
December 16, 2005

To the Graduate School:

This dissertation entitled “Penumbra Volumes for Real-Time Generation of Perceptually Correct Soft
Shadows on Modern Graphics Hardware” and written by Nathan Cournia is presented to the Graduate School
of Clemson University. I recommend that it be accepted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy with a major in Computer Science.

Dr. Andrew Duchowski

We have reviewed this dissertation
and recommend its acceptance:

Dr. Robert Geist

Dr. John Kundert-Gibbs

Dr. Mike Westall

Accepted for the Graduate School:

PENUMBRA VOLUMES FOR REAL-TIME

GENERATION OF PERCEPTUALLY CORRECT

SOFT SHADOWS ON MODERN GRAPHICS

HARDWARE

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Science

by

Nathan Cournia

December 2005

Advisor: Dr. Andrew Duchowski

Abstract

Two new shadow generation techniques are introduced to produce realistic, perceptually correct soft shadows.

Penumbra volume mapping and penumbra volume mask filtering exploit modern programmable graphics

hardware and are able to shadow dynamic scenes at real-time rates. Penumbra volumes extend previous

sampling based approaches by masking regions where expensive sampling and filtering operations take place.

Relevant past work is reviewed and benefits and shortcomings of the new techniques are discussed.

Acknowledgements

I would like to thank the members of my committee for their guidance over the course of this project. I

would also like to thank the members of Clemson University’s Computer Graphics Group for many fruitful

discussions. Finally, I would like to thank my family for their support.

Table of Contents

Title Page . i

Abstract . ii

Acknowledgements . iii

Table of Contents . iv

Table of Figures . v

List of Source Listings . vi

1 Introduction . 1

2 Background . 4

3 Previous Work . 6
3.1 Image-Based Methods . 6
3.1.1 Shadow Mapping Aliasing . 8
3.1.2 ID Based Shadow Mapping . 11
3.1.3 Layered and Deep Images . 11
3.1.4 Planar Shadows . 13
3.1.5 Single Sample Soft Shadows . 13
3.1.6 Multiple Maps . 15
3.1.7 Point-Sampling Based on Instant Radiosity . 15
3.2 Object-Based Methods . 16

4 Penumbra Volume Maps . 20
4.1 Penumbra Volume Map Creation . 20
4.1.1 Silhouette Detection . 20
4.1.2 Penumbra Volume Creation . 21
4.1.3 Penumbra Volume Rendering . 24
4.2 Light Visibility . 24
4.3 Penumbra Volume Mapping Summary . 29

5 Penumbra Volume Mask Filtering . 32
5.1 Penumbra Volume Mask Creation . 33
5.2 Visibility Estimation . 36
5.3 Visibility Estimate Noise Reduction . 37
5.4 Final Compositing . 39
5.5 Results . 39
5.6 Penumbra Volume Mask Filtering Summary . 42

6 Conclusions . 44

Bibliography . 45

Table of Figures

1.1 Regions of a shadow . 2

3.1 Shadow mapping overview . 7
3.2 Artifacts due to depth aliasing . 9
3.3 Shadow map aliasing . 9
3.4 Percentage-Closer filtering . 10
3.5 Z-pass stencil shadow volumes . 17

4.1 Penumbra volumes . 22
4.2 Penumbra volume extrusion vectors . 23
4.3 Penumbra volume map . 24
4.4 Cutting plane . 27
4.5 Disk visibility estimate . 28
4.6 Visibility visualization . 29
4.7 Object overlap artifacts . 30
4.8 Visibility discontinuity artifacts . 31

5.1 Penumbra volume mask construction overview . 35
5.2 Penumbra volume mask depth . 35
5.3 Visibility jittering to remove banding artifacts . 37
5.4 Noise blurring . 38
5.5 Final penumbra volume mask filtering output . 39
5.6 Penumbra volume mask filtering algorithm overview . 40
5.7 PVMF results . 42

List of Source Listings

4.1 Computing irradiance at a camera pixel in the final pass . 25
4.2 Estimating light visibility at a camera pixel . 26

Chapter 1

Introduction

Shadows are important for the creation of realistic computer generated imagery. Shadows provide sig-

nificant cues to the perception of distance between an object and a nearby surface [Hu et al. 2002] as well

as providing visual cues to the geometry of complex shadow casters and to the geometry on which shad-

ows fall – the receivers. The effects of static, cast shadows on perceived depth relations between surfaces

is phenomenologically clear, and their perceptual salience has also been empirically demonstrated [Mamas-

sian et al. 1998]. There is a tendency to match a floating object with any dark object on the ground [Ni and

Braunstein 2004].

Furthermore, the motion of cast shadows in dynamic scenes provides information about the relative

motion of objects. Kersten et al. [1996] introduced a dramatic phenomenon called “illusory motion from

shadow” in which the displacement of the shadow relative to a stationary square induced a strong perception

of the motion of the square in depth. Kersten et al.’s [1997] results indicate that the motion of the shadow

is more important than the correspondence between the size of the object and the size of the shadow in de-

termining the perceived position of the object. Experiments conducted by Ni and Braunstein indicate the

importance of common motion of an object and shadow for the dominance of the shadow location over other

cues, such as optical contact, in determining the perceived position of objects.

Since Leonardo’s [1490] early realization of indirect illumination on shadows, it has been well known

that shadows can be delineated by two distinct regions. A point is considered in the inner shadow region,

the umbra, if it is completely hidden from direct light. A point is classified in the outer shadow region, the

penumbra, if the light source is only partially occluded. For a given shadow, the umbra and penumbra do not

necessarily have to exist simultaneously. Point light sources do not produce a penumbra. Likewise, an umbra

may not be present in configurations where shadows cast from a small occluder fall on a distant object.

Many factors contribute to the shape of a shadow. The most important factors are the shape of the light

source, the shape of the occluder, the shape of the receiver, and the distance relationship between the light,

occluder, and receiver. Other factors, such as inter-diffuse reflections, also play a part in determining the

shadow’s shape, but are currently too costly to generate in real-time.

Fortunately, generating perceptually convincing shadows is computationally feasible provided that shad-

ows exhibit specific appearance characteristics related to the distance between light, occluder, and receiver.

2

Light Source

Inner Penumbra Outer Penumbra

Umbra Occluder

Figure 1.1: Regions of a shadow. A shadow consists of two regions, the umbra (gray) and the penumbra
(blue/green). The hard shadow (red), splits the penumbra into two regions: the inner penumbra (green) and
the outer penumbra (blue).

The key to producing convincing shadows is the generation of realistic penumbrae. In nature, the penumbra

grows as the distance between the occluder and receiver increases or as the area of the light source increases.

Conversely, the umbra diminishes as the area of a light source increases, or as the distance from the light

source increases. Shadow generation techniques that vary the width of the penumbra according to the ratio

of the distances to the light source of the occluder and the receiver are termed perceptually correct and are

distinguished from more computationally expensive techniques that are able to produce physically correct

shadows [Hasenfratz et al. 2003].

Early real-time shadow generation techniques [Crow 1977; Williams 1978] focused on casting shadows

from point light sources. The results generated by these techniques only produced shadows with an umbra

region. These shadows are binary, either a point is in shadow or it is not. This binary decision produces

hard, abrupt transitions between shadowed and unshadowed regions. As such, these shadows are labeled

hard shadows. The abrupt transition from shadow to light is not visually convincing.

In contrast to hard shadows, techniques that generate shadows cast by area light sources, thereby pro-

ducing a penumbra region, are called soft shadow techniques. The term is intuitively appropriate, as the

illumination in the penumbra region smoothly transitions from dark to light, producing a soft appearance.

3

The shadow penumbra can be further divided into two subregions, the inner and outer penumbra. These

subregions are contained within the penumbra and are defined by the hard shadow boundary. The hard shadow

boundary is produced by sweeping the point light source central to the area light source through the occluders

light space silhouette. Figure 1.1 illustrates the shadow regions.

