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Abstract

Eye tracking experiments often involve recording the pattern of deployment

of visual attention over the stimulus as viewers perform a given task (e.g., visual

search). It is useful in training applications, for example, to make available an

expert’s sequence of eye movements, or scanpath, to novices for their inspection

and subsequent learning. It may also be potentially useful to be able to assess the

conformance of the novice’s scanpath to that of the expert. A computational tool

is proposed that provides a framework for performing such classification, based on

the use of a probabilistic machine learning algorithm. The approach was influenced

by the need to compute similarity of eye fixations at single points in time, such

as would be required for video stimuli. This method is also useful for eye move-

ment analysis over static images and some interactive tasks. The algorithm employs

a common qualitative comparison method, the heatmap, in a quantitative way to

measure deviation from group aggregate behavior. This quantitative comparison is

performed at individual events, defined by the stimulus, such as frame timestamps

of video or mouseclicks of interactive tasks. The algorithm is evaluated and found

to be more accurate and discriminative than existing comparison algorithms for the

stimuli used in the examined experiments.



iii

Acknowledgments

Special thanks belong to the members of my doctoral committee: Dr. Duchowski,

Dr. Srimani, and Dr. House from the School of Computing, as well as Dr. Gramopad-

hye from the Industrial Engineering department. I appreciate the suggestions, crit-

icisms, and communication I have received from you all.

I would like to especially thank Dr. Duchowski for serving as adviser for both

my master’s thesis and doctoral dissertation. He has given me mostly free reign to

explore my area of interest and how it could be applied to eye tracking. He has also

helped me to understand research better and to know what aspects of research I

find most appealing.

Dr. Feng Luo certainly deserves acknowledgment, as well. Under his direction,

I received my first conference publication. I experienced a different, and valuable,

experience in research while working with him, which I have grown to appreciate

and incorporate into my own style.

Finally, I would like to thank two colleagues at Clemson University: Adam

Whitley and Bo Li. They have both been eager to discuss research and consider

some of the hard questions we were dealing with. Whether the topic was personal

or professional, they always had something useful to offer.



iv

Table of Contents

Page

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Still Image Stimulus Analysis and Classification . . . . . . . . . . . 11
3.1 Classification Framework . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Eye Movement Analysis . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Scanpath Comparison . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Temporal Normalization . . . . . . . . . . . . . . . . . . . . . 19
3.1.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.5 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Empirical Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Video Stimulus Analysis and Classification . . . . . . . . . . . . . . 36
4.1 Classification Framework . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Eye Movement Analysis . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 Scanpath Comparison . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Dynamic Heatmap Visualization . . . . . . . . . . . . . . . . . . . . 38
4.3 Perceptual Saliency of Video Frames . . . . . . . . . . . . . . . . . . 40
4.4 Empirical Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.2 Perceptual Saliency . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.3 Embedded Figures Test . . . . . . . . . . . . . . . . . . . . . 50
4.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Interactive Stimulus Analysis and Classification . . . . . . . . . . . 54
5.1 Temporal Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Empirical Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



v
Table of Contents (Continued)

Page

6.1 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



vi

List of Figures

Figure Page

1.1 Raw data to Scanpath . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Example of Levenshtein distance calculation. . . . . . . . . . . . . . . . 6
2.2 Example of string editing . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Collections of scanpaths for a single stimulus. Typical novice
scanpaths visualized in (a), experts in (c). Collection of time-
projected novice scanpaths in (b), and experts in (d), which
can be considered side views of the three-dimensional data. . . . . . 12

3.2 Typical scanpath visualization at left. Time-projected scanpath
visualization at right, where the y-axis denotes vertical gaze
position, but the x-axis denotes time. Fixation labels are
common between the two. Markers denote one-second intervals. . . . 16

3.3 Mixture of Gaussians for a classified set of fixations at a discrete
time-stamp. Displayed unclassified fixations (labeled gray
circles) were not used in the heatmap generation. Note that
the fixation labeled ‘A’ is far from any Gaussian center, and
thus has lower similarity than fixation labeled ‘B’. . . . . . . . . . . 18

3.4 Examples of small and large distribution overlap with ROC
curves that are similar to what these distributions would be
expected to yield. The ROC curve is extracted by sliding
threshold along x-axis and calculating true and false positive rates. . 21

3.5 Results of classification cross-validation for the new event-driven
method, string-editing similarity, and a random classifier’s
expected performance. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Examples of best, worst, and average ROC curves, respectively.
Each example shows the ROC curve for the training data
for both the positive and the negative classifiers, for that
stimulus. Best case is stimulus ‘b6’. Worst case is stimulus
‘a3’. Average case is stimulus ‘a4’. . . . . . . . . . . . . . . . . . . . 33

3.7 Results of cross-stimulus validation. Accuracy is determined by
counting the number of experts/novices with expert ratio
greater than 0.5 in the case of experts and less than or equal
to 0.5 in the case of novices. . . . . . . . . . . . . . . . . . . . . . . . 34



vii
List of Figures (Continued)

Page

4.1 Heatmap visualization of gaze recorded over a video sequence
(labeled sequence C) viewed by either “free viewing” (above)
or following instruction to avoid faces (below), the latter ar-
tificially simulating reduced face gaze exhibited by autistic
observers. Frames in both strips were rated highly as percep-
tually salient according to the level of attentional dispersion
detected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Frames from stimulus sequences. Sequences A and C were ex-
cerpts from Sofia Coppola’s Marie Antoinette c© 2006, Columbia
Pictures and Sony International, obtained with permission
for research purposes by the Universitat Autònoma de Barcelona.
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Chapter 1

Introduction

Eye tracking is a valuable method of visualization and analysis of a viewer’s (or

a group of viewers’) distribution of visual attention. Fast eye movements (saccades)

reposition the fovea, the area of highest resolvability, over objects in the visual field

(or Regions Of Interest, ROIs) for closer scrutiny. In contrast to saccades, mainly

stationary eye movement periods (fixations) are indicators of cognitive processing of

the object under inspection. A sequence of fixations is known as a scanpath (Figure

1.1 shows the raw data and conversion to scanpath). It can be assumed that visual

attention follows the fovea, although this is not always the case (one can covertly

attend to an object in their periphery but must do so willfully; peripheral visual at-

tention is immeasurable and unlikely without overt effort in most unrehearsed tasks

[Kramer and McCarley 2003]). Consequently scanpaths are traces of what a viewer

overtly attended to in a scene. They have been used for compelling visualizations

since the early 1970s, but have as yet not been fully exploited for their quantitative

potential.

Figure 1.1: Raw scan data converted to a scanpath in which each circle represents
a fixation with the diameter relative to the duration.

There are many applications in which tracking and quantifying individuals’ re-

actions to visual stimulus is valuable. One such example is that of a complex training
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task. A basic training paradigm consists of an expert overseeing the activity of one

or more novices under his tutelage. The expert relies on many learning cues which

give important feedback on future training direction. Nair et al. [2001] have shown

that eye tracking is a useful cue for these kinds of tasks, as eye movement recordings

afford process measurement along several different metrics (e.g., fixations, fixation

durations, etc.). One comparative metric that has not been studied extensively is

expert/novice similarity.

Expert/novice classification metrics are actively sought simultaneously by Com-

puter-Human Interaction researchers, training practitioners, as well as eye tracking

users and developers. The desire for a quantitative metric for expert/novice classifi-

cation is driven mainly by process training applications. Within this context, proper

evaluation of training patterns and development is essential to those who oversee an

organization’s training programs.

There are many ways in which expert and novice scanpaths can be compared.

Depending on the task, certain metrics may be more useful than others. A robust

comparison metric should reliably classify an input scanpath as a member of some

specified group, such as experts or novices, with high accuracy. Since the most ac-

curate way of classifying these two scanpath classes may vary per task, the most

robust method of classification is one that adapts to the stimulus used, whether it

be a still image, video, or an interactive task. The visual activity of the observers

can be used to extract useful information, independent of the content of the stimulus

itself.

Distinguishing between expert and novice can be accomplished via a two-step

process. Given a predefined set of experts and novices, the scanpath in question is

compared to each group to determine how similar it is to that group. These two
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similarity scores are then compared to the distribution of expected similarity scores

for each class distribution, from which we may determine the probability that the

scanpath in question is truly expert or novice. This final value serves well as a

“group-wise similarity”.

The approach is thus two-fold. First, an appropriate method must be derived

for comparing a single scanpath to a group of scanpaths. Second, an analysis frame-

work must be constructed that will provide a robust mechanism for determining

which scores belong to which class.

The first problem is approached from the perspective of a collection of samples

“per event” for a given stimulus. At each event (e.g., display of a video frame), the

fixation points for all scanpaths are collected. The scanpath in question is then com-

pared to the collected fixation points for the different classes and weighted by the

distance from the various fixations. The weights for the fixations from the scanpath

in question are summed up over all the events to obtain a final similarity to all the

predefined scanpaths.

The second problem is solved through use of Receiver Operating Characteristic

(ROC) analysis. This statistical framework is commonly used in machine learning

applications. The ROC curve, in particular, provides an elegant means of evaluating

the probability of arbitrary values’ membership in known classes. It also allows for

a secondary indication of reliability, described in Section 3.1.4.

The derivation of a robust classification metric poses several challenges. First,

the metric should be able to compute correlation-like values in terms of the features

used, whether they be location, area, order, and/or duration. Second, the metric

should provide levels of statistical significance. Third, this computation should be
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automatic, relying on a robust clustering approach that does not rely on a priori

estimation of the number of clusters. Fourth, cluster overlap should be flexible,

allowing fixation cluster comparison in both space and time. Fifth, computation

of an “average scanpath function” should also be automatic, providing an idealized

function serving as the ground truth or reference for comparison. The proposed

classification algorithm satisfies these criteria in a novel way. The development of

completed classification and scanpath comparison computations is evaluated empir-

ically.
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Chapter 2

Background

Scanpath comparison can be classified as either content-, or data-driven. The

former is largely based on Regions Of Interest, or ROIs, identified a priori in the

stimulus and subsequently by associating those regions with fixations. Thus, any

form of analysis or comparison between scanpaths is made in terms of regions or

image elements fixated by the viewer. The latter approach, in contrast, is made

on scanpaths directly, independent of whatever was presented as the stimulus. An

important advantage of the latter form of analysis is that it can be applied to the

(x, y, t) eye movement streams directly, without the need of establishing a reference

frame within which the ROI stipulation must take place.

Consider two recent approaches to the scanpath comparison problem. Jarodzka

et al.’s [2010] vector-based similarity measure is an example of a content-driven ap-

proach since it relies on the quantization of the stimulus frame into an arbitrarily-

sized 5×5 grid which serves as the method’s source of ROI labeling. A label is added

to the scanpath stream whenever a fixation is present within a grid cell. In contrast,

Duchowski et al.’s [2010] revisitation of Privitera and Stark’s [2000] string-editing

approach is an example of a data-driven approach since it operates directly on the

scanpaths. String (ROI) labels are determined by overlapping fixation clusters.

