contrast between pupil and iris might pose a potential
problem. Images poorly suited to either approach were not
excludded from the random sample, e.g., see Fig. 11.

Although other experimental efforts report overall bio-
metric accuracy measures such as equal-error or rank-one
recognition rates [5], some of which are subjective in nature,
e.g., [18], here we concentrate specifically on objective
elliptical goodness of fit of automatically segmented ellipses
to ground truth. To do so, we introduce two distance metrics.
The first is based on a closed form evaluation of the algebraic
distance, the second is based on chamfer image segmentation
of both fitted and ground truth images.

A. Evaluation Metric Based on Algebraic Distance

The quadratic equation (1) represents a generic conic as
the zero set of a second order polynomial:

H(a;x) = a · x = ax2 + by2 + cx + dy + exy + f = 0,

with a = [a b c d e f ]T and x =
[
x2 y2 x y xy 1

]T
.

H(a;xi) = D is called the algebraic distance of a point xi

to the conic H(a;x) = 0 [10]. Our ellipse distance metric is
defined as the root sum squared (RSS) of algebraic distances
of the sampled points of the tested ellipse w.r.t. the reference
ellipse, i.e.,√∫ xmax

xmin

H(a;xi)2dx ≈

√√√√xmax∑
xmin

H(a;xi)2.

In practice,
∑

H(a;xi)2 can be evaluated either directly,
e.g., iterating over x ∈ [xmin, xmax] for some small ∆x, or
following an approach similar to that of Bresenham [6]—an
efficient, discretized scanline sampling of ellipse points usu-
ally employed for rendering. Our implementation evaluates
H(a;xi) in a manner similar to Bresenham’s ensuring no
gaps between sampled points on the tested ellipse.

This algebraic distance is a more robust metric of el-
liptical goodness of fit than simple average error of el-
lipse center and radii. Simple (Euclidean) distance mea-
sures of center displacement merely indicate translation
error whereas the difference in radii reflects the elliptical
orientation error. Reporting these separately (e.g., as in [19])
does not fully describe the misalignment between ellipses
due to composite homographic transformation (including
rotation, translation, and scaling of the ellipse axes). The
above error metric takes into account the homographic
transformation by virtue of evaluation of the second or-
der quadratic, as the quadratic coefficients embody the
ellipse’s rotation by θ about its center (h, k), satisfying
(M(x− h) + N(y − k))2 + (M(y − k)−N(x− h))2 =

D = 0.00 D = 4.17 D = 4.23

Fig. 9. Ellipse distance metric examples. In each case, the reference ellipse
is situated at the origin with r = 0.3 and s = 0.7 rotated by θ = 40◦

while a test ellipse (center indicated by a black dot) is rotated and/or shifted.
Bounding boxes are drawn around each ellipse.

r2s2 :
a = s2M2 + r2N2

b = s2N2 + r2M2

e = 2MN(s2 − r2)
f = M2(s2h2 + r2k2) + N2(r2h2 + s2k2) +

2MNhk(s2 − r2)− r2s2

c = −2ha− ke

d = −2kb− he

where (r, s) are the lengths of the ellipse axes and M = cos θ
and N = sin θ. The RSS metric evaluates to 0 for exactly
overlapping ellipses while producing non-zero values for
rotated and translated ellipses, as shown in examples in
Fig. 9.

B. Evaluation Metric Based on Chamfer Images

An analog of the above metric performed in image space
can be obtained by creating a chamfer image for each
segmentation such that each pixel indicates the distance from
ground truth at that location. To evaluate the goodness of fit
of a particular segmentation contour we introduce the MDGT
(Mean Distance from Ground Truth). Let MDGT be defined
as the mean value in the chamfer image of all pixels through
which the contour passes.

Note that MDGT is somewhat similar to mean RSS error
but operates in image space. Mean RSS is evaluated in ellipse
coordinates rather than in image coordinates. We should note
that a normalized form of RSS is also available, known as
the Sampson error, which is a form of algebraic distance
subject to Mahalanobis normalization [11].

C. Results

We have automatically segmented 245 images using each
of three segmentation algorithms: Starburst without eyelid
detection, Starburst with eyelid detection, and ND IRIS.
RSS and MDGT were computed for each automatically
segmented image.

Viewing the experiment as a 2 × 3 factorial design (2 fitted
image features: pupil or limbus, and 3 algorithms: Starburst
with and without lid detection and ND IRIS) and considering
the fitted image features and algorithms as fixed factors (with
images as the random factor [2]), repeated-measures two-
way analysis of variance, or ANOVA, indicates a significant
main effect of feature on RSS (F(1,244) = 555.13, p < 0.01)1

1Assuming sphericity as computed by R, the statistical analysis package
used throughout.
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Fig. 10. Comparison of mean RSS (top) and MDGT (bottom) metrics.

as well as a significant main effect of algorithm (F(2,488)
= 117.79, p < 0.01), with feature × algorithm interaction
significant (F(2,488) = 112.81, p < 0.01).

Averaging across the three algorithms, pair-wise t-tests
with pooled SD indicate significantly better performance of
Starburst (with or without lid detection) over ND IRIS (p <
0.01, with Bonferroni correction). Pair-wise t-tests show no
significant difference between the two variants of Starburst.

Plotting the mean RSS and MDGT with standard error
against algorithm type, as shown in Fig. 10, indicates that
all three algorithms provide a statistically significant overall
better fit to the pupil than to the limbus. Although use of
eyelid detection shows no statistically significant advantage
in its use by Starburst, on average, Starburst significantly
outperforms ND IRIS in both pupil and limbus ellipse fitting.