The distinction between the inner and outer penumbra is important for the generation of perceptually

correct shadows. It may be especially important for dynamic scenes, since perception of object motion

(particularly in depth) is more likely with soft shadows than with hard [Kersten et al. 1996; Kersten et al.

1997]. Unfortunately, many soft shadowing algorithms are unable to generate both subregions in real-time.

Here, we present two new techniques for generating perceptually correct shadows cast from spherical

light sources at real-time rates: penumbra volume mapping and penumbra volume mask filtering. We review

previous shadow generation techniques and point out their associated difficulties and limitations. Next, we

give an overview of existing work that is relevant to our method. This is followed by a description and

discussion of penumbra volume mapping and penumbra volume mask filtering.

Chapter 2

Background

Shadow generation is a difficult task, analogous to computing visibility relationships in 3D [Cohen-Or

et al. 2002]. The difficulty is compounded by the requirement of real-time rendering (i.e., ≥ 10 frames

per second). Many shadow algorithms are able to efficiently produce shadows from point light sources.

Unfortunately, light sources in nature are not composed of a single point. Rather they extend over an area,

and hence are known as area or extended light sources. The irradiance from an area light source incident on

a surface is given by Cohen et al. [1993]:

E =
∫

Alight

[L cos θi cos θl
r2

]
V dA,

where L is the incident radiance from the light source, θi is the incident angle, θl is the angle made with the

light normal, V is a binary visibility term, and r is the distance from the point being shaded to a point on the

light source.

Agrawala et al. [2000] note that for small solid angles the lighting and binary visibility terms can be

separated, at which point the shadow attenuation can be computed with:

v =
1

Alight

∫
Alight

V dA. (2.1)

We can then approximate the irradiance with:

E = lv, (2.2)

where l is the surface irradiance due to a point light source.

In order to generate high quality shadows in real-time, many shadow algorithms solve Equation 2.2 while

approximating Equation 2.1. In this respect, our algorithms are no different. In the next section, current

shadowing techniques and their limitations are reviewed. Like our algorithms, most of the techniques covered

approximate shadows cast from spherical light sources. Some techniques are unable to produce soft shadows

while others can produce soft shadows, but are unable to produce both inner and outer penumbra regions.

Many of the algorithms are plagued by sampling and banding artifacts. Others produce shadows that resemble

soft shadows, but are not perceptually correct. Several of the techniques work only for simple scenes and do

5

not scale well to multiple light sources and complex scene geometry. Some methods restrict the geometry

of a shadow receiver, while other techniques map poorly to graphics hardware. Finally, some shadowing

techniques rely on excessive pre-processing and are therefore not suitable for dynamic scenes.

Our goal is to generate perceptually correct soft shadows cast from spherical light sources at real-time

rates for dynamic scenes. Our methods map well to modern graphics hardware and are capable of producing

both inner and outer penumbra regions. We limit the class of occluder geometry to closed two-manifolds, but

allow for arbitrary shadow receivers. The proposed methods are targeted at game engines and previsualization

of offline renderings.

Chapter 3

Previous Work

Real-time shadow generation can be categorized by two approaches: image-based and object-based tech-

niques. Most image-based techniques center on shadow mapping [Williams 1978], which uses a light space

depth image to determine visibility. Conversely, most object-based techniques are based on shadow volumes

[Crow 1977]. Shadow volumes extrude the light space silhouette of an occluder to infinity. This creates a

volume in which points within the volume are considered shadowed. While neither shadow mapping nor

shadow volumes inherently produce soft shadows, a great deal of research has been devoted to expanding

these techniques to generate soft shadows. We discuss those image- and object-based shadowing techniques

that are most relevant to our work.

3.1 Image-Based Methods

Williams’ [1978] shadow mapping, the predominant real-time shadow generation technique, is image-based,

using a depth buffer constructed from the light’s view of the scene to determine the binary visibility of a point

with respect to the light. Figure 3.1 illustrates an overview of the shadow mapping algorithm.

Conceptually, shadow mapping is simple. The scene is rendered from the light’s point of view, with

the resultant depth buffer stored into a texture known as the shadow map. In a second pass, the scene is

rendered from the point of view of the camera while the shadow map is projected from the light source. To

determine the light visibility of each camera pixel, the depth of the camera pixel is compared to the depth of

the projected shadow map texel. If the projected shadow map texel’s depth is deemed closer than the camera

pixel’s depth, the camera pixel is marked as shadowed.

One of Williams’ key observations is that a transformation exists such that a point in the camera’s view can

be mapped into the space of the light’s shadow map. Given a point po in object space, po can be transformed

into the light’s shadow map space with:

tsm = SPlightM−1
lightMpo, (3.1)

where M is the matrix that transforms object space to world space, Mlight is the transformation from light

7

Figure 3.1: Upper Left: The view of the scene from the light source. Upper Right: The depth of the scene
rendered from the light’s viewpoint is saved into a texture called the shadow map. Lower Left: The shadow
map is projected on the scene. Lower Right: For each camera pixel, the depth of the projected shadow map
texel is compared to the depth of the pixel. If the shadow map sample is less than the camera pixel’s depth,
the pixel is in shadow.

8

space to world space, Plight is the light’s projection matrix, and S is a matrix which transforms points from

homogeneous clip space to the shadow map’s texture space.

Shadow mapping enjoys several benefits. Unlike previous algorithms, Williams’ shadow mapping was

one of the first methods to support casting and receiving shadows for non-polygonal objects. This ability is

afforded by the algorithm’s use of the depth buffer. The depth buffer also allows the cost of shadow mapping to

be relatively independent of scene complexity. Since shadows are evaluated in image space, a full description

of the scene is not required during the visibility computation.

Segal et al. [1992] provide a hardware accelerated shadow mapping technique exploiting modern hard-

ware’s ability to perform perspective correct texture mapping. When using texture hardware is too expensive,

Zhang [1998] shows how the use of texturing can largely be avoided using techniques similar to splatting

[Westover 1990]. In practice, Zhang’s methods are unnecessary as graphics hardware manufactures have

incorporated dedicated shadow mapping support into their products, first on the Infinite Reality [Montrym

et al. 1997] and today ubiquitously on all modern GPUs [ARB shadow].

3.1.1 Shadow Mapping Aliasing

From Equation 3.1 and the image-based nature of the shadow map, it is evident that shadow mapping is view

independent. However, the image-based nature of the shadow map gives rise to various aliasing artifacts.

One form of aliasing, depth aliasing, occurs due to the quantization of depth values in the shadow map,

causing the depth function to be discontinuous. These discontinuities are exposed as the depth function is

sampled at a different frequency from the camera’s viewpoint. As illustrated in Figure 3.2, depth aliasing

causes surfaces to incorrectly self-shadow and produces a visible moiré pattern.

Perspective aliasing [Stamminger and Drettakis 2002] is a result of undersampling the shadow map from

the camera’s viewpoint and manifests itself in the form of “jaggies”. Perspective aliasing is easily seen as the

camera zooms into a shadow boundary. Figure 3.3 shows an example of perspective aliasing.

A great deal of research has been devoted to subverting the various forms of aliasing inherent in shadow

mapping. Williams proposed that depth aliasing can be removed by adding a bias to depth values either

while creating the shadow map or during the shadow test. However, Wang and Molnar [1994] note that depth

bias is scene dependent and can be troublesome to compute for dynamic scenes. Additionally, adding a bias

results in visible gaps between shadows and their corresponding casters. Wang and Molnar go on to propose

second-depth shadow mapping. Here, the shadow map stores the depth of the second visible surface with

respect to the light’s viewpoint. As long as each object in the scene is solid and not intersecting another

9

Figure 3.2: Left: Shadows rendered using shadow mapping. Right: Depth aliasing causes incorrect self-
shadowing resulting in a moiré pattern.