Both approaches consider fixation durations and are therefore potentially suitable

for analysis of gaze collected over dynamic media, however, their means of scanpath

aggregation are derived from pairwise vector or string comparisons. For groups of

viewers, additional organization is required to derive aggregate statistics. Further-

more, Privitera and Stark’s [2000] use of a string-editing procedure to compare the

sequential loci of scanpaths did not distinguish between fixations of different du-
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rations, which is useful for class discrimination. The present approach builds on

this framework, but at a temporal level, introducing an event-driven concept, where

events are points in time, allowing for comparison with groups of scanpaths.

The basic derivation of the string-editing metric follows. The string-editing

distance, also referred to as the Levenshtein distance, is derived from a dynamic

programming approach. A two-dimensional matrix is constructed to represent pos-

sible modifications to the two strings being compared, which is then traversed to

find the optimal alignment (in terms of transformation cost). An example matrix for

the strings afbffdcdf and abcfeffgdc is displayed in Figure 2.1. The values in the ma-

trix entries represent the cost required to perform a transformation. Substituting,

inserting, or deleting a character each have cost 1. The matrix is filled by rows from

top to bottom, accumulating transformation costs. For instance, in the upper-left

entry, the value is 0 because there is no transformation needed. In the entry imme-

diately to the right, there is transformation cost 1, since that entry corresponds to

an insertion of the character f in the second string. Similarly, the entry immediately

below the upper-left 0 corresponds to an insertion in the first string. The diagonal

entry corresponds to a possible substitution.

a f b f f d c d f
a 0 1 2 3 4 5 6 7 8
b 1 1 1 2 3 4 5 6 7
c 2 2 2 2 3 4 4 5 6
f 3 2 3 2 2 3 4 5 5
e 4 3 3 3 3 3 4 5 6
f 5 4 4 3 3 4 4 5 5
f 6 5 5 4 3 4 5 5 5
g 7 6 6 5 4 4 5 6 6
d 8 7 7 6 5 4 5 5 6
c 9 8 8 7 6 5 4 5 6

Figure 2.1: Example of Levenshtein distance calculation.
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The alignment procedure is demonstrated in Figure 2.2. On the final line, the

real alignment is displayed, along with the total distance from the first string to

the second. This is the most useful part of the string-editing distance algorithm.

For character data, this alignment is sufficient. Hembrooke et al. [2006] used a

multiple sequence alignment algorithm to create an average scan path for multiple

viewers, providing some functionality lacking in the previous work. Unfortunately,

their procedure was never explained in detail, and no objective results were pro-

vided. When calculating similarity of scanpaths, though, this alignment requires a

high-level analysis to determine regions of interest, which are then labeled with a

character. A scanpath, originally a fairly long sequence of coordinate pairs, is then

converted into a much shorter sequence of ROI labels. This may be done through

clustering techniques or designation of predefined, explicit ROIs.

One objective of the present work is to integrate this high-level alignment with

the lower-level algorithm that will be described, allowing it to be used for a wider

range of problems. Some visual tasks involve multiple steps that need to be com-

pletely separately. In some instances, the problems may take different lengths of

time to complete for different individuals. The high-level string-editing alignment

would provide a guideline, of a sort, within which to perform a more comprehensive,

lower-level analysis. Also, since it is the most widely-accepted form of scanpath

comparison, it serves well as a baseline to compare new algorithms to.

Goldberg et al. [2002] demonstrated several ways in which high-level scanpath

data may be used to analyze stimuli. Their study was focused on the general charac-

teristics of scanpaths around specific areas of a stimulus. Bednarik et al. [2005] used

similar high-level data to construct a transition matrix that described the probabil-

ity that a subject would look from one given area of interest to another. Their study,

on eye tracking during program visualization, showed no significant correlation be-
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s1 = abcfeffgdc
s2 = afbffdcdf start cost 0

s1 = abcfeffgdc
s2 = afeffdcdf substitution of first b by e cost 1

s1 = abcfeffgdc
s2 = abcfeffdcdf insertion of bc after first a cost 2

s1 = abcfeffgdc
s2 = abcfeffdc deletion of last df cost 2

s1 = abcfeffgdc
s2 = abcfeffgdc insertion of g cost 1

s1 = abcfeffgdc−−
s2 = a−−fbff−dcdf alignment total distance 6

Figure 2.2: Example of string editing. Adapted from Privitera and Stark [2000].

tween the high-level data they extracted and program comprehension. Fischer and

Peinsipp-Byma [2007] combined both high-level data and transition matrices, ex-

tracted from a uniform grid sampling of a stimulus, to describe scanpaths. Their

intention was similar to the objective of Goldberg et al. [2002], in that they were

attempting to evaluate perception of elements of a stimulus. None of these works

actually compare high-level data from one individual or group of individuals to an-

other.

Duchowski and McCormick [1998] described a visualization which tracks fixa-

tions through time, referred to as “volumes of interest”. They were able to visualize

multiple scanpaths in two and three dimensions, using this temporal mapping. The

two-dimensional visualization plots x or y components on the y-axis and time on the

x-axis, while the three-dimensional visualization depicts scanpaths as uniform-width

volumes, where time serves as the third dimension. Räihä et al. [2005] described

a similar visualization in two dimensions, with the slight difference that fixations

were displayed as variable-size circles, congruent with the typical visualization of
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scanpaths. Heatmap visualizations, as described by Pomplun et al. [1996] and pop-

ularized by Wooding [2008], overlay attentional information onto a stimulus as col-

ors, where hot colors correspond to regions of high interest and cold (or no) colors

correspond to regions of low interest. This representation is highly informative, yet

does not provide any quantitative information. The concept of heatmaps is utilized

in the present algorithm, but they are not aggregated over time.

The present similarity measure resembles somewhat the Earth Mover’s Distance

used by Dempere-Marco et al. [2006] when considering cognitive processes underly-

ing visual search of medical images. The approach is also similar to Galgani et al.’s

[2009] effort to diagnose ADHD through eye tracking data. They created three

classifiers, including a classifier based on Levenshtein distance, and discovered that

Levenshtein’s gave the best results among their chosen algorithms. To show relative

improvement, the performance of the algorithm is compared to a similar Levenshtein

classifier.

Torstling [2007] demonstrated an application of machine learning to eye track-

ing, where a generative model was constructed from individual scanpaths collected

over multiple images. The classifier is then trained and evaluated on its ability to

predict which image the scanpath was created from. This is quite similar to the

intent of the present work, aside from the fact that the previous attempted to pre-

dict stimulus, whereas the present work attempts to predict subject attributes (e.g.,

expert/novice).

The current approach was initially described in Grindinger et al. [2010]. The

basic framework of the algorithm has not changed since that initial publication,

though several of the details have been adjusted, extended, and evaluated. The ma-

jor missing element of that publication was analysis over video stimuli, which will
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be evaluated in this work, as well as application to interactive stimuli.
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Chapter 3

Still Image Stimulus Analysis and

Classification

The scanpath classification algorithm takes as input two collections of fixation-

filtered scanpaths. An example image is presented in Figure 3.1, displayed in 3.1(a)

with all novice scanpaths and in 3.1(c) with all expert scanpaths. From a simple

visual examination, there is no obvious characteristic that stands out for either col-

lection. A procedure is then needed to perform a deeper statistical analysis of each

collection.

3.1 Classification Framework

A classifier is a function that accepts training data and a similarity measure as

input and produces a means of discriminating between classes of data present in

the training data. Most classifiers produce some form of threshold, which is used

to determine whether new data are members of the class the specific classifier was

trained for, using the similarity measure. There are three steps to building and eval-

uating the classifier for this particular problem. Other forms of classifiers may be

constructed differently. First, similarity scores need to be extracted from the train-

ing data. Second, the threshold for optimal discrimination needs to be computed,

based on the similarity scores computed in the first step. Third, the classifier must

be validated to determine its reliability.

A classifier may be defined as a function C(Xt, Xr), where Xt is the set of test

data to be used in evaluating the reliability of the classifier constructed with the set of
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(a) (b)

(c) (d)

Figure 3.1: Collections of scanpaths for a single stimulus. Typical novice scanpaths
visualized in (a), experts in (c). Collection of time-projected novice scanpaths in
(b), and experts in (d), which can be considered side views of the three-dimensional
data.
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training data Xr. These two sets are necessarily disjoint. The output of this function

varies as needed, but at its most simplistic, yields the accuracy of classifications of

instances in the Xt data set. Accuracy may be measured in multiple ways, but the

most common and intuitive measurement is the ratio of correctly-classified instances

to total instances.

3.1.1 Eye Movement Analysis

Comparison of scanpaths captured over static media depends on the identification

of fixations within the raw gaze point data stream. Raw eye movement data tends

to be noisy, as it represents a conjugate eye movement signal, composed of a rapidly

changing component (generated by fast saccadic eye movements) with a compara-

tively stationary component representative of fixations (the eye movements generally

associated with cognitive processing). In most diagnostic applications, all but fix-

ations are removed from the signal by either of two leading methods for fixation

detection: the position-variance or velocity-based approaches [Duchowski 2007].

The former defines fixations spatially, with centroid and variance indicating

spatial distribution [Anliker 1976]. If the variance of a given point is above some

threshold, then that point is considered outside of any fixation cluster and is consid-

ered to be part of a saccade. Fixation identification can be implemented by a variant

of the mean-shift algorithm [Santella and DeCarlo 2004], where fixations s(xi) can

be thought of as ellipsoids in time with spatial and temporal extent, weighted by

clusters of nearby raw gaze points, where s(xi) is iteratively determined by repeat-

edly shifting it to a new location based on a kernel function K. The kernel can be

modeled by a zero-mean spatiotemporal Gaussian kernel,

K([xi, ti]) = exp
(

x2
i + y2

i

σ2
s

+
t2i
σ2

t

)
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with the ith raw gaze point denoted as xi = (xi, yi, ti), and σs and σt determining

local support of the kernel in both spatial (dispersion) and temporal extent. The

user-adjustable parameters σs and σt can be epistemically set to match the extent of

the foveolar dimension of the human retina (e.g., σs = 50 pixels at screen resolution

1280 × 1024 constitutes 1.5◦ visual angle at 50 cm viewing distance with σt = 500

ms set to an expected average fixation duration).

The latter (velocity-based) approach, which could be considered a dual of the

former, examines the velocity of a gaze point, e.g., via differential filtering, ẋi =

1
∆t

∑k
j=0 xi+jgj , i ∈ [0, n − k), where k is the filter length, ∆t = k − i. A 2-tap

filter with coefficients gj = {1,−1}, while noisy, can produce acceptable results.

The point xi is considered to be a saccade if its velocity ẋi is above threshold

[Duchowski et al. 2002]. It is possible to combine these methods by either checking

the two threshold detector outputs (e.g., for agreement) or by deriving the state-

probability estimates, e.g., via Hidden Markov Models [Salvucci and Goldberg 2000].