For readers unfamiliar with ANOVA, its tests are based
on the F-ratio: the variation due to an experimental effect
divided by the variation due to experimental error [21]. The
null hypothesis assumes F = 1.0, or that the effect is the same
as the experimental error, hence no significant difference is
expected (between means of the sampled responses, assumed
to be normally distributed). This hypothesis is rejected if the
F-ratio is significantly large enough that the possibility of it
equaling 1.0 is smaller than some pre-assigned probability,
e.g., p = 0.01, or one chance in 100, meaning that if p <
0.01 then the observed difference is > 99% certain to be
solely due to experimental effect (the means are sufficiently
far apart that the distributions do not overlap).

A critique of ANOVA for significance testing is the
assumption of normality of the parametric data under inspec-
tion. The Kruskal-Wallis rank sum test is a nonparametric

MDGT Pupil Limbus
Starburst 9.52 8.16
ND IRIS 1.40 5.90

RSS Pupil Limbus
Starburst 0.91 1.85
ND IRIS 0.16 0.65

MDGT Pupil Limbus
Starburst 0.68 8.39
ND IRIS 0.97 4.89

RSS Pupil Limbus
Starburst 0.05 0.67
ND IRIS 0.07 0.41

Fig. 11. Two worst Starburst segmentations.

test that can be used in place of one-way ANOVA if the
distribution is not normal. It is used in a similar manner as the
Wilcoxon signed-rank test in place of the t-test. It is a test on
the ranks of the original data and so the normality assumption
is not required. Averaging across algorithms, the Kruskal-
Wallis rank sum test indicates a significant difference in mean
RSS (χ2 = 195.36, df = 2, p < 0.01). Similarly, averaging
across limbus/pupil features, the Kruskal-Wallis rank sum
test indicates a significant difference in mean RSS (χ2 =
792.97, df = 1, p < 0.01). The agreement between test
significances simply shows that the normality assumption of
ANOVA as used above is not unreasonable.

Similar significance results were obtained following
ANOVA of the MDGT metric, as suggested in Fig. 10,
but are omitted due to lack of space. Results from the
three segmentations are visualized by displaying ground truth
in green. Starburst with eyelid detection is displayed in
magenta. ND IRIS segmentation is displayed in cyan. Star-
burst without eyelid detection is similar to that with eyelid
detection and is not shown. Image examples were selected
by sorting the evaluation results by MDGT and selecting the
best and worst few segmentations. From these images it is
clear that high RSS and MDGT values correspond to poorer
fits and, likewise, low RSS and MDGT values correspond to
better fits.

The images in Fig. 11 illustrate the two worst Starburst
fits. Note that the complete failure in the first image may
be easily detected and compensated for by post processing.
No part of the pupil ellipse should ever protrude outside the
limbus ellipse.

The two best Starburst fits are shown in Fig. 12. Note that
the magenta ellipse is partially occluded by the ground truth
ellipse. Notice also that the ND IRIS segmentation deviates
more at the top and bottom of the contour than at the sides.
This is typical of ND IRIS as it assumes circular models of
the contours. Fig. 13 contains two more typical examples.

D. Discussion

The occasional failure of our implementation to properly
segment the pupil can be attributed to failure of the simple
thresholding algorithm to identify a good seed point and
handle interference from specular reflections. The Hough



MDGT Pupil Limbus
Starburst 0.70 0.33
ND IRIS 1.56 3.30

RSS Pupil Limbus
Starburst 0.07 0.07
ND IRIS 0.12 0.37

MDGT Pupil Limbus
Starburst 0.62 1.78
ND IRIS 1.08 1.57

RSS Pupil Limbus
Starburst 0.05 0.16
ND IRIS 0.08 0.17

Fig. 12. Two best Starburst segmentations.

MDGT Pupil Limbus
Starburst 0.99 5.50
ND IRIS 4.05 6.10

RSS Pupil Limbus
Starburst 0.03 0.17
ND IRIS 0.10 0.19

MDGT Pupil Limbus
Starburst 3.57 3.69
ND IRIS 3.48 15.01

RSS Pupil Limbus
Starburst 0.20 0.38
ND IRIS 0.21 1.22

Fig. 13. Two typical Starburst segmentations.

transform used by ND IRIS employs a global search and
does not suffer from this problem. On average, however,
adapted Starburst’s elliptical fitting accuracy is superior to
that of ND IRIS. This is not surprising as the cause is likely
due to Starburst’s use of an elliptical contour model instead
of a circular one. Since our metrics are a measure of elliptical
goodness of fit, the circle is at a disadvantage. Thus, our
analysis supports our hypothesis of the ellipse as more fitting
for iris contour modeling than the circle.

Recall that our implementation without eyelid detection
imposed a priori constraints on ray direction. Feature points
in near vertical directions were not used for ellipse fitting.
Consequently, the upper and lower portions of the limbus
contour were omitted from fit evaluation. Automatic eyelid
detection does not provide a significant accuracy benefit over
hardcoded constraints, suggesting that both approaches are
equally effective. Further refinement of the eyelid detection
algorithm should improve limbus segmentation.

V. CONCLUSION

A novel approach to iris segmentation based on the Star-
burst algorithm was given, showing significant improvement
over ND IRIS in fitting of the iris contours. Two metrics were
introduced, one based on the algebraic distance between el-
lipses, the other on chamfer images. The ability of automatic
eyelid detection via active contours to achieve results similar
to hardcoded results suggests the potential of snakes for

effective masking of feature points used for elliptical fitting.
The resultant iris segmentation is thus suitable for subsequent
iris recognition as well as eye tracking applications.
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