Figure 3.3: Right: As the camera zooms into the region highlighted in the left image, the shadow boundary
becomes aliased. This aliasing is due to undersampling of the shadow map.

10

0.6

1.0 0.2

0.3

0.9

0.75

0.8

0.9

0.35

0.54

0.050.1

0.5

0.5

0.5

0.5 0.8

1.0

0.6

0.6

1.0

1.0

0.90.98

0.3

0.69

44%

Figure 3.4: A percentage-closer filter samples an area in a shadow map to find the percentage of depth
samples that are less than the given fragment’s depth threshold. In this example, the threshold, 0.69, is
compared to depth values within the shadow map (left). This results in a binary map (right), where each depth
sample in the sampling area that is less than the given threshold is deemed in front of the given fragment
and therefore shadowing the fragment. In this example 44% of the samples are deemed behind the given
fragment’s threshold and therefore 44% of the light’s total radiance is reaching the fragment.

object, the second-depth surface will be the back surface of an object whose front surface will be in the

first-depth shadow map. By performing the shadow test with second-depth surfaces, the authors guarantee

that the second-depth surface’s corresponding first-depth surface will pass the shadow test, thereby avoiding

incorrect self-shadowing. Likewise, using the second-depth surface also guarantees that surfaces beyond the

second-depth will be shadowed.

Second-depth shadow mapping does not eliminate depth aliasing, instead it moves depth aliasing from

the first-depth surface to the second-depth surface. In practice this is acceptable, as second-depth surfaces

point away from the light source and therefore are not illuminated by most illumination models.

Woo [1992] proposed a method similar to Wang and Molnar’s to avoid adding a depth bias. By performing

the shadow test with the mid-point between the first- and second-depth surfaces, the depth aliasing problem is

all but eliminated. Mid-point shadow testing allows for object intersection and arbitrary illumination models

at the cost of rendering a second depth map.

Reeves et al.’s [1987] percentage-closer filtering attempts to address the aliasing along shadow bound-

aries, caused by perspective aliasing, by determining the percentage of neighboring pixels around a given

pixel that pass the shadow test. The resulting percentage is used to compute the shadow attenuation at

the pixel. Figure 3.4 illustrates percentage-closer filtering. Percentage-closer filtering effectively blurs the

shadow boundary, producing boundaries that resemble penumbrae. However, these penumbra regions are

not physically based. Brabec and Seidel [2001] provide a multi-pass algorithm that maps percentage-closer

filtering to graphics hardware. Today, most modern GPUs contain dedicated hardware to fully accelerate

percentage-closer filtering [ARB shadow].

11

3.1.2 ID Based Shadow Mapping

The shadow test does not necessarily have to be based on depth. Hourcade and Nicolas [1985] store object

IDs in the shadow map rather than depth values. During the shadow test, if the shadow map texel’s ID does

not match the camera pixel’s ID, the pixel is deemed shadowed. While this approach avoids depth aliasing,

other problems arise. If IDs are stored per object, concave objects cannot correctly self-shadow. To address

this problem, Vlachos et al. [2001] suggest assigning IDs per bone or model segment rather than per object.

Dietrich [2003] shows how IDs can be stored per triangle on modern graphics hardware and provides a

solution to incorrect shadowing caused by rasterization.

3.1.3 Layered and Deep Images

Chen and Williams [1993] propose a simple extension to shadow mapping that simulates soft shadows. Here

shadow maps are rendered from a few key sample points on an area light source. Chen and Williams then use

view interpolation to create additional shadow maps. For each point to be shaded, the point is tested against

each shadow map to compute the average visibility with respect to the area light source. Because sample

points are chosen a priori, banding artifacts may occur.

Max [1996] developed a system suited for rendering trees where images are precomputed for twigs and

branches at various levels in the hierarchical structure of a tree. During rendering, these images are adaptively

combined based on the viewpoint to construct the image of a new tree. Each precomputed image stores

surface colors and normals to be used in shading after re-projection, subpixel masks for anti-aliasing, and

multiple depth levels to avoid missing detail during reconstruction.

Like Max, Shade et al. [1998] provide a method to reconstruct images that allows for disocclusions and

large amounts of parallax as the viewpoint moves. They propose layered depth images (LDI). A layered depth

image is a two-dimensional array of depth pixels, where each depth pixel is a sorted list of depth values. A

layered depth image is constructed by warping multiple depth images into the space of the LDI. For each

warped depth value mapped to a depth pixel in the LDI, the depth pixel’s list is searched for a value close

to the warped depth within a given tolerance. If the value is found, it is averaged with the incoming value.

Otherwise, a new layer (element in the list) is added to the depth pixel.

While Max’s and Shade et al.’s methods are suited more for reconstructing a scene from multiple images

than shadow evaluation, Lokovic and Veach [2000] expand upon the idea of using images that store multiple

depth values per pixel, to develop deep shadow maps (DSM). Deep shadow maps store the fractional visibility

12

of a point light source through a pixel for all possible depths. DSMs are able to produce high-quality shadows

for high frequency geometry such as hair and fur. Furthermore, deep shadow maps support casting shadows

from partially transparent surfaces and volumetric objects. The partial visibility function that a deep shadow

map describes is compressed and prefiltered within the DSM to allow for quick sampling. The prefiltered

values within the DSM result in shadows that resemble soft shadows, however these simulated penumbra

regions are not physically based. Deep shadow maps are expensive to compute and are not suited for real-

time rendering of dynamic scenes.

Kim and Neumann [2001] propose opacity shadow maps, a method similar to deep shadow maps. Opacity

shadow maps use a set of parallel opacity maps oriented perpendicular to the light’s direction. Each opacity

map stores the integral of densities along a ray through each opacity map pixel. Opacity shadow maps are

considerably less expensive to compute than deep shadow maps and are suited for interactive rendering of

dynamic scenes.

Agrawala et al. [2000] expand upon Shade et al.’s layered depth images by storing an attenuation factor

with each depth sample. Each layer’s attenuation can be thought of as a projective soft shadow texture. During

display, depth information is used to select the correct attenuation map, which in turn is used to modulate

the point being shaded. Computing the layer attenuation image is expensive and not suitable for real-time

rendering of dynamic scenes.

Lischinski and Rappoport [1998] use hierarchical raytracing of depth images for computing secondary

rays. Keating and Max [1999] note that light leaking is a problem with this technique because each depth

sample is treated as an unconnected independent sample. To avoid light leaks, Keating and Max combine

adjacent depth samples into discrete depth buckets. This strategy forms large, relatively flat surfaces and, as

a possible side effect, may completely change the scene’s geometry.

Im et al. [2005] propose a hardware accelerated method to generate soft shadows similar to Keating and

Max’s, but avoid changing scene geometry. Im et al. use hardware accelerated depth peeling [Everitt 2001]

to create layered depth images. When objects are close together, gaps may appear between a shadow and its

caster. Similar to Chen and Williams [1993], banding artifacts may occur due to light sample points being

chosen a priori. The authors report rendering times of several seconds for simple scenes.

St-Amour et al. [2005] present an adaptation of the deep shadow map structure for area light sources,

similar to that of Agrawala et al. [2000]. They introduce the penumbra deep shadow map (PDSM), which

is created from multiple depth images sampled from an area light source. The PDSM stores the attenuation

function for every location in the PDSM’s field of view. The authors provide a method to store and sample

13

the PDSM on modern graphics hardware. The PDSM is precomputed and is able to shadow both static and

dynamic objects within the scene. However, the PDSM does not encode information about shadows being

cast by dynamic objects. As such, the authors recommend using other techniques to cast shadows from

dynamic objects since recomputing the PDSM would be too expensive.

3.1.4 Planar Shadows

Heckbert and Herf [1997; 1996] propose a method to cast soft shadows onto planar surfaces using an accumu-

lation buffer [Haeberli and Akeley 1990]. The authors render the hard edged planar projection of the scene’s

occluders from many area light source sampling points. These images are averaged together to produce a

radiance texture (see Heckbert [1990] and Myszkowski and Kunii [1994]) which is used during display to

shade surfaces. Heckbert and Herf’s method requires many samples in order to avoid banding artifacts and is

therefore not suitable for dynamic scenes.