Presently, a variant of the position-variance algorithm is used with a spatial

deviation threshold of 30 pixels and the number of samples set to 5 (implying a

temporal threshold of 100 ms at a 50 Hz sampling rate). The fixation analysis code

is freely available on the web.1

3.1.2 Scanpath Comparison

The similarity measure is the backbone of the classifier. The framework outlined

by Grindinger et al. [2010] was motivated by the need for analysis of eye tracking

1The position-variance fixation analysis code was originally made available by LC
Technologies. The original fixfunc.c can still be found on Andrew R. Freed’s eye
tracking web page: <http://freedville.com/professional/thesis/eyetrack-readme.html>. The
C++ interface and implementation ported from C by Mike Ashmore are available at:
<http://andrewd.ces.clemson.edu/courses/cpsc412/fall08>.

http://www.eyegaze.com
http://www.eyegaze.com
http://freedville.com/professional/thesis/eyetrack-readme.html
http://andrewd.ces.clemson.edu/courses/cpsc412/fall08
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data collected over video stimuli. The motivation of the approach is to track the

deviation of an individual’s eye movements from the average of two or more sets

of scanpaths that have already been classified as members of well-defined classes.

The first experiment that is used to demonstrate validity involves two such classes,

namely experts and novices, and uses the approach to show that class members

could be reliably classified by their eye movements alone. Although intended for

analysis of video stimuli, the approach is first utilized for static images. The algo-

rithm is described in relation to the video paradigm, however. For the purposes of

this first experiment, it may be helpful to conceptualize a stimulus consisting of a

static image to be a video clip in which the image frame is periodically repeated, or

extended, in time.

The approach to video stimuli encapsulates an“event-driven”paradigm. Namely,

the events consist of display of individual video frames. This event-driven approach

is expected to be useful for other forms of stimuli, as well. The defining event for a

given stimulus may be defined on a case-by-case basis. In the case of image stimuli,

the events are defined to be intervals of time, specifically 33 millisecond intervals, in

accordance with current video playback speeds. A study involving tasks consisting

of multiple steps treats the intermediate steps as events, as described in Section 5.

Dynamic stimuli, such as videos, may each be considered to be simply a col-

lection of individual stimuli, namely frames. Scanpath similarity metrics developed

for static stimuli can thus be applied on a frame-by-frame basis and aggregated

in some way (e.g., averaged). The trouble with prior vector- or string-based ap-

proaches, however, is that aggregation is based on pairwise comparisons. This leads

to rather complicated bookkeeping requirements for organizing pairs, e.g., labeling

each pair as local, repetitive, idiosyncratic, or global based on the dyadic permuta-

tions of viewer and stimulus (idiosyncratic, for example, refers to scanpaths made
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Figure 3.2: Typical scanpath visualization at left. Time-projected scanpath visu-
alization at right, where the y-axis denotes vertical gaze position, but the x-axis
denotes time. Fixation labels are common between the two. Markers denote one-
second intervals.

by the same viewer over different stimuli).

The projection of fixations x onto individual frames and clustering produces

disks of variable radius, as is commonly seen in traditional scanpath visualizations,

an example of which is depicted in Figure 3.2. Alternatively, depositing each fixation

x onto the video frame by once again using a Gaussian kernel to weight the pixel

intensity produces the well-known heatmap, an alternative to scanpath visualization

(see Figures 3.3 and §4.2 below).

The present approach projects gaze data onto video frames as heatmaps, sam-

pling scanpaths recorded over video frames, and measures the deviation of a scanpath

of unknown classification from a set of scanpaths which has already been classified.

Each frame is composed of a sampled set of fixations, with as many sets as there

are scanpath classes defined. A per-frame similarity measure is then derived and

averaged over the duration of the video sequence to compute the total similarity of

an unclassified scanpath to the two or more sets of classified scanpaths. Statistical

analysis determines which class a scanpath is a member of, based on its similarity

score to each defined class.
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Using video as the temporal reference frame, a scanpath is parametrized by a

two-dimensional function f(s, t), where s is the scanpath defined by its collection of

fixations, and t is the frame number at which the data was collected. The function

f simply returns the fixation at frame t. This definition is trivially extended to

f(S, t), where S is a set of scanpaths, t is still the frame number, but f now returns

a collection of fixations from the scanpath set.

Following heatmap generation, with each fixation conceptualized as a Gaussian

region of interest, where µ denotes the mean of the Gaussian coinciding with the

location of the fixation and σ models the error of the eye tracker, the similarity of

a single fixation to one of these Gaussian regions is given as:

g(x, µ) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
,

where x denotes the unclassified fixation. Denoted here as the Gaussian similarity, g

can thus be thought of as the probability of a fixation being a member of the region

of interest, as illustrated in Figure 3.3. This value does not directly describe the

probability that the fixation is a member of the class. Instead, it provides an intu-

itive description of the similarity of that fixation with the class it is being compared

to. A fixation far away from any fixations in the class would be expected to have

low similarity, whereas a fixation close to fixations in the class would be expected

to have much higher similarity. This Gaussian function returns values that directly

correlate with this concept of similarity.

The similarity of a single fixation to a set of fixations is:

d(s, S, t) =
∑

x∈f(S,t)

w(x)g(f(s, t),x),
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Figure 3.3: Mixture of Gaussians for a classified set of fixations at a discrete time-
stamp. Displayed unclassified fixations (labeled gray circles) were not used in the
heatmap generation. Note that the fixation labeled ‘A’ is far from any Gaussian
center, and thus has lower similarity than fixation labeled ‘B’.
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where s is the unknown scanpath, S is the set of classified scanpaths being compared

against, t is the frame number, and w(x) is a weighting factor that is set to 1/|S|

as a simple means of similarity score normalization.

The measure d(s, S, t) is evaluated over the entire video sequence to estimate

the mean similarity of a scanpath to the set of scanpaths, d(s, S) = d(s, S, t), t ∈ T,

where t represents individual frame numbers and T is the collection of frame num-

bers for the entire sequence. The similarity of a single scanpath to a set of scanpaths

is the average frame similarity over the duration of the video. The resultant score

lies between 0 and 1, and tends to fall near 0. The value of the score, however, is not

as important as the probability that the score lies within the expected distribution

of scores for a specific class.

3.1.3 Temporal Normalization

In the case of still images, wherein the participant has control over how long he

wishes to view the stimulus before continuing on, scanpaths of different length must

be handled properly. Portions of a scanpath that do not contain any fixations can-

not reasonably be compared to a set of scanpaths that do contain fixations. It is

possible to assign some “penalty” value to these “blank” portions of the scanpaths,

but it is not immediately justifiable why this should be done. In this study, only

portions of scanpaths which contain fixations are used in the comparison. It follows

that a scanpath of a specific duration may not be compared beyond its duration.

Some scanpaths last significantly longer than other scanpaths. It would not be

reasonable to determine classification of a scanpath by comparing it against a very

small minority of scanpaths in a group. There needs to be some cut-off point to

prevent effectively over-training the classifier. The average scanpath length serves
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this purpose. Given a scanpath that is longer than the average scanpath length of

a class of scanpaths, the similarity algorithm will only use data up to the average

length in its calculations. Any information beyond that length is discarded. Simi-

larly, given a scanpath that is shorter than the average length, only data up to the

length of that scanpath is used. This heuristic is only used in the case of still image

stimuli. Scanpaths collected over video have the same length, assuming the subjects

actually watched the entire video clip.

3.1.4 Classification

The similarity measure provides a means of estimating the deviation of a single or

set of scanpaths from a group of scanpaths with known classification. These sim-

ilarity scores serve as input to the classification mechanism that is responsible for

estimation of an optimal threshold that determines whether a scanpath of unknown

classification is accepted by that classifier or not. Given a scanpath’s similarity,

scored against a set of scanpaths of known classification, the scanpath is accepted

by the classifier if the similarity score is higher than the computed threshold or

rejected if it is lower.

The training data for the classifier generally consists of multiple classes, very

often two, but possibly more. The classifiers generated by the current approach are

each trained to a single class. Non-class training data is still used as input, however.

Each classifier is specialized to recognize members of the class it was trained for.

Multiple classifiers may be used together to reinforce the classification decisions, as

discussed below.

The classification approach estimates the distribution of similarity scores for a

given class. To do so, the similarity of each known member of the class is computed
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Figure 3.4: Examples of small and large distribution overlap with ROC curves that
are similar to what these distributions would be expected to yield. The ROC curve
is extracted by sliding threshold along x-axis and calculating true and false positive
rates.

in relation to the rest of the class. These scores are compiled together along with

scores for known non-members of the class. It is expected that non-members will

produce lower similarity than members. For unclassified data, the new score is likely

to fall within either the known member distribution or the known non-member dis-

tribution. This property is visualized in Figure 3.4. Classification results tend to be

significantly better for distributions with small overlap than for those distributions

with large overlap.

Analysis relies on the use of Receiver Operating Characteristic, or ROC, curves.

For a score distribution, such as either of those depicted in Figure 3.4, an ROC curve

is constructed by setting a threshold for class acceptance at the left end of the scale
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and gradually sliding it to the right. Every time a threshold is evaluated, the true

positive and false positive rates are recorded.

The ROC curve provides two convenient facilities. First, it easily facilitates the

choice of an optimal threshold by picking the point closest to (0, 1), where the bal-

ance of false positives to true positives is optimal. The area under the curve (AUC)

also indicates the discriminative capability of a classifier. Ideally, the AUC should

equal unity (1), while a completely random classifier would yield AUC close to 0.5.

According to Swets [1988], values between 0.5 and 0.7 are generally considered to

be uninformative, while values above 0.9 are considered highly informative. Values

between 0.7 and 0.9 are not optimal, but are very common and far more accept-

able than values that are lower. The AUC value represents the probability that

some arbitrarily-chosen class member is given a similarity score higher than some

arbitrarily-chosen non-class member.

It is possible, and somewhat common, for classifiers to have AUC value less

than 0.5, such as in Parker et al. [2007]. Since a random classifier should have AUC

value 0.5, a classifier with AUC value less than 0.5 could be said to be “worse” than

random. This means that the classifier is consistently making the wrong decisions,

instead of randomly correct and incorrect decisions. A common cause of this occur-

rence is that the distribution of positive class member scores has a lower mean than

the negative distribution. In training data, this can be trivially accounted for by

inverting the results of the classifier. If some instance would have been given clas-

sification score 0.7, that score then becomes 0.3. For cross-validation purposes, an

AUC value of less than 0.5 for the testing data is unable to be corrected, aside from

modification of the classification algorithm. The purpose of cross-validation is to

estimate the accuracy of the classifier, given unknown data. In practice, such as in a

study intended to determine whether unlabeled subjects are experts or not, it is im-
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possible to compute an AUC value at all, since the a priori classification is unknown.

The ROC curve provides appropriate thresholds for class acceptance and rejec-

tion, but in cases where more than one class exists, multiple classifiers may reinforce

the classification decisions. Two classifiers are used for the experiment described in

this chapter: one for experts and another for novices. The only difference between

the two classifiers is how the data are labeled. These separate classifiers are com-

bined into one “meta-classifier,” resulting in a single classifier with better accuracy

and discriminative ability than either of its components. Instances of the class a

classifier is intended for are considered “positive,” while data from other classes are

considered “negative.”