Gooch et al. [1999] show a technique similar to Heckbert and Herf’s but suited for technical illustration

where the scene’s occluders are projected onto a series of stacked planes. The results are averaged to generate

soft shadows that approximate shadows cast by a spherical light source. Gooch et al.’s technique has the

benefit of requiring fewer samples than Heckbert and Herf’s but is still restricted to planar shadow receivers.

3.1.5 Single Sample Soft Shadows

Parker et al. [1998] illustrate a technique to create believable soft shadows in the context of a parallel ray

tracer. They propose creating an extended hull for each occluder in the scene. By treating the original object

as opaque, and setting a linear falloff from 0.0 at the original object’s hull to 1.0 at the extended hull, the

contribution of a point light source can be adapted to account for the relative distances of light, occluder, and

receiver.

Using Parker et al.’s method, only a single light sample is needed to generate soft shadows. However,

the generated soft shadows are not perceptually correct. Because the original object is treated as opaque, the

resulting shadow does not have an inner penumbra region, resulting in an umbra that is too large. The authors

report that their results look reasonable as long as occluders aren’t excessively small compared to the area

light source.

Parker et al. note that care must be taken when a shadow ray intersects multiple extended hulls. They state

that addition: s = 1 − ((1 − s1) + (1 − s2)), multiplication: s = (s1s2), and thresholding: s = min(s1, s2) will

14

all yield continuous intensity transitions. Of the three choices, Parker et al. recommend thresholding since it

will result in shadows that are never darker than they should be.

Haines [2001] adapts the work of Parker et al. [1998] to cast soft shadows onto planar surfaces using

graphics hardware. Penumbra regions are computed by drawing cones at each light space silhouette vertex.

The width of the base of each cone is related to the distance to the ground plane. Cones are connected together

with Coons patches. Both the cones and the patches are shaded from dark to light to resemble the shadow’s

penumbra. The result is a texture that can be projected onto the ground plane. Wyman and Hansen [2003]

extend Haines’ work by using programmable graphics hardware to allow for arbitrary shadow receivers.

Chan and Durand [2003] introduce smoothies, semi-transparent, billboarded quadrilaterals that are at-

tached to the outside of an object’s light space silhouette. Smoothies are shaded from 0.0 at the silhouette

edge, to 1.0 based on the relative distances from the light, smoothie, and receiver. The result is a smoothie

buffer, which is used during display to modulate shaded surfaces.

Inspired by the work of Parker et al. [1998], the techniques of Haines [2001], Wyman and Hansen [2003],

and Chan and Durand [2003] all operate at real-time rates but none is capable of producing inner penumbra

regions.

Penumbra Quads are primitives utilized in Arvo and Westerholm’s [2004] soft shadow technique that is

capable of producing both inner and outer penumbra regions. In their technique, inner and outer quadrilaterals

are rendered at the light space silhouette of each object. These quadrilaterals are stretched and shaded based

on the silhouette vertex’s shared face normal and the relative distances between the light, silhouette edge,

and the light’s far clip plane. This results in two maps, an inner and outer penumbra map. These maps

are used in conjunction with the first- and second-depth shadow maps to shadow the scene. The penumbra

regions produced are slightly exaggerated and the authors note that artifacts may occur for large light sources.

Additionally, visual shadow artifacts may occur if objects overlap in light space.

Brabec and Seidel [2002] generate soft shadows by transforming camera space pixels into the space

of the shadow map. They then search the area around each shadow map sample for the nearest occluder

boundary. The search radius is based on the distance from the light to the receiver. Brabec and Seidel’s search

routine may incorrectly select the surface being shadowed as an occluder, which leads to objectionable visual

artifacts. To avoid this, the authors assign each object a unique ID. During the search routine, if an occluder

is found matching the ID of the shadow receiver, the search is continued. Using object IDs eliminates the

incorrect self-shadowing along with correct self-shadowing.

15

Like Brabec and Seidel, Fernando [2005] also uses a search routine in a single depth map to produce

soft shadows. Given a point to be shaded, the depth map is used to compute the nearby average occluder

depth. The average occluder depth, the light size, and the distance from the light to receiver, are then used

to modify the size of a percentage-closer filter. The filter is then used to sample the depth map, the result of

which is used to modulate the point being shaded. Fernando has implemented his technique using modern

programmable graphics hardware. To avoid visual artifacts, an excessive number of samples are needed.

3.1.6 Multiple Maps

Heidrich et al. [2000] propose a method to generate soft shadows for linear light sources. Each linear light

source is sparsely sampled to generate multiple shadow maps. Depth discontinuities are found using an edge

detection filter. The discontinuities are triangulated, warped, and then rendered into a visibility map, which

stores the percentage of the light source that is visible from a point in the scene. During display, the visibility

map is used to attenuate points being shaded. The authors report that the construction of the visibility map is

expensive, taking several seconds to generate for simple scenes. Ying et al. [2002] generalize Heidrich et al.’s

method to polygonal light sources.

Kirsch and Döllner [2003] use both a depth map and a shadow width map to generate soft shadows. The

shadow width map measures the distance to the closest point that is geometrically illuminated. The shadow

width is used in concert with a depth shadow map to generate penumbras within hard shadow regions. As a

result, Kirsch and Döllner’s method is unable to produce outer penumbra regions and generates artifacts for

objects that overlap in light space.

Arvo et al. [2004] compute light visibility values by using an edge detection filter to find hard shadow

boundary pixels in the camera’s image space. These boundary regions are then dilated by using an eight

connected recursive flood-fill mechanism over multiple passes. Visibility is computed by creating a ray from

the dilated shadow boundary pixel to the shadow map border pixel and intersecting this ray with the light

source. The dilation process requires multiple passes and the algorithm suffers from artifacts when objects

overlap in light space. However, since the visibility calculation takes place in the camera’s image space,

undersampling artifacts are effectively hidden.

16

3.1.7 Point-Sampling Based on Instant Radiosity

Rendering shadowed scenes from traced reflections of the initial light path can lead to synthetically ap-

proximated radiosity, as demonstrated by Keller [1997]. Keller’s “instant radiosity” is achieved through a

quasi-Monte Carlo integration and a collection of hardware renderings with point light sources. Multiple ren-

dering passes are combined in an accumulation buffer. The result, using Heidmann’s [1991] shadow volume

variant and displayed for a given viewpoint, exhibits approximated smooth shadows. In a viewpoint inde-

pendent approach, Van Pernis [2004] uses OpenGL’s feedback mechanism instead of the accumulation buffer

to accumulate first-order vertex lighting. Employing the depth map for shadow generation, Van Pernis then

performed r-refinement of surface meshes to alleviate shadow aliasing at mesh-shadow boundaries. Although

both approaches led to pleasing soft shadows, neither was particularly fast: Keller reported rendering rates

of a few seconds per frame, while Van Pernis generated a 600 frame animation averaging 78 seconds per

frame. Approximations to global illumination such as these are approaching interactive frame rates [Kollig

and Keller 2004].

3.2 Object-Based Methods

The real-time shadow generation technique competing with the image-based approach is based on shadow

volumes, first proposed by Crow [1977] and mapped to graphics hardware by Heidmann [1991] using the

stencil buffer. In the first pass, the scene is rendered with ambient light, which in addition to contributing

ambient lighting to the scene, also initializes the depth buffer for subsequent passes. In a second pass, semi-

infinite quadrilaterals are extruded from possible light space silhouette edges. Front facing shadow volume

quadrilaterals which pass the depth test increment the stencil buffer, while back facing quadrilaterals decre-

ment the stencil buffer. This creates a mask in the stencil buffer, where stencil pixels with non-zero values

are denoted as in shadow. In a final pass, the scene is rendered with diffuse and specular lighting where

the stencil mask is set to zero. Figure 3.5 (left) illustrates the stencil buffer updates for an example scene.

While simple, the method described above fails when the camera viewpoint is located inside of a shadow

volume. This situation results in an incorrect mask generated in the stencil buffer, leading to surfaces being

incorrectly shadowed. Figure 3.5 (right) shows an example of stencil buffer updates when the camera is lo-

cated within a shadow volume. Bilodeau and Songy [1999] and Carmack [2000] independently discovered a

method to solve this problem. They propose decrementing the stencil buffer while rendering front faces and

incrementing for back faces. However, stencil buffer updates occur only when the depth test fails, rather than

17

Figure 3.5: Left: Shadow volume stencil buffer updates. As faces of the shadow volumes (gray) generated
from occluders (orange) are rendered into the stencil buffer, front faces that pass the depth test increment
(blue) the stencil buffer, while back faces decrement (red). This generates a mask (green) in the stencil buffer,
where non-zero values indicate the pixel is in shadow. Right: An incorrect shadow mask is generated when
the camera enters a shadow volume. Numbers in red denote an incorrect mask value.

when it passes. The latter shadow volume method is know as z-fail and the former as z-pass. Each method is

intuitively named for the type of depth test needed to update the stencil buffer.

In order to work properly, z-fail shadows require that shadow volumes be capped. This requirement leads

to problems, as parts of the shadow volume may be “sliced-open” by the far clip plane. Everitt and Kilgard

[2002] propose a solution to this problem by manipulating the camera’s projection matrix to move the far

clip plane to infinity. The z-fail front shadow volume cap also leads to z-fighting at the occluder’s front faces.

This problem can be solved by adding a bias or using the occluder’s back faces as a front cap [Zioma 2003].

The latter technique is inspired by Wang and Molnar’s [1994] second-depth shadow mapping.

Due to stencil buffer updates, shadow volumes are fill-rate limited. As such, a good deal of research (see

McGuire et al. [2003], Lloyd et al. [2004], Laine [2005], and Lengyel [2002]) has focused on limiting the

number of stencil buffer updates.

While fill-rate is a limiting factor for shadow volumes on graphics hardware, silhouette detection is a

limiting factor on the CPU. To make shadow volumes less CPU bound, Brabec and Seidel [2003] describe a

method to both detect and extrude silhouettes on modern programmable graphics hardware. Likewise, Mc-

Cool [2000] uses an edge detection filter to find discontinuities in a depth shadow map. These discontinuities

are then extruded to form shadow volumes.

18

Shadow volumes as described above produce pixel accurate shadows. However, these shadows are hard

shadows. Both Brotman and Badler [1984] and Everitt and Kilgard [2002] extend the shadow volume algo-

rithm to cast soft shadows. They achieve this by rendering multiple shadow volumes from random samples

on an area light source. This approach is not practical for real-time rendering. By rendering multiple shadow

volumes, the authors are increasing the fill-rate requirements for an already fill-rate limited algorithm. Addi-

tionally, many light samples are necessary to avoid banding artifacts.

Brebion [2003] generates soft shadows by rendering an inner and outer shadow volume using z-fail

shadow volumes. The inner volume represents the umbra region and is stored in the red channel, while

the outer volume represents the penumbra region and is stored in the green channel. Using multi-pass render-

ing, the red channel is blurred only where the green channel is non-zero. The outer shadow volume is created

from an extended hull of the occluder, similar to Parker et al.’s [1998] technique. However, creating the

outer volume for an arbitrary object is potentially expensive since it may require CSG operations to remove

vertexes that self-penetrate the occluder when extended.

Akenine-Möller and Assarsson [2002] propose the penumbra wedge as a primitive to be used to model

the penumbra region of a shadow. Penumbra wedges are four quadrilaterals generated from the light space

silhouette edge of an occluder. Each wedge shares its side planes with neighboring wedges and empirically

models the visibility of the light for each point contained within the wedge. Penumbra wedges are rendered

to the camera space image of the scene in a fashion similar to shadow volumes. The authors later improve

upon their technique (see Assarsson and Akenine-Möller [2003]) by introducing a new wedge construction

algorithm that avoids the creation of degenerate wedges and removes the dependency of each wedge’s side

plane to be shared by its neighboring wedges. They also improve upon their visibility calculation by project-

ing the wedge’s silhouette edge into a precomputed light space visibility lookup texture. This texture can be

animated and can also encode the shape of the light source. Assarsson et al. [2003; 2004] provide further

optimizations for the penumbra wedge algorithm.

Penumbra wedges suffer from visual artifacts when objects overlap in light space. The authors also note

that the shadows generated by their technique are incorrect for large light sources due to occluders’ silhouettes

being computed in reference to the center of the light source. However, to overcome this single silhouette

artifact, the authors propose breaking up large light sources into multiple lights. Like most shadow volume

algorithms, penumbra wedges are fill-rate limited and therefore limit their ability to render dynamic, complex

scenes in real-time.

19

Jakobsen et al. [2004] proposes a method to overcome the single silhouette artifact from which penumbra

wedges suffer. They proceed by rendering penumbra and umbra shadow volumes into a light space image

called the D-buffer. The D-buffer stores several distances, which are later used to compute visibility. A

disk light source is assumed, which allows the authors to accurately find silhouette edges with respect to the

entire light source, not just the center point. Artifacts occur when objects overlap in light space and also

when silhouette corners form acute angles. The authors also point out that their algorithm is unable to render

correct shadows for umbra regions that are completely diminished.

The above review summarizes previous work that is most relevant to our own. For a comprehensive

overview on shadow generation techniques, see the work of Woo et al. [1990], Möller and Haines [1999],

and Hasenfratz et al. [2003].

Chapter 4

Penumbra Volume Maps

To generate perceptually correct soft shadows at real-time rates, we propose penumbra volume mapping,

or PVM. PVM is a hybrid technique that borrows key approaches from both shadow volumes and shadow

maps and combines them in a unique manner. PVM is similar to shadow volumes in that penumbra vol-

umes are extruded from silhouette edges. Unique to PVM, occluder information is stored in each volume

represented as a light space image. No stencil buffer updates are used. The light space image representation

of penumbra volume maps is inspired by traditional shadow maps, which are also used to determine umbra

regions.

Penumbra volume maps are composed in three passes. In the first pass, a light space shadow map of the

scene is generated. In the second pass, we compute and then render from the light’s viewpoint penumbra

volumes into a penumbra volume map. In the final pass, the scene is rendered from the camera’s viewpoint,

where we use the shadow map and penumbra volume maps to shadow the scene.

In the following sections, we describe the second and third passes, as the first pass is trivial. We conclude

by discussing the pros and cons of the method.

4.1 Penumbra Volume Map Creation

At the core of our algorithm is the penumbra volume map. For each point in the light’s view frustum,

this map stores the light space silhouette edge of an occluder that may be partially occluding the light. In

the following section, we decompose the creation of the penumbra volume map into three steps: silhouette

detection, volume generation, and volume rendering.

4.1.1 Silhouette Detection

We begin the creation of the penumbra volume map by first computing the light space silhouette of each

object in the scene. A modified winged-edge data structure [Baumgart 1975] is used to store the connectivity

of each mesh. For each edge in the mesh, this data structure stores each face of which the edge is a member.

Additionally, given an edge, we are able to determine the neighboring edges that share either of the given

edge’s vertexes. We assume that each object in the scene is described by a closed two-manifold mesh. This

21

leads to a simple silhouette detection algorithm. For each edge, we classify the edge as a silhouette edge if

one of the edge’s faces is front facing with respect to the light, while the other face is back facing with respect

to the light. This case is easily detected by taking each face’s geometric face normal and dotting it with a

vector to the center of the light. If the signs of the two dot products differ, the edge is a silhouette edge.