The labeling of instances as positive or negative provides the ability to evaluate

the performance of the classifier, based on its ability to correctly predict positive

instances (true positive rate) and avoid accepting negative instances (true negative

rate). In addition, the inaccurate behavior of a classifier may be described by its false

negative rate and false positive rate. A comprehensive discussion on the following

metrics may be found in Olson and Delen [2008]. The true positive rate of a classifier

is also referred to as the classifier’s recall or sensitivity and is equal to the number

of true positives divided by the number of total positive instances, or equivalently,

the number of true positives divided by the sum of the number of true positives and

false negatives:

Recall =
tp

tp + fn
.

The precision of a classifier describes the rate at which instances predicted as

positive are actually a member of the positive class. This value is calculated by
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dividing the number of true positives by the sum of the number of true positives

and false positives:

Precision =
tp

tp + fp
.

The true negative rate, also referred to as the specificity, is similar to the precision,

in that it describes the rate at which instances predicted as negative are actually

negative. It is computed similarly to the precision:

Specificity =
tn

tn + fp
.

Finally, the accuracy of a classifier is the rate at which instances are classified

correctly. Since true positives and true negatives describe the number of correct

classifications, the accuracy is simply the sum of the true positives and true negatives

divided by the sum of all classifications:

Accuracy =
tp + tn

tp + tn + fp + fn
.

This metric will be used most often in the results, in addition to the AUC value

described earlier. Accuracy is the most intuitive metric for evaluating classifiers,

though it can be misleading. The AUC gives a comprehensive impression of the

precision, recall, and specificity in a single value, though it is slightly more difficult

to intuitively grasp than simple accuracy.

If only one “sub-classifier” were used, classification decisions would be trivial.

If the similarity score exceeds the computed optimal threshold, the instance is ac-

cepted. Otherwise, it is rejected. The results of the acceptances or rejections of

both classifiers must be interpreted correctly. When one classifier accepts and the
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other rejects, the final classification decision is trivial. If both classifiers reject or

both accept, the similarity score is divided by the threshold value. Classification is

then attributed to the class with the highest value that resulted from the previous

operation. Analogously, a prediction value may be constructed by dividing the out-

put of the positive classifier by the sum of the output of the positive and negative

classifiers:

Pred(s, C) =
Pred(s, P )

Pred(s, P ) + Pred(s,N)
,

where Pred(s,X) is the prediction value of s, with respect to classifier X. C, P , and

N are the combined, positive, and negative classifiers, respectively. Values greater

than 0.5 are then classified as positive, while values lower than or equal to 0.5 are

classified as negative. In this way, it is possible to estimate the reliability of a clas-

sification, since values close to 0 or 1 indicate large differences between results for

each of the sub-classifiers and values close to 0.5 indicate very small differences.

3.1.5 Cross-Validation

Establishing the validity of classification generally uses some subset of all available

data as training data and a smaller subset as testing data. One-third of the training

data is often used as test data, and all instances are chosen randomly. This would

be the preferable means of establishing validity of the classifier trained on the eye

tracking data collected in this study, had the data set not been so small. Classes

have approximately twenty members each, smaller than most other classification

problems, which tend to operate on data sets numbering in the thousands. Setting

aside one-third of this data would most likely affect the reliability of the classifica-

tions. Cross-validation is meant to address this problem.

In order to establish validity of classifications, cross-validation is performed. In
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this step, results are validated by executing the algorithm multiple times on different

combinations of data. For a given trial, if there are n records, one is left out and used

to evaluate accuracy, based on the remaining n− 1 records. Subsequently, another

record is rotated out for testing. In this way, one data set may be recombined into

n data sets. Accuracy is then the percentage of trials that successfully classified the

test case left out. This describes the traditional leave-one-out cross-validation, or

LOOCV for short.

Although the goal of cross-validation is the estimation of the reliability of the

classification threshold, which relies on the selection of the point on the ROC curve

closest to (0, 1) (where the ratio of false positives to true positives is balanced) for

the training data, unfortunately, LOOCV precludes computation of an ROC curve

for the testing data. Nevertheless, it is still possible to estimate the AUC for the

testing data, without explicit computation of the ROC curve, since the AUC rep-

resents the probability that some arbitrary positive class member will be given a

higher similarity score, also called a prediction in machine learning terminology,

than some arbitrary negative class member.

To allow estimation of the AUC, LOOCV is replaced by leave-pair-out cross-

validation, or LPOCV, following Airola et al. [2009]. Instead of holding one item

out of the training set, two are held out: one from the positive class and one from

the negative class. The AUC is then defined:

AUC =
1

|X+||X−|
∑

si∈X+

∑
sj∈X−

H(C{i,j}(si)− C{i,j}(sj)),

where X+ ⊂ X and X− ⊂ X are the positive and negative instances in the training

set Xr, and C{i,j}(si) is a classifier trained without the ith and jth training exam-

ples, and H(x) is the Heaviside step function, which returns 1 when x > 0, 0.5 when
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x = 0, and 0 when x < 0.

In this way, each cross-validated test case contributes to an approximation of

the probability that an arbitrary positive instance will be scored higher than an

arbitrary negative instance. This modification artificially lowers the AUC estimate,

since the classifiers are being trained with less data than LOOCV. This effect is ex-

pected to be insignificant, since the impact on the training set is still small. Airola

et al. [2009] conclude that this method of approximating the AUC is more reliable

than other approximation techniques, especially for small data sets with low signal-

to-noise ratio.

In experiments consisting of multiple stimuli, all of which are intended for the

same visual task, the multiple classifiers may be used to reinforce the classification

for a given individual, similar to the boosting mechanism described in Kearns [1988].

For instance, given an expert/novice study, in which subjects are asked to perform

the same visual task for a number of stimuli, a single classifier may have a certain

level of expected accuracy, based on testing data, perhaps 70%. Reinforcing the

classification of an individual with several classifiers, each with 70% expected ac-

curacy, would then yield a decision that is accurate with probability much greater

than 70%, depending on how many extra classifiers are used and how independent

the classifiers are.

Unfortunately, the dependencies of the classifiers are unknown and will have

an effect on the ability to reinforce the results. If the classifiers were completely

independent, it might be expected that the error rate (inverted accuracy) will be

reduced exponentially for every classifier added. The 70% accuracy classifiers would

each have 30% or 0.3 error rate, decreasing to 0.3n for n classifiers, or 1−0.3n accu-

racy. This is a best-case estimation, assuming independence. Actual accuracy would
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be expected to fall between 70% and the optimum estimated reinforced accuracy.

3.2 Empirical Validation

In this study, a sequence of static images was used to elicit scanpaths during a visual

training task. Experts and novices for the particular training task were recruited

to provide data. This data served as the basis for the machine learning mechanism

for the purposes of training (expert) and evaluation (expert and novice), and is de-

scribed in more detail in Sawyer [2009].

Participants. This study involved 60 participants recruited from Clemson Uni-

versity in Clemson, SC and the surrounding areas. The participants were divided

into three equal groups of 20 based on the total number of flight hours each par-

ticipant had accumulated. The first group consisted of non-pilots who had no prior

flight training or experience. The second group consisted of low-time pilots who had

accumulated less than 500 total flight hours. The third group included high-time

pilots who had accumulated over 500 total flight hours.

Non-pilot subjects were recruited through word of mouth advertising around the

Clemson University campus. Of the 20 non-pilot subjects there were nine male and

eleven female subjects. The participants were an average age of 25.5 years old with a

standard deviation of 4.8 years. The maximum age was 42 and the minimum age was

21. None of the non-pilot subjects had accumulated any flight hours or certifications.

The low-time and high-time pilots were recruited through the Clemson Univer-

sity Flight Club and from flyers at local airports, as well as through word of mouth

advertising. The low-time flight group consisted of 17 male and 3 female subjects.



29

Low-time pilots were an average age of 33.58 years old with a standard deviation of

13.3 years. The maximum age was 53 and the minimum age was 19. The high-time

pilot group consisted of 19 male and 1 female subjects. The average age of high-time

pilots was 53.4 years old, with a standard deviation of 12.59 years. The maximum

age was 75 and the minimum age was 23. A detailed breakdown of mean flight

experience is provided by [Sawyer 2009].

Apparatus. A Tobii ET-1750 eye tracking monitor was used to collect all eye

tracking data. The ET-1750 provides non-invasive eye tracking on a 17′′ monitor.

The ET-1750 is able to take samples at a rate of 50 Hz with 0.5◦ accuracy. For

this study the resolution of the monitor was set at 1280 × 1024 pixels. The eye

tracking monitor was powered by a Sun W2100z PC with a 2.0 GHz AMD Opteron

246 processor and 2 GB of RAM. Eye tracking data was collected using the software

program ClearView 2.7.1 developed by Tobii Technology. Data was then exported

as text files for further analysis.

Hypothesis. The experimental hypothesis tested was whether the new ma-

chine learning mechanism is capable of classifying the actions recorded during a

complex visual search task as expert or novice.

Experimental Design. To test the hypothesis, a visual search task was pre-

sented to both novices and experts, whose set of scanpaths served as the indepen-

dent variable. This particular search task involved evaluation of images of weather

of varying degrees of severity.

Procedure. Participants were first given an initial briefing about the nature

and goals of this study. They then read and signed an informed consent form. Sub-

jects then completed a basic demographic questionnaire.
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Participants were then given an introduction to general aviation and weather

decision making. They were then given a description of visual flight rules, includ-

ing the specific requirements for daytime flight in class G airspace. Participants

were then told to assume they were on a cross-country daytime VFR flight as they

were shown a series of weather pictures. For each picture participants were told

to verbally respond either “yes”, signifying that the conditions were above VFR

minimums and they would continue their flight, or “no”, signifying that the condi-

tions are below VFR minimums and they would divert from their current flight path.

Before beginning the task, subjects were assigned to either view group A or

group B images first. Each group contained 10 different images of weather condi-

tions of varying degrees of severity. Both groups had 5 images above VFR minimums

and 5 images below VFR minimums.

To begin, the eye-tracking monitor was first calibrated to the task subjects by

having them fixate on a blue circle as it moved through a series of nine places on

the screen. Subjects were then shown a practice image and asked about the weather

conditions to ensure they fully understood the task. After successfully completing

the practice attempt, subjects were shown the series of images from the assigned

image group. The image order was randomized for each subject within each group.

Each image was displayed on the monitor for as much time as was needed for the

subject to make a decision. Once the subject responded “yes” or “no”, the eye track-

ing was stopped and their answer was recorded.

Participants then completed the computer based training program Weatherwise.

Participants were encouraged to take as much time as needed to thoroughly com-

plete the program. Once the program was completed subjects were given a brief
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break.