The silhouette detection algorithm described above is a brute force algorithm, i.e., each edge in the mesh

is tested. However, the silhouette does not need to be recomputed every frame. Rather, the silhouette needs

to be recomputed only when the light or object moves in relation to each other (within a tolerance) or the

geometry of the object is manipulated. Also note that in many applications the connectivity of meshes does

not change across frames. In this case, the winged-edge data structure need only be computed once.

4.1.2 Penumbra Volume Creation

Once light space silhouette edges have been computed, we concern ourselves with extruding the silhouette

edges to model the penumbra volume. Given a silhouette vertex v1, we use silhouette connectivity information

to determine two neighboring vertexes, v0 and v2, that are also in the light space silhouette. Together, these

three vertexes define two silhouette edges, e0 and e1. We extrude v1 by first computing the normal of e1’s

hard shadow plane with:

n1 =
(v2 − v1) × (v1 − l)
‖(v2 − v1) × (v1 − l)‖

,

where l is the object space position of the light source. We then compute two displaced light positions, d−1

and d+1 , the outer and inner light positions, respectively,

d−1 = l − n1r, and d+1 = l + n1r,

where r is the radius of the light source.

The points v1, v2, and d−1 form a plane describing the bounds of e1’s outer penumbra volume, with normal:

n−1 =
(v2 − v1) × (v1 − d−1)
‖(v2 − v1) × (v1 − d−1)‖

.

Likewise, v1, v2, and d+1 form a plane describing the bounds of e1’s inner penumbra volume. See Figure 4.1

(left and center).

In a similar fashion, we compute the inner and outer penumbra volume planes for e0. With these planes,

we can then compute the inner and outer extrusion vectors for v1. To compute v1’s outer extrusion vector, v̂−1 ,

22

Figure 4.1: Left: Outer penumbra volume plane. Center: Inner penumbra volume plane added. Right:
Outer penumbra volume quadrilateral.

23

Figure 4.2: Left: A shadowed scene. Right: Visualization of the inner and outer extrusion vectors for each
silhouette vertex (yellow). The occluder’s silhouette is shown in green.

we intersect e0’s and e1’s outer penumbra volume planes. Since these two planes share a point, v1, and with

edge e0’s outer penumbra volume plane defined by n−0 ,

n−0 =
(v1 − v0) × (v0 − d−0)
‖(v1 − v0) × (v0 − d−0)‖

,

this intersection is computed simply with:

v̂−1 = n−1 × n−0 .

The extrusion vector v̂−1 must be negated when v1 is in the negative halfspace of the plane described by v0,

v2, and l. If n0 and n1 are equal, the planes are coincident, in which case v̂−1 is given by:

v̂−1 =
v1 − d−1
‖v1 − d−1 ‖

.

Vertex v1’s inner extrusion vector, v̂+1 , is computed analogously.

The process above is repeated for each vertex in the silhouette. As a result, two quadrilaterals are produced

for each edge, one describing the inner penumbra region, the other describing the outer penumbra region. For

example, e1’s outer volume quadrilateral is defined by v1, v1 + wv̂−1 , v2 + wv̂−2 , and v2, where w is a scalar

value that will place the extruded point either at or beyond the light’s far clipping plane. See Figure 4.1

(right) shows a depiction of the outer volume quadrilateral and Figure 4.2 gives a visualization of the extruded

volume vectors.

24

Figure 4.3: Layers of the penumbra volume map. The green lines represent the light space silhouette of the
occluder. Left: The penumbra volume depth maps encodes the light space depth of each penumbra volume.
The PVDM is used to determine if a point is contained within a penumbra volume. Center/Right: The
penumbra volume edge maps. Each map encodes one of the end-points of a silhouette edge that gives rise to
a volume. These points are used during the visibility computation to reconstruct occluder edges.

4.1.3 Penumbra Volume Rendering

Once the penumbra volume geometry has been generated, we render the volumes from the light space view

of the scene. During this phase, three maps are constructed. The first map, the penumbra volume depth

map (PVDM), stores the light space depth of each first-depth visible volume. The second and third maps,

the penumbra volume edge maps (PVEM), each store one of the silhouette edge points that give rise to the

volume. The PVEMs serve to identify the vertexes of the edge casting the penumbra shadow. These vertexes

are then used in the third pass to construct the light cutting plane (see below). We treat the composition of all

three maps as a multi-layered map called the penumbra volume map (PVM). Figure 4.3 illustrates the three

maps.

The maps described above can be efficiently generated on modern graphics hardware. In our current im-

plementation, we utilize the GPU’s ability to render to multiple buffers simultaneously [ARB draw buffers]

creating the three maps in a single pass. Each PVEM is composed of 16-bit floating point elements [ARB

texture float], while the penumbra volume depth map is a 24-bit depth texture [ARB depth texture].

Rendering penumbra volumes is the second pass in a multi-pass algorithm. Since the results of this pass

will be used in later passes, we make use of modern hardware’s efficient render-to-texture capabilities [EXT

framebuffer object].

4.2 Light Visibility

In the final pass we use the shadow map and penumbra volume map generated in the first and second passes

to shade the scene from the camera’s point of view. Listing 4.1 outlines pseudo-code for the final pass.

25

1 uniform sampler2D Edge0Map, Edge1Map, PVDM, ShadowMap;

2

3 vec4 shade(in vec3 ppixel, // pixel’s world space position

4 in vec3 npixel, // pixel’s world space normal

5 in vec3 plight, // light’s world space position

6 in vec2 tpro j, // pixel’s projected shadow map coord.

7 in float dpixel) // pixel’s light space depth

8

9 {

10 // compute the incoming light from light plight,

11 // do not account for shadows (similar to OpenGL pipeline)

12 vec4 incoming = computeIncomingLight(ppixel,pnormal,plight);

13

14 // compute the light’s visibility using penumbra volumes maps

15 // (Edge0Map , Edge1Map , PVDM) and shadow map (ShadowMap)

16 float shadowAtten =

17 computeLightVisibility(ppixel,plight,tpro j,dpixel);

18

19 // modulate incoming light with light visibility term

20 // add ambient lighting

21 return = incoming * shadowAtten + ambient;

22 }

Listing 4.1: OpenGL Shading Language pseudo-code for computing irradiance at a camera pixel in the final
pass. Lighting is first computed without accounting for light visibility, the result of which is modulated by an
attenuation factor computed from the penumbra volume map.

26

1 uniform sampler2D Edge0Map, Edge1Map, PVDM, ShadowMap;

2

3 float computeLightVisibility(

4 in vec3 ppixel, // pixel’s world space pos.

5 in vec3 plight, // light’s world space pos.

6 in vec2 tpro j, // pixel’s projected sm coord.

7 in float dpixel) // pixel’s light space depth

8

9 {

10 vec3 shadowAtten = 1.0;

11

12 // sample the volume depth map,

13 // if depth test fails, ppixel is in a penumbra volume

14 float vd = texture2D(PVDM,tpro j);

15 if(vd < dpixel) {

16 // ppixel is in a penumbra volume, estimate light visibility

17 shadowAtten = intersectLight(ppixel,plight,tpro j);

18 } else {

19 // ppixel is not in a penumbra volume, but still may be in an

20 // umbra region. sample the shadow map, if the sample is

21 // closer than the pixel’s depth, the pixel is completely

22 // shadowed.

23 float sd = texture2D(ShadowMap ,tpro j);

24 if(sd < dpixel) {

25 shadowAtten = 0.0;

26 }

27 }

28

29 return shadowAtten;

30 }

Listing 4.2: OpenGL Shading Language pseudo-code for estimating light visibility at a camera pixel, ppixel.
The code first determines if the pixel is in a penumbra volume, if so, the visibility of the light within the
volume is estimated. If the pixel is not in a penumbra volume, a shadow map is sampled to determine if the
pixel is in an umbra region.