The final portion of the study involved subjects viewing another series of images

on the eye tracker. Subjects were given the same briefing and information as in the

first task. Participants were first shown the 10 images from the opposite group of

the first task, followed by the 10 images from their original group. The order that

the images were displayed was randomly generated for each subject. For each image

subjects again responded either “yes”, that VFR minimums were met, or “no”, VFR

minimums were not met. When the subject finished the 20th image, the task was

complete. Subjects were then thanked for their time, compensated and dismissed.

Expected Outcomes. The expectation was of course that experts and novices

could be classified as such with a probability significantly greater than random (0.5).

The training effect experienced by the novices during the study was not considered

to have a significant effect on the classification results, since the duration was quite

small and the experts had extensive experience with such tasks. Furthermore, while

accuracy of novice results may have increased, novices did not have sufficient expe-

rience to develop automatic search strategies as experts had most likely done.

3.2.1 Results

In order to evaluate the present approach, the results of the study were analyzed,

wherein 20 high-time pilots (experts), 20 low-time pilots, and 20 non-pilots (novices)

were presented with 20 different images of weather. Subjects were asked to deter-

mine whether they would continue their current flight path or if they needed to

divert. Their eye movements were recorded by a Tobii ET-1750 eye tracker (their

verbal responses were ignored in the analysis). The objective was to produce a clas-

sifier that could predict whether a subject is expert or novice, based solely on their
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Figure 3.5: Results of classification cross-validation for the new event-driven method,
string-editing similarity, and a random classifier’s expected performance.

eye movements. The scanpaths for the low-time pilots were not used for the evalua-

tion, since the intention was to demonstrate discriminability, and it is expected that

low-time pilots would be less discriminable from the other groups than high-time

pilots and non-pilots.

With two classes, a random classifier would be expected to produce 0.5 accuracy

and 0.5 AUC values. Evaluation results for the classifier are listed in Figure 3.5.

Both accuracy and area under the ROC curve appear significantly higher than both

the random classifier and the string-editing approach. The string-editing approach

does not appear significantly more accurate than a random classifier would be ex-

pected to be.

Results show the classifier’s discriminative ability averaged over all stimuli. Mul-

tiple classifiers for each subject, over all the stimuli, would increase the confidence

level of the individual classifiers by combining them. Therefore, a “majority vote” is

used, where one vote is drawn from each stimulus. If more than half the votes indi-



33

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

b6 Positive
b6 Negative

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

a3 Positive
a3 Negative

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

a4 Positive
a4 Negative

Figure 3.6: Examples of best, worst, and average ROC curves, respectively. Each
example shows the ROC curve for the training data for both the positive and the
negative classifiers, for that stimulus. Best case is stimulus ‘b6’. Worst case is
stimulus ‘a3’. Average case is stimulus ‘a4’.
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Figure 3.7: Results of cross-stimulus validation. Accuracy is determined by counting
the number of experts/novices with expert ratio greater than 0.5 in the case of
experts and less than or equal to 0.5 in the case of novices.

cate that a subject is expert, that subject is then classified as conclusively expert.

Otherwise, a subject is classified as novice. Accuracies for this voting mechanism

are listed in Figure 3.7. The new event-driven method is much more accurate than

the string-editing approach. The cross-stimulus validation for string-editing is only

slightly better than a random classifier would be expected to give. The event-driven

method is 100% accurate for novices and 80% accurate for experts, yielding a total

accuracy of 90% for the event-driven method. The string-editing method has only

55% total accuracy.

Originally, an approach similar to that of Torstling [2007] was used, attempting

to use a generative model to predict group membership. That approach failed to

achieve sufficient reliability, though it should be noted that this was a different

problem. Torstling attempted to identify stimuli from eye movement data, while

the present approach attempts to identify subject attributes, e.g., expertise. The

new approach achieved greater accuracy than the generative model, though they
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both were influenced by the machine learning paradigm.
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Chapter 4

Video Stimulus Analysis and Classification

The scanpath classification algorithm takes as input two collections of scan-

paths, in the form of lists of gaze points. Some example frames are presented in

Figure 4.1, with heatmaps on the top obtained from tasked viewers and those on

bottom from “free” viewers. Contrary to the expert/novice pilot study, there is an

obvious difference between the two. With only a single stimulus for each classifier,

there is no way to reinforce the classification with cross-stimulus validation. From

the still images study, it was found that a single classifier would have just under

70% accuracy, on average, while accuracies for classification across many stimuli

improved to 90% across both groups. It would be conservative to hypothesize that

the accuracy of a classifier for the given video example would be expected to be

somewhere between 70% and 90% accuracy, since the data appears more discrim-

inable during cursory examination, but lacks the reinforcement of multiple stimuli

(i.e., only a single video is viewed, in place of a number of images).

4.1 Classification Framework

The same classifier C(Xt, Xr), as defined in Chapter 3, is employed for video stim-

ulus analysis, except that classes are operationalized differently. Instead of experts

and novices, two groups of viewers are given the same video stimulus, but with

different instructions. In one instance, they are asked to view the video as they

would watch a movie at home, e.g. this is the “free viewing” task. In the second in-

stance, they are given specific instructions, pertaining to the video clip being viewed.
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Figure 4.1: Heatmap visualization of gaze recorded over a video sequence (labeled
sequence C) viewed by either “free viewing” (above) or following instruction to avoid
faces (below), the latter artificially simulating reduced face gaze exhibited by autistic
observers. Frames in both strips were rated highly as perceptually salient according
to the level of attentional dispersion detected.

4.1.1 Eye Movement Analysis

Comparison of scanpaths captured over static media depends on the identification

of fixations within the raw gaze point data stream. In this experiment, however,

no fixation detection algorithm is applied for fear of removal of saccades made to

sudden onset stimuli often present in dynamic media. Removal of these saccades

could potentially remove reflexive eye movements to such events. More importantly,

the third class of eye movements, smooth pursuits (or fixations on moving entities),

are able to be completely ignored in still images, since they are impossible, whereas

they may occur when viewing video stimuli. It is likely that a number of these

smooth pursuits would be removed or corrupted by fixation filters. The algorithm

thus operates on raw gaze points x = (x, y, t) recorded by the eye tracker. Although

the fixation filter, as described previously, is hypothesized to be less useful for eye

tracking data collected from video stimuli, its effect is reported in the evaluation to

confirm this hypothesis.

4.1.2 Scanpath Comparison

The similarity measure is the backbone of the classifier. The framework outlined

by Grindinger et al. [2010] was specifically motivated by the need for analysis of
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eye tracking data collected over video stimuli. The motivation of the approach is

to track the deviation of an individual’s eye movements from the average of two or

more sets of scanpaths that have already been classified as members of well-defined

classes. The study that was previously used to demonstrate validity involved two

such classes, namely experts and novices, and used the approach to show that class

members could be reliably classified by their eye movements alone. The stimulus

for that study was static. The present study applies the classification method to eye

tracking data collected over dynamic stimuli. In the present situation, viewers are

not initially sampled from expert or novice populations, but rather their scanpaths

are grouped following task instruction. The study thus replicates Yarbus’s [1967]

classic work but provides an automatic means of distinguishing the resultant sets of

scanpaths. Visualization is provided to show aggregate behavior of eye movements

between groups defined by viewing behaviors. Classified aggregate scanpaths are

then used to automatically select perceptually salient video frames where scanpath

differences are evident (see Section 4.3).

4.2 Dynamic Heatmap Visualization

The behavior of the algorithm may be visualized, to some extent, by overlaying

a heat map on the video frames while the clip is being played. This mechanism

facilitates understanding of both the mechanics of the algorithm and the visual be-

havior of the viewers of the different classes. This visualization may aid in future

applications, such as evaluation of whether a film audience’s attention is focused on

what the director intended. A director may be attempting to focus the audience’s

attention to certain aspects of a given scene, but it is uncertain whether the audi-

ence is drawn to that aspect or to some other unintentional object of interest. This

visualization would provide a means of determining whether this was occurring and
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what was causing the distraction.

Pixel intensity I(x, y) at pixel coordinates (x, y) can be efficiently computed

via I(x, y) = exp
(
−(x2 + y2)/(2σ2)

)
by truncating the kernel beyond 2σ [Paris and

Durand 2006] and setting σ to an arbitrary locus of influence, e.g., 1/6th the screen

dimensions, or error of the eye tracker (as done presently, see Figure 3.3). Note that

the heatmap representation of scanpaths eliminates order information.

The above specification for a static heatmap generated at a single frame (the

temporal parameter is implied), does not produce pleasing visualizations over dy-

namic media due to the potentially rapid appearance and disappearance of gaze

points atop video frames. This is especially noticeable whenever the scene changes,

e.g., due to camera movement. The situation is somewhat analogous to the sudden

onset and termination of an audio signal—a more pleasing effect is produced by a

fade-in and fade-out of the signal.

To achieve temporal visual decay, and generate dynamic heat maps [Daugherty

2009], the pixel intensity I(x, y) can simply be accumulated via linear interpolation

between video frames, e.g., I(x, y, t) = (1− h)I(x, y, t− 1) + hI(x, y, t). In practice,

a value of h = 0.4 appears to work well. After the accumulation buffer is calculated

for a given frame, it is mapped to the R,G,B color space. Suitable color threshold

values were picked so that the accumulated intensity I produced a color gradient

“increasing” from green, to yellow, to red.
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4.3 Perceptual Saliency of Video Frames

Over the span of a long video sequence, some frames are likely to be more per-

ceptually salient than others. The perceptual saliency of an individual frame may

be estimated by measuring the inter- and intra-class dispersion of classified gaze

points over the frame. For instance, perceptual saliency could describe to what

extent or what percentage of the audience is being distracted. Dispersion of two

classes is measured by calculating the standard deviation of the distance of all gaze

points of one class to all gaze points of the other class. This measure is similar

to how Daugherty [2009] displayed gaze point grouping during dynamic heatmap

visualization. With the Euclidean distance between two gaze points at frame t,

ri,j(t) = |xi − xj |t, with xi ∈ si and xj ∈ sj , and mean inter-class distance

ωi,j(t) = 1/(mn)
∑m

i

∑n
j ri,j(t) ∀ i, j, i 6= j, inter-class dispersion of two scan-

paths is estimated by the standard deviation,

SD(si, sj , t) =

√√√√ 1
mn− 1

m∑
i

n∑
j

(ri,j(t)− ωi,j(t))
2 ∀ i, j, i 6= j.

Intra-class dispersion is calculated similarly with si = sj .

Perceptual saliency, as defined here, depends on the dispersion of visual at-

tention. Intuitively, one may expect small dispersion to be a better indicator of a

frame’s perceptual saliency than large dispersion. This could indicate, for example,

a focal object of interest in the frame, e.g., as may be evoked by a close shot of

a face. On the other hand, the perceptual saliency of a frame may depend on the

visual task being performed, as well as the class of viewers (e.g., expert/novice). For

instance, were a group of viewers instructed to look away from a specific type of ob-

ject in a scene, they would likely choose a variety of different objects to fixate. The

resulting large dispersion may indicate a highly perceptually salient frame for these

viewers, e.g., autistic viewers [Leigh and Zee 1991] (this point is further addressed
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in experimental procedures below).

4.4 Empirical Validation

Eye tracking data was recorded for repeated viewings of three video sequences. Par-

ticipants’ first viewing was natural (amounting to “free viewing”), while they were

given a task to perform during the second viewing. It was hypothesized that the

data could be reliably classified by the described approach given differing instruction

to viewers (see below).

Stimulus. Stimuli consisted of three video sequences, named A, B, and C, and

shown in Latin square counterbalanced order, with approximately each third of the

viewers seeing the sequences in order {A,B, C}, {B,C,A}, or {C,A, B}. Sequence

A contained a misplaced modern pair of sneakers in an 18th century setting, while

a modern popular song played in the background. Sequence C was from the same

feature film, with scenes containing a large number of human faces. Sequence B

was a sequence of CT-like scans of the mouse vasculature in the spinal cord. Select

frames from all clips are shown in Figure 4.2.

Participants. Twenty-seven college students volunteered in the study (seven

male, twenty female). Ages of the participants ranged from 18 to 21 years old.

Procedures. Participants sat in front of the eye tracker at about 60 cm dis-

tance. Calibration required visually following nine targets. Following calibration,

subjects were asked to watch the first of two viewings of each of the three sequences

naturally. They then received viewing instructions prior to the second viewing of

the same sequence.
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(a) Sequence A, chosen for its misplaced pair of modern sneakers.

(b) Sequence B, chosen for its expected unfamiliarity.

(c) Sequence C, chosen for its large number of prominent faces.

Figure 4.2: Frames from stimulus sequences. Sequences A and C were excerpts
from Sofia Coppola’s Marie Antoinette c© 2006, Columbia Pictures and Sony In-
ternational, obtained with permission for research purposes by the Universitat
Autònoma de Barcelona. Sequence B shows the mouse vasculature in the spinal
cord at 0.6×0.6×2 µm resolution with blood vessels stained black, as obtained by a
knife-edge microscope (courtesy of Texas A&M).
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Figure 4.3: Tobii eye tracking hardware setup.

For sequence A, participants were asked to look for anything unusual. It is

hypothesized that viewers would notice the sneakers given this instruction. For se-

quence B, the contents of the clip were revealed only after the first viewing, when

they were asked to visually follow the path of blood vessels as they viewed the spinal

cord sections. It is hypothesized that in this case viewers would avoid the aberrant

artifacts at the sides of the frames and focus on the vascular stains.

For sequence C, participants were asked to avoid looking at faces. It is hypothe-

sized that this instruction could artificially simulate autism, since autistic individuals

have been shown to exhibit reduced face gaze [Leigh and Zee 1991].

Apparatus. Eye movements were captures by a Tobii ET-1750 eye tracker (see

Figure 4.3), a 17 inch (1280 × 1024) flat panel with built-in eye tracking optics. The

eye tracker is binocular, sampling at 50 Hz with 0.5◦ accuracy.
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4.4.1 Results

Eye movement data from “natural” (free) viewings act as one class (the “negative”

class in this study), while data from tasked viewings serves as another class (the

“positive” class). The accuracy and reliability of the classification approach is eval-

uated with this specification for each of the three sequences.

Results for viewing of stimulus A may be found in Figure 4.5. Stimulus A is one

to which the described classifier does not respond positively. Accuracy and AUC

are not even above the bare minimum for a classifier of 0.7. Even though there ap-

pears to be significant difference between the distributions of positive and negative

scores for stimulus A in Figure 4.4, the accuracy and AUC are both close to random,

which relates that the data for this stimulus could not be classified reliably. This

seems counter-intuitive, since, if there is significant difference in the distribution of

scores, it would stand to reason that a split could be made between the two which

would yield some discriminability. These are not typical normal distributions for

this stimulus, however. In the case of the positive scores, a number of the instances
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Figure 4.5: Results of experimental analysis for clip A. Columns indicate classifica-
tion accuracy (detecting tasked or natural viewing) and AUC.

actually score lower than most of the average negative scores. Most of the negative

score distribution overlaps closely with the positive instances, while the low-scoring

positive instances give the appearance of significant difference. Five video frames

during normal and tasked viewings are shown with heatmap visualization in Fig-

ure 4.9(a). These frames were chosen for their greater disparity between classes

than other frames, yet it is similarity between the two classes that is more apparent.

Accuracy and AUC value for fixations is slightly higher than for gaze points in this

stimulus, though neither appear significantly better than random.

Results for viewing of stimulus B may be found in Figure 4.6. Results for

stimulus B indicate much better classifiability than stimulus A. Both accuracy and

AUC are higher than 0.7, the bare minimum for a classifier. The AUC value is

actually closer to 0.8. Video frames for normal and tasked viewings are shown in

Figure 4.9(b). The differences between the classes are much more apparent for this

stimulus than for stimulus A, as reflected in the classification results. The algorithm

that uses fixations has lower accuracy and AUC than the algorithm using gaze points.
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Figure 4.6: Results of experimental analysis for clip B. Columns indicate classifica-
tion accuracy (detecting tasked or natural viewing) and AUC.

Results for viewings of stimulus C may be found in Figure 4.7. For stimulus C,

results are quite similar to stimulus B, but accuracy and AUC are slightly lower.

They are still higher than the results for stimulus A, however, and above the bare

minimum classifier accuracy and AUC. Although results for stimulus C were slightly

worse than for stimulus B, the task given to the participants required far more dis-

tinct eye movement behavior for specific portions of the clip. A large portion of

stimulus C, however, did not require modified eye movement behavior from natural

viewing. A segment of the clip was selected that was expected to produce highly

discriminable behavior between the two groups. The specific portion selected was a

fifteen second window, including the first two frames displayed in Figure 4.1. The

results for this short excerpt may be found in Figure 4.8. The accuracy and AUC

value for this excerpt are much higher for this short excerpt than for the entire clip.

Both the accuracies and AUC values for the entire clip and the excerpt show that

use of fixations yields lower accuracy and AUC than gaze points, for this stimulus.
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(a) Frame captures from stimulus A during normal viewing (above) and during tasked viewing (be-
low).

(b) Frame captures from stimulus B during normal viewing (above) and during tasked viewing (be-
low).

Figure 4.9: Dynamic heatmap visualization of gaze over video sequences.

4.4.2 Perceptual Saliency

The video frames selected for visualization in Figures 4.1 and 4.9 were rated par-

ticularly well by the perceptual saliency estimation outlined above. This notion of

perceptual saliency refers to the degree of dispersion of gaze points aggregated atop

video frames. Small dispersion, or tight grouping, tends to identify close shots, par-

ticularly ones where a prominent face is present. It is likely that this metric could

be used to automatically select video frames possessing similar artistic direction.

Alternatively, the approach could identify problems in artistic direction, where the

dispersion of attention is unintentionally large (loose grouping of gaze points).

Saliency graphs for short excerpts of the video clips are shown in Figure 4.10,

roughly centered on the frame shown at center in the strips rendered in Figures 4.1

and 4.9. Stimulus A curves appear to follow each other closely and this is typical of
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(a) Sequence A saliency graph.
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(b) Sequence B saliency graph.
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(c) Sequence C saliency graph.

Figure 4.10: Saliency graph curves are mean filtered over a two-second window and
display about a 10 second excerpt of the entire clip.
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the entire sequence.

Curves for stimulus C tend to move independently of each other, though there

appears to be some correlation. Standard deviation of the positive class tends to be

higher, in general, than the negative class, which is to be expected when participants

scatter their focus away from a specific object. There are two means of determining

which frames are more salient: pick the peaks of the cross-class standard deviation

(labeled“Both” in the figure) or pick the frames for which the difference between the

positive and negative curves is largest. For this particular stimulus, frames which

have either of these properties likely contain faces.

The saliency curves of the positive and negative class from stimulus B tend to

mirror each other until the end of the video, where a large number of the free viewing

subjects and only a handful of the tasked subjects were attracted to the large black

spot in the video.

4.4.3 Embedded Figures Test

Subjects were given a short embedded figures test at the end of the experiment.

They were tasked with finding specific figures (e.g., a circle, triangle, square, etc.)

in an image with many different figures inside it, but only one of the figure they

were assigned to find. This portion of the experiment did not involve eye tracking.

The intention was to provide a means of filtering out any data from individuals that

might be particularly unusual. The average length of time to complete a single trial

would then be an indicator as to whether the individual’s data should be included

or not.

In practice, the time to completion was very close, with an average of 2, 695

milliseconds. The standard deviation was 595 milliseconds, indicating that time
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to completion did not vary much across subjects. The longest average time to

completion was 4, 255, and the shortest was 1, 700. No subjects were filtered out by

the results of this test.

4.4.4 Discussion

Classification of sequences B and C are similar to expectation, while results for

stimulus A are mixed, with accuracy similar to what would be expected from a

random classifer and only slightly higher AUC. The natural and tasked viewings

appear similar to each other. There may be several explanations. Stimulus A was

the only one with an audio track, which may have been distracting. The task given

to participants for the second viewing of stimulus A was too general, with subjects

merely being told to “stay alert”. Only three viewers reported seeing the sneakers

in the sequence. One of the viewers reported that some of the shoes looked modern,

but when asked which ones, they cited instances other than the sneakers. Other

objects of interest mentioned were birds in the hairpiece and dogs with jewelery.

Participants were asked to guess what the second clip was depicting after viewing

it the first time. The most common response was “something under a microscope”.

Some participants noted a resemblance to tadpoles, bacteria, or cells. After ex-

plaining the true nature of the sequence (a type of CT scan of the mouse spinal

column), twenty viewers reported being able to understand the clip better. Almost

every viewer deemed the large black spots on the top and left sides of the clip eye-

catching, and some participants had trouble avoiding them for the tasked portion

of the trial.

Sequence C was intended to demonstrate the classifier’s ability to distinguish

between eye movement behaviors of normal viewers and those suffering from neuro-

developmental disorders such as autism. The particular task of avoiding faces is
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characteristic of autistic individuals. Although none of the participants indicated

that they had autism, they were essentially being asked to simulate autistic behav-

ior. The high accuracy of the classifier for this clip appears to indicate that it may

be a reliable aid to this type of diagnosis. After normal viewing of this sequence,

viewers noted that people looked upset or angry, that no one was smiling but Marie

Antoinette, and that she was being stared at. Of course, when they were instructed

to avoid faces, none of these observations occurred. They tended to look at the sky,

the floor, and the architecture. Some mentioned that it was difficult for them to

avoid faces, and that they had to concentrate to do so.

It is expected that short clips tend to produce more discriminative scanpaths

than longer clips. Stimulus C certainly appears to be more discriminable, at first

glance, than stimulus B does. The actual results show very similar discriminability,

though, which is most likely due to the length of stimulus C being much longer

than stimulus B. There are several possible causes for this. The most likely cause is

extended periods of both very similar and very different viewing behaviors between

classes. Both classes tended to look at the horses and birds. Including this con-

formant data in the analysis would lower the discriminability over time. Another

cause could be deteriorating calibration, which is a problem in all eye tracking ap-

plications, since participants tend to fidget and change position while watching the

clips. Another possible factor could be the tendency to settle into natural viewing

patterns during a visual task of extended length, i.e., forgetting the task instructions.