We begin the final pass by rendering all scene geometry from the camera’s viewpoint. Each rendered

pixel is shaded by the pseudo-code in Listing 4.1. The key function in creating shadows in Listing 4.1 is

computeLightVisibility. This function estimates the visibility of the light at pixel p (see pseudo-code in

Listing 4.2).

The function computeLightVisibility begins by sampling the penumbra volume depth map. This

sample is used to determine if the pixel being shaded is contained within a penumbra volume. If the pixel is

deemed outside a penumbra volume, the shadow map generated in the first pass is sampled. If the shadow

map sample is less than the pixel’s light space depth, the pixel is known to be shadowed. Since we know

27

Shaded Point

Receiver

Perpendicular Disk

Cutting Plane

Spherical Light Source

Occluder

Penumbra Volume

Figure 4.4: The cutting plane (red) is defined by the point being shaded and the occluder edge which gen-
erated the penumbra volume (green) in which the point resides. To compute light visibility, a disk (blue)
perpendicular to the cutting plane is created.

from the PVDM sample that the pixel is not in a penumbra region, a pixel that is deemed shadowed by the

shadow map test must be in the umbra region of a shadow. Accordingly, computeLightVisibility returns

a shadow attenuation factor of 0.0.

If the initial PVDM test results in the pixel being marked in a penumbra volume, computeLight-

Visibility calls intersectLight, which estimates the visibility of the light source at the pixel being

shaded. The function intersectLight begins by sampling the penumbra volume edge maps, Edge0Map

and Edge1Map. These two samples define the two points, h0 and h1, of the silhouette edge that gave rise to

the penumbra volume. Points h0, h1, and fragment position p form the cutting plane, n · p + d = 0, where:

n =
(h1 − h0) × (p − h0)
‖(h1 − h0) × (p − h0)‖

, and d = −n · h0.

To further our visibility calculation, we construct a disk that has the same radius as the light source, is

centered at the light source’s position, and is perpendicular to the cutting plane. We use the percentage of

the area of the disk that is in the positive half-space of the cutting plane as an estimate of the visibility of the

light. Figure 4.4 illustrates the relationships between the cutting plane, light source, and disk.

28

Cutting Plane

Area: πr2

θ

Area: 1
2 s
√

r2 − s2

Area: θ2ππr
2

s r

Figure 4.5: The area of the sector (blue) is subtracted from the area of the triangle (green) formed by the
cutting plane (red), giving the white upper right area. The difference is then divided by the area of the circle
to estimate the visibility of the light.

To determine the area of the disk that is in the positive half-space of the cutting plane, we compute the

area of the sector formed by the normal of cutting plane and subtract the area of the triangle formed by the

plane’s intersection. Figure 4.5 illustrates the sector and triangle formed by the cutting plane.

We continue by computing the shortest distance, s, from the plane to the center of the light source with:

s = n · l + d.

With s and the radius of the disk, r, we can then compute the area, a, of the light source in the positive

half-space of the cutting plane with:

a =
θ

2π
πr2 −

1
2

s
√

r2 − s2

=
cos−1(s

r)
2

r2 −
s
√

r2 − s2

2
. (4.1)

Visibility can then be estimated with:

k =
2a
πr2 . (4.2)

Figure 4.6 shows an example result of Equation 4.2.

As we are modeling spherical light sources, Parker et al. [1998] note that the falloff for a diffuse spherical

light source and occluders with straight edges is sinusoidal, not linear. We follow their suggestion of modeling

29

Figure 4.6: Left: A shadowed scene. Right: Visualization of the visibility computation executed for each
pixel in the penumbra region.

this behavior with the Bernstein polynomial interpolant:

v = 3k2 − 2k3.

4.3 Penumbra Volume Mapping Summary

Penumbra volume maps provide several benefits over existing algorithms:

1. Perceptually Correct Soft Shadows. The soft shadows generated are perceptually correct, i.e., they

account for the relative distances between light, occluder, and receiver. The penumbra volume edge

maps allow us to determine the part of an occluder that is partially obstructing the light from a given

point. With the known light position, point to be shaded, and the occluder edge, we are able to account

for the distances between these three factors to produce realistic soft shadows.

2. Mapping to Modern Graphics Hardware. Real-time frame rates are achieved due in part to our

algorithm’s mapping to modern graphics hardware. Our current implementation uses newly developed

render-to-texture APIs [EXT framebuffer object] to render multiple maps in a single pass. We also

use modern hardware’s floating point texture facilities [ARB texture float] to store occluder edges

in penumbra volume edge maps at high precision. Finally, we use programmable graphics hardware

[Rost 2004] to perform visibility on the GPU, thereby avoiding expensive GPU-to-CPU read-backs and

freeing the CPU for other computations.

30

Figure 4.7: Left: Objects overlapping in light space look correct from the light’s viewpoint. Right: However,
as objects overlap in light space, penumbra volumes overwrite each others’ edge information, which leads to
artifacts when viewed from the camera.

3. Camera Space Visibility Computation. Using the light space PVDM, PVEMs, and shadow map, we

are able to compute visibility in camera space on a pixel-by-pixel basis. The result is visually smooth

shading within each penumbra volume generated from a single edge.

4. Fast Visibility Computation. The visibility calculation presented in Section 4.2 maps to few in-

structions on modern programmable GPUs. We also use recent GPU abilities to perform conditional

branching to avoid computing light visibility outside of penumbra volumes.

Unfortunately, penumbra volume maps also suffer from the following limitations:

1. Penumbra Volume Overlap. As penumbra volumes overlap in light space, objectionable shadowing

artifacts may occur. Figure 4.7 shows an example of one such artifact. These artifacts are a result of

penumbra volumes overwriting each others’ edge maps in light space, causing the visibility function

of neighboring pixels to be evaluated by spatially differing occluder edges.

2. Visibility Discontinuities. While the visibility computed from a single edge is visibly smooth, the

visibility across neighboring edges may be discontinuous. Figure 4.8 illustrates this discontinuity.

These artifacts are quite noticeable, but can be somewhat hidden on textured receivers.

3. CPU Silhouette Detection/Volume Construction. Silhouette detection and volume construction take

place entirely on the CPU. By performing these calculations on the CPU, we consume precious CPU

time while not fully utilizing the GPU. McCool [2000] proposes a method to generate hard shadow

volumes by finding depth discontinuities in a depth map. Unfortunately, this requires a read-back of

31

Figure 4.8: Discontinuities in the visibility computation across penumbra volumes produce visual artifacts.

the depth map from the GPU to the CPU, where the shadow volumes are constructed. While the current

generation of graphics hardware is able to detect depth discontinuities in a depth map without a CPU

read-back, modern GPUs are unable to generate new geometry (i.e., the shadow volumes created from

the depth discontinuities) without CPU intervention. Upcoming generations of graphics hardware will

support render-to-vertex-array, which will remove this restriction.

4. Single Silhouette Artifact. Like most other soft shadow methods, our algorithm may produce incorrect

shadows due to computing occluder silhouettes with respect to the center of a light source, rather than

accounting for each point on a light source. While this artifact is noticeable if the light source is close

to, and is a great deal larger than an occluder, it can be minimized by breaking the light source into

several sub-lights [Assarsson et al. 2003].

Chapter 5

Penumbra Volume Mask Filtering

In order to overcome the shortcomings of penumbra volume mapping, we propose a new method to

generate perceptually correct soft shadows, penumbra volume mask filtering, or PVMF. In this method, light

visibility is estimated by varying the size of a percentage-closer filter over a standard depth shadow map.

This estimation is then blurred to hide artifacts. To avoid unnecessarily processing any areas of the scene not

in shadow, modified penumbra volumes are used as a computation mask.

Penumbra volume mask filtering is a sampling based approach. The quality of the resulting shadows can

be controlled simply by varying the number of samples taken. In practice relatively few samples are needed

to avoid the visibility discontinuity and object overlap artifacts suffered by penumbra volume maps.