Fixations appear to consistently produce lower accuracies and AUC values for

discriminable video stimuli. This is in line with the hypothesis that fixation fil-

tering affects data collected during video stimuli negatively, artificially interrupting

smooth pursuits and removing reactions to sudden onset stimuli. The fixation filter

may still be worthwhile, but its functionality will need to be adapted to dynamic
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stimuli. Instead of discarding smooth pursuits or breaking them apart into multiple

fixations, they may be classified and analyzed independently, using a mechanism

such as the Kalman filter, described in Grindinger [2006].
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Chapter 5

Interactive Stimulus Analysis and

Classification

The study used for evaluation in this chapter consists of a set of visual tasks

that were given to two classes of subjects: those of western descent and those of

eastern descent. A visualization of exemplar scanpaths used in this study is pre-

sented in Figure 5.1, displayed on the top-left with eastern scanpaths and on the

top-right with western scanpaths. These scanpaths appear very different, but the

aggregate heatmap shows less difference. The task given to the subjects was to

select a specific sequence of buttons in the interface. Subjects took very different

lengths of time to locate and select each of the buttons required. A temporal adap-

tation prealignment procedure will now be described that will attempt to provide

the functionality necessary to analyze this type of data, namely a step-wise method

of normalization, allowing the use of the new classifier algorithm. The definition of

“event” for this study is a fixation on a particular button. In this study, an event

cannot be a fixed interval of time, since each step of the task takes a variable amount

of time to complete, which differs for each subject. This particular definition of an

event allows them to be aligned in such a way as to allow the use of the similarity

measure originally described on commonly-occurring events. The performance of

this modification will be evaluated against the original string-editing algorithm.

Presently, a variant of the position-variance algorithm is used with a spatial

deviation threshold of 30 pixels is used and the number of samples set to 5 (implying

a temporal threshold of 100 ms at a 50 Hz sampling rate). The fixation analysis

code is freely available on the web.
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(a) Easterners’ (left) and Westerners’ (right) eye movements

Figure 5.1: Representative scanpaths and aggregate heatmaps (exp. 1).

5.1 Temporal Adaptation

The scanpath classification approach was intended to work well for static images

and was formulated to be particularly effective for video tasks, but it is not, in

its current state, appropriate for variable-duration interactive tasks. For instance,

suppose a sequence of numbers are distributed onto an image. The task is to look

at each number in order. Some individuals may take a fraction of the time that it

took others, but the order of the fixations is very similar. One would expect the se-

quence of fixations to be very similar, while the actual timestamps are quite different.

In this case, it is possible to manipulate the duration of fixations to map one

scanpath onto another of different length by using the Levenshtein alignment of

the two scanpaths as a reference. Here is an example of two scanpaths of different

lengths:
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0 1 2 3 4 0 5

0 11 12 6 1 13 9 9 14 0 15 1 16 8 17

This is the Levenshtein alignment of those two scanpaths:

0 - - - 1 - 2 3 4 0 - - - - 5

0 11 12 6 1 13 9 9 14 0 15 1 16 8 17

The numbers in each of the examples refer to labels that have been arbitrarily cho-

sen for each discrete fixation. Each label denotes a region of interest in the stimulus.

Labels repeated in both scanpaths indicate commonality between the two scanpaths.

A ‘-’ character indicates a gap in the paths. These blank pieces of the alignment will

not be used in the scanpath similarity measure, since they effectively stretch a single

point in time to cover an extended portion of the larger alignment. Scanpaths which

do not have a blank piece at a particular point will still be used in the similarity

calculation for that point, though, even if other scanpaths do have blank pieces.

The string-editing alignment may be used as a preprocessing procedure (here-

after referred to as prealignment) for group-wise scanpath similarity. For instance, a

scanpath that is being compared to a group could first be compared to each member

of that group. A Levenshtein alignment with the best-matching scanpath within the

group would then be expected to serve well as a template with which to adapt the

new scanpath to the group. The timestamps of the fixations in the new scanpath’s

alignment and those remaining in the group would then be adjusted to coincide with

the timestamps from the best-matching scanpath within the group. In this way, the

scanpath being analyzed and the group it is being compared to are normalized, such

that they all have the same internal structure (i.e., they have the same number of

“pseudo-fixations”). The similarity and classification algorithm would then be exe-

cuted normally. A simple visualization of two scanpaths, before and after alignment,

may be seen in Figure 5.2.
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Figure 5.2: Simple pairwise scanpath alignment. Original scanpaths in (a) and
aligned scanpaths in (b).
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To accomplish this, a multiple sequence alignment algorithm must be utilized.

The particular algorithm used for this purpose was Clustal, described by Higgins

[1988], initially intended to align sequences of nucleotides in DNA and RNA or

amino acids in proteins. In the case of eye tracking classification, a sequence of ROI

labels is used. Scanpaths may be recorded in multiple formats. It is common to

label various areas on a stimulus, such as buttons on interfaces or clearly-defined

objects in images.

The Clustal algorithm consists of two steps. The first step involves construct-

ing a phylogenetic tree from the pairwise similarity of all sequences that are being

aligned. This tree is constructed by joining pairs of sequences in order of similarity,

from highest to lowest. Pairs of sequences may also be joined with other groups

of sequences. In the case of joining two groups of sequences together, the group-

wise similarity of the two groups is used to determine when they are to be merged.

Group-wise similarity, in respect to the Clustal algorithm, is obtained similarly to

pair-wise similarity. Instead of using a fixed cost of substitution, such as in string-

editing distance, however, the average cost of string operations is used. For instance,

suppose one group of sequences has the labels ABBB at some position. If this group

of sequences were being compared to another group of sequences at a particular po-

sition, having the labels BBCD, the substitution cost of aligning the two groups of

sequences at that position would be 0.5, since half of the labels are shared between

the two groups at that particular alignment position. Aside from this small differ-

ence, the similarity matrix may be visualized similarly as in Figure 2.1.

The second step in the Clustal algorithm is the construction of the multiple

sequence alignment. Groups of sequences are aligned in much the same way as pairs

of sequences are aligned. Instead of inserting blank positions in single sequences,

though, blank positions are inserted in all the sequences in the group if the align-
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ment algorithm needs to do so.

Given a single group of scanpaths that have all been aligned with each other, it

is then possible to utilize the event-driven scanpath comparison method described

previously. The prealignment then serves as a list of events, from which similarity is

derived. It may be argued that this approach could be improved by subdividing the

events even further. This subdivision would necessarily require the divisions to be

variable lengths of time, depending on the fixation being subdivided. A particular

column in an alignment consists of a list of fixations, each of which has a specific

duration attached to it. These individual durations would have to be subdivided

into an equal number of divisions, in order to apply the similarity measure to them,

which would cause the intervals of time between each subdivision to vary drastically

between scanpaths. For instance, some fixation could have length 30 milliseconds,

while another has length 50 milliseconds, such as the two ‘A’ fixations in Figure 5.2.

Nevertheless, the results of such a subdivision will be explored in the empirical val-

idation.

5.2 Empirical Validation

With the temporal adaptation (prealignment) mechanism, it is now possible to at-

tempt to compare and classify groups of scanpaths with the previously-described

classification mechanism. A study was previously conducted to gauge difference in

performance on an interactive visual search task between different cultures, which

serves as validation for the temporal adaptation mechanism. Similar to the video

study described in the last section, this study does not measure expert/novice sim-

ilarity. Instead, it is used to distinguish differences in visual search between two

cultures.
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Two experiments were conducted to gauge cultural differences during interac-

tion. The first study required participants to complete four tasks: two visual search

and icon localization tasks and two menu navigation tasks. So that scanpath visu-

alization was not cluttered by eye movement during menu navigation, gaze point

recording was turned off whenever menus were visible. A second follow-on experi-

ment was conducted to compare cultural differences during a visual search task with

symbolic icons replaced by randomly generated numerals. The second study thus

serves as a type of baseline for comparison of scanpath similarity metrics.

Apparatus. A Tobii ET-1750 video-based corneal reflection (binocular) eye

tracker was used for real-time gaze measurement (and recording). The eye tracker

operates at a sampling rate of 50 Hz with an accuracy of about 0.3◦ over a ±20◦

horizontal and vertical range [Tobii Technology AB 2003]. The eye tracker’s 17′′ LCD

monitor was set to 1280 × 1024 resolution and the stimulus display was maximized

to cover the entire screen (save for its title bar at the top). The eye tracking server

ran on a dual 2.0 GHz AMD Opteron 246 PC (2 G RAM) running Windows XP.

The client display application ran on a 2.2 GHz AMD Opteron 148 Sun Ultra 20

running the CentOS operating system. The client/server PCs were connected via 1

Gb Ethernet (switched on the same subnet). Participants sat at a viewing distance

of about 50 cm from the monitor, the camera’s focal length. The same eye tracking

apparatus was used for both experiments.

Experiment 1. The first experiment concerned navigation and selection of

iconic and menu elements in the simulated interface shown in Figure 5.3(a).

Subjects. 20 college students participated in the first study. All participants

had at least some college experience. Ten participants were of South Asian (Indian)
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(a) assigned icon button tasks (b) relabeled numerical buttons

Figure 5.3: Iconographic and random numerical button tasks.

descent (7 M, 3 F, mean age 23.8) composing what will be referred to as the Eastern

group in the remainder of the paper. The other ten US participants composed the

Western group (6 M, 4 F, mean age 24.2). All of the Eastern participants spoke

English as a secondary language (primary language Hindi, Malayalam, Marathi, or

Tamil), having moved to the US within the last five years. All of the Western par-

ticipants spoke English as a primary language. All 20 participants had at least four

years of college education and all but one possessed a college degree. Participants

were compensated $8 for participation in the first experiment.

Procedure. Participants were greeted and instructed to sit in front of the eye

tracker (see Figure 5.4). A brief introduction was given, signature and responses

were then obtained from an informed consent form and a brief demographic ques-

tionnaire. Next, participants were told they would be completing basic computer-

based tasks using the mouse. Before proceeding, the eye tracker was calibrated to

each participant. To do so, participants were told that they would see two gray

circles on the screen representing the location of their eyes. If these gray circles

were not centered, participants should adjust their position accordingly, e.g., if the

circles were too high, the chair should be lowered. In addition to the gray circles, a
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Figure 5.4: Participants at eye tracker.

roving yellow dot was shown moving to each of five programmed screen locations.

Participants were asked to visually follow this dot. Following calibration, the exper-

imenter brought up the button panel and menu interface. A short familiarization

task was completed from which the data was not recorded. The experimenter then

read through the four recorded tasks, with order counterbalanced by a partial Latin

square design.

Participants were asked to press the green Start Engine button located at the

top left of the interface to begin each of the four tasks (button A seen in Fig-

ure 5.3(a)). The first task (or first recording, R01), required participants to turn on

the Air Conditioning (button I), Autoshift (button K), and Lever Steering (button

B). Next, participants were asked to press the reset button before continuing on

to task two (or recording two, R02). Again, participants were asked to start the

engine, and then were told to find the Diagnostics menu and check the Hydraulic

Oil Temperature. The reset button was then pushed again before moving on to task

three (R03). Task three started with the Start Engine button, and then location

of the Machine Settings where participants were asked to change the Reversing Fan
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Cycle to 30 minutes and to turn on the Manual Fan Reversal. Once again, the reset

button was pressed before proceeding to the fourth and final task (R04). Following

the Start Engine button press, participants were asked to turn on all buttons asso-

ciated with exterior work lights (buttons C, D, E, F, and G) followed by turning

on all windshield wiper buttons (buttons H, J, L). To complete the task sequence,

participants were asked to press the finish button at the top of the screen.

Experiment 2. The second experiment only required visual search of icons

relabeled with random two-digit numerals (see Figure 5.3(b)).

Subjects. 20 college students participated in the second study. All partici-

pants had at least some college experience. Ten participants were of South Asian

descent composing the Eastern group (8 M, 2 F, mean age 23.7), with seven re-

turning from the first experiment. The ten remaining US participants composed

the Western group (6 M, 4 F, mean age 24.5), with seven returning from the first

experiment. All of the Eastern participants spoke English as a secondary language

(primary language Malayalam, Marathi, Tamil, or Telugu), having moved to the US

within the last five years. All of the Western participants spoke English as a primary

language. All 20 participants had at least four years of college education and all but

one possessed a college degree. Participants were paid $5 for participation in the

second experiment.

Procedure. The procedure in the second study was similar to that in the

first, with the exception that all four of the trials involved visual search of icons.

Only the first and fourth runs were used in scanpath comparison, matching the

analysis performed in the first experiment. No menu search was involved in the

second study. Each of the four tasks (counterbalanced via a Latin square) required

search for and selection (clicking) of icons replaced by two-digit numerals. The
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Figure 5.5: Mean accuracy and AUC for event-driven, string-editing, and random
classifiers for symbol search tasks.

first task (or first recording, R01), required participants to find the following se-

quence: {13, 20, 15, 28, 16, 11, 26}. The second recording (R02) used the sequence

{25, 17, 31, 24, 28, 13, 16}. The third and fourth recordings used the following se-

quences: {26, 14, 29, 15, 31, 27, 19} and {20, 10, 13, 32, 24, 19, 15}, respectively. Each

of the tasks required pressing the Start Engine button as in the first study.

5.3 Results

The results, both with and without the subdivision concept (described in section

5.1), were evaluated. The results with subdivision actually deteriorated the accu-

racy to become indistinguishable from random. Thus, the non-subdivided results

are reported in this section. The average accuracy and AUC for the symbol selection

experiment are presented in Figure 5.5. The accuracy and AUC for the event-driven

similarity measure appear to be significantly greater than random. The accuracy

does not appear to be significantly greater than the string-editing algorithm, though.
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Neither the accuracy nor the AUC appear to be better than random for string-

editing.

Figure 5.6 reports the accuracy and AUC for the number selection experiment.

In this case, the accuracy and AUC for the event-driven similarity measure both

appear significantly higher than both string-editing and random. Similar to the

symbol experiment, the string-editing measure does not appear significantly differ-

ent from random.

Cross-stimulus classification reinforcement is possible in this experiment, similar

to the expert/novice study. Results for the reinforcement are shown in Figure 5.7.

Reinforced accuracy are not as improved as in the expert/novice case, with accuracy

of 70% for both eastern and western subjects. The string-editing results are 30%

for eastern subjects and 80% for western subjects, averaging to 55% total accuracy,

unimproved from random.

5.4 Discussion

The data set for this study was quite small. Ten data points for each group would

make it difficult to establish significance for many types of experiments. The fact

that significance was achieved appears to imply that, for this problem, cultures

performed the visual search task very similarly within cultures and very differently

between cultures. The fact that a numeric search task yielded even greater signifi-

cance than a symbolic search task is especially unexpected.
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Chapter 6

Discussion

6.1 General Discussion

The event-driven similarity algorithm is very customizable. There are multiple de-

tails that may be modified if different behavior is desired. For instance, the Gaussian

frame similarity method may have different weighting schemes. The current weight-

ing scheme merely averages the similarities of fixations. It is also possible to choose

the maximum similarity, instead. The implementor may also choose to cluster or

not to cluster the fixations before evaluating the Gaussian frame similarity. The

advantage to using clustering would be reduction of “noise” in the frame, and each

cluster would be more meaningful than a simple fixation or gaze point. This is espe-

cially important in studies with high volumes of data. The advantage of not using

clusters is that the mean shift algorithm tends to be the bottleneck, so removing

the clustering algorithm would speed up the algorithm, at the risk of uninformative

information affecting the result.

As described in the section on interactive stimuli, the user of the algorithm may

not desire for every frame to be evaluated. Using the perceptual saliency approach

or some other weighting scheme, informative frames may be automatically retrieved

from the stimulus, leading to a faster evaluation and possibly more discriminative

classification. There is no substitute, however, for designing the experiment in such

a way that a maximal amount of informative data is retrieved, while a minimal

amount of useless data is generated. In retrospect, the video clips in the second

study were longer than optimal. Video clips of less than a minute length would

likely have produced more discriminable data, since portions of the clip that were
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expected to be highly discriminable could be selected.

The running time of the algorithm is quite high for these extensive evaluation

and validation studies. For incremental classification of a single, unknown scanpath,

the algorithm takes O(mn ∗ p(m)), where m is the number of known scanpaths, n

is the number of frames to be analyzed, and p(m) is the running time of the mean

shift algorithm on the collection of fixations, which is less than or equal to m for

each frame. The runtime of p(m) varies, depending on how many iterations are

needed for convergence, which Santella and DeCarlo [2004] observed to be generally

between 5 and 10 iterations for eye tracking data. The runtime for a single iteration

of the mean shift algorithm is O(m2). The mean shift step may be skipped if time

is at a premium.

For the validation studies, the incremental classification step must be executed

m times, in order to construct an ROC curve and extract the optimal classification

threshold. For a production system, this classifier construction step only has to be

run once. Once the classifier is built, provided no scanpaths are added to the training

data, all classifications only take the time needed for an incremental classification

step. Most eye tracking applications are analyzed offline. In this case, running time

is far less important. If an eye tracker classifier were desired for use as a type of

biometric mechanism, some heuristics may need to be adopted to ensure acceptable

response times, such as only sampling frames that have been chosen, ahead of time,

as informative.
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6.2 Future Work

Future work may include work on various kinds of adaptation. It may be useful to

weight the training data in different ways and on different scales. First, subjects’

data may be weighted. Supposing some subjects used for training data score more

highly than others when performing intra-class comparison, those subjects’ data

may be given more weight than lower-scoring instances. Also, adaptation over time

may be useful. For example, data collected within and between different scenes in a

movie would be expected to weight the final classification differently. Data collected

inside a single scene would be expected to have higher similarity than data from

two different scenes. Perhaps only a few intra-scene timestamps need be evaluated.

This would be a method of both speeding up the algorithm and possibly increasing

reliability.

The cross-stimulus classification reinforcement has been shown to be useful in

making classification more reliable for individual subjects. An improvement here

would be to apply the cross-validation approach. Currently, a constant greater than

50% stimulus classifiers must claim it. It may be that the training data would yield

insight into whether that value should be shifted. Perhaps some classes would re-

quire much more than half or even less than half. Optimally, some form of boosting

would be used for this computation, such as the Adaboost algorithm (Freund and

Schapire [1995]).

Another aspect of the research that could be expanded is analysis of which tasks

lend themselves better toward classification than others. In the case of the video

study, the general task of “watch for something unusual” appeared to be less classi-

fiable than “avoid looking at faces.” Perhaps a different instruction, such as “count

the number of shoes” would have yielded more discriminable data. It would also be
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useful to evaluate the effects of audio on visual behavior.

The metrics described in the section on video classification do not adequately

relay certain aspects of the video clips used in the experiment, such as the differing

lengths of the clips and what ratio of each clip was either discriminable or con-

formant. Ideally, both of these aspects could be merged into an overall “expected

discriminability” metric and then compared to the accuracy of the classifier, itself.

Such a metric would be useful for evaluating the relative performance of the clas-

sifier on clips of differing lengths. This “confidence metric” would need to be able

to handle such extreme cases as two groups yielding highly conformative behavior

throughout most of a stimulus, except for a very brief period of time in which the

groups greatly diverge. The saliency metric is a first step toward this type of mech-

anism.

The current approach is specifically oriented toward two-class classifiers, though

it is able to be extended to more than two classes through a complicated and time-

consuming procedure of evaluating the results for individual classes against all other

classes and between all pairs of classes. There is likely a simpler and more elegant

approach to multi-class classification.

A topic of interest to the eye tracking community is the use of computation

models of human visual attention, such as the model defined by Itti et al. [1998].

This particular model encompasses a bottom-up methodology, estimating informa-

tion content of groups of pixels in an image, rather than a top-down approach,

which might attempt to infer what objects are present in a stimulus and which

objects a human observer might specifically be interested in. Preliminary results

appear to show that scanpaths constructed from the described model on the film

clips described in chapter 4 are different enough from scanpaths collected from hu-
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man observers that the classifier is able to achieve complete accuracy. Future work

could include defining which types of stimuli are or are not easily classifiable, which

would indicate the convergence or divergence of the visual attention model with real

human visual attention recordings.

6.3 Conclusion

In this dissertation, a novel method of event-driven aggregate scanpath comparison

has been proposed and empirically validated. This metric calculates similarity by

quantifying the overlap of Gaussian fixations over multiple events. These events are

defined by the type of stimulus used for the experiment, such as individual frames for

video stimuli. The similarity metric is then used to drive an ROC-based classifier

framework. This allows the automatic classification of scanpaths into predefined

groups for certain visual tasks. Results indicate far better discriminative ability

than previous metrics, specifically string-editing distance, in most visual tasks. In

addition to the original expert/novice pilot study used as proof of concept with still

images, three developments have been evaluated. The first is an application of this

new method to its intended purpose, mainly analysis of scanpaths over video. This

development has been empirically validated. Although not capable of discriminat-

ing all types of tasks, it was able to reliably classify two out of the three stimuli

and visual tasks performed. The task it was not able to discriminate implies that

the instructions given were not specific enough to alter visual behavior as much

as the other two tasks were. The second is a modification intended to expand its

applicability to some interactive tasks, which was utilized to attempt to distinguish

differences in visual search strategies over different cultures, the third task. The ex-

tension intended for interactive tasks showed improved classification capability over

string-editing in this task, similar to the expert/novice pilot study. The classifier
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was able to discriminate between cultures for two visual search tasks: symbol search

and numeric search.
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