Penumbra volume mask filtering is closely related to the percentage-closer shadows algorithm [Fernando

2005], which also uses a variable sized percentage-closer filter to generate soft shadows. Unlike PCS, we

use penumbra volume depth values to mask shadowed areas of the scene. This mask is used to restrict the

regions where expensive filtering and sampling operations occur. Much like penumbra volume mapping, we

use edge information encoded in each penumbra volume to estimate the size of each penumbra region. We

then use this estimate to control the size of a percentage-closer filter. By using the penumbra volume’s edge

information, we avoid the PCS algorithm’s occluder search, which accounts for 30% of the PCS algorithm’s

cost. Additionally, similarities to PCS are extended by application of jittered sampling and visibility blurring.

These operations aid in eliminating many of the visual artifacts suffered by percentage-closer shadows.

Our algorithm is composed of five steps. In the first step, a standard depth shadow map is generated. In

the second step, a penumbra volume mask is created and rendered from the light’s viewpoint. Light visibility

is computed into a visibility buffer in the third step. This buffer is blurred in the fourth step and used to

modulate the scene as rendered from the camera in the final step.

In the following sections, we describe in detail the steps necessary to generate perceptually correct soft

shadows with penumbra volume mask filtering. As with penumbra volume mapping, we do not discuss how

to generate the standard depth shadow map in the first step, as generating this map is trivial. Once we have

discussed the steps in the PVMF algorithm, we continue by detailing our implementation of the algorithm.

Performance of the algorithm is then covered, followed by a discussion of the pros and cons of penumbra

volume mask filtering.

33

5.1 Penumbra Volume Mask Creation

After creating a standard depth shadow map, we turn our attention to generating a penumbra volume mask.

This mask will be used to limit the number of expensive filtering operations in future steps.

We proceed by finding the light space silhouette of all occluders in the scene. These silhouettes are

then extruded from the light source to generate volumes which enclose the scene’s penumbra regions. These

volumes are rendered into a depth map along with the distance from the light source to the silhouette edge

that gave rise to the penumbra volume. The penumbra volumes are used during the visibility estimation step

as a mask to avoid processing pixels that are not in shadow. The light to silhouette edge distances are used

during the visibility estimation step to control the size of the percentage-closer filter. We call the two channel

map that stores the penumbra volume light space depth and the distance from each silhouette edge to the light

source, the penumbra volume mask. In this section, we cover in detail the generation of the penumbra volume

mask.

We begin the construction of the penumbra volume mask by first detecting the light space silhouette of

each occluder in the scene. The silhouette of each occluder is found by using the algorithm outlined in Sec-

tion 4.1.1. Much like Section 4.1.2, we then extrude the light space silhouette from the light source to create

penumbra volumes. However, we do not use the extrusion algorithm in Section 4.1.2 to generate the volumes.

Instead, we use a simplified volume construction algorithm that allows each silhouette edge’s volume to be

constructed independently of other silhouette edges. The volumes generated by our new algorithm are an

overestimation of the volumes generated in Section 4.1.2.

Given two silhouette edge points e0 and e1 describing a single edge, the edge’s penumbra volume is

created by first moving the points an equivalent distance away from the center of the light source:

ê0 = e0 −min(‖e0 − l‖, ‖e1 − l‖)
e0 − l
‖e0 − l‖

se

ê1 = e1 −min(‖e0 − l‖, ‖e1 − l‖)
e1 − l
‖e1 − l‖

se

where l is the object space position of the light source and se is a value in the range (0, 1] used to overestimate

the size of the penumbra volume. This overestimation helps us to account for sampling errors during the

visibility estimation in Section 5.2.

34

With the two moved edge points, we can then find the edge’s hard shadow plane normal with:

e =
ê1 − ê0

‖ê1 − ê0‖

v =
ê0 − l
‖ê0 − l‖

n = v × e

We can then create four extrusion vectors with:

v−0 =
ê0 − l + e − n
‖ê0 − l + e − n‖

v−1 =
ê1 − l − e − n
‖ê1 − l − e − n‖

v+0 =
ê0 − l + e + n
‖ê0 − l + e + n‖

v+1 =
ê1 − l − e + n
‖ê1 − l − e + n‖

These vectors define both the outer penumbra volume quadrilateral: ê0, ê0 + wv̂−0 , ê1 + wv̂−1 , ê1 and the inner

penumbra volume quadrilateral: ê1, ê1+wv̂+1 , ê0+wv̂+0 , ê0 where w is a scalar value that will place the extruded

point either at or beyond the light’s far clipping plane. Figure 5.1 illustrates the volume quadrilaterals created

by the construction algorithm.

As a final step in the penumbra volume mask generation process, these quadrilaterals are rendered to a

depth texture (see Figure 5.2). Along with each volume, the distance from the light source to the edge that

gave rise to the volume:

de = min(‖e0 − l‖, ‖e1 − l‖)

is also stored in a separate floating point channel.

This volume construction algorithm differs from the construction algorithm in 4.1.2. When constructing

a volume from a silhouette edge, neighboring edge information is not needed. The PVM volume construction

algorithm requires that neighboring edges’ volume planes be clipped against each other. This clipping is to

avoid volumes from the same silhouette loop from overwriting each other’s edge information in light space,

35

Figure 5.1: Overview of penumbra volume mask construction. The silhouette edge points, e0 and e1, are
moved an equivalent distance away from the center of the light source, l. These new points, ê0 and ê1 are
extruded away from the light source to form the volume’s quadrilaterals.

Figure 5.2: Left: The scene from the light’s point of view. Right: The penumbra volume mask’s depth value
as seen from the light’s viewpoint.

36

exacerbating object overlap artifacts. In contrast, overwriting penumbra volumes in the penumbra volume

mask is not a problem, as the volumes are used to mask regions of the scene that may be in shadow.

5.2 Visibility Estimation

In this section, we discuss how the standard depth shadow map created in step 1 and the penumbra volume

mask created in step 2, are used to estimate the visibility of the light source for each camera visible pixel into

a floating point visibility buffer. We begin the visibility computation by first setting the size of a percentage-

closer filter. The size of the filter is based on the relative distances between light, occluder, and receiver. This

variable sized filter is used to sample the shadow map, the result of which is the visibility estimate. Using a

mask to control filtering is similar to Duchowski et al.’s [2004] use of degradation masks to control sampling

into pre-filtered textures to simulate human visual system deficiencies.

We begin our visibility estimate discussion by detailing how to set the size of the percentage closer filter.

We finish by covering the sampling scheme used when applying the filter to the depth shadow map.

The strategy behind our visibility estimate is to vary the size of a percentage closer filter based on the

relative distances between light, occluder, and receiver. Note that the filtered result of a percentage closer

filter tends to increase as the size of the filter increases. With this in mind, we set the size of the percentage

closer filter based on the projection of the estimated size of the penumbra at the pixel being shaded into the

light’s shadow map:

wpc f = sp
(dr − do)r

2dodr tan α2

sp is a user defined scaling factor used to control the size of the penumbra. dr is the light space depth of

the shadow receiver and r is the radius of the light source. α is the light’s horizontal field of view angle. do

is the average light space depth of occluder edges that may have generated penumbra volumes that enclose

the receiver point. do is computed by averaging samples in a region around the receiver point’s projection,

contained in the silhouette edge distance channel of the penumbra volume mask.

With the size of the filter set, we then proceed to apply the percentage-closer filter on all camera space

pixels that are either enclosed within a penumbra volume (determined by sampling the penumbra volume

mask’s depth channel), or fail the depth test with respect to the standard depth shadow map generated in the

first step. When applying the percentage closer filter, we break up the filter into an npc f × npc f cell grid where

37

Figure 5.3: Left: Banding artifacts occur when sampling the shadow map without jittered sampling. Right:
Banding artifacts are effectively hidden with jittered sampling. While we reduce banding artifacts, we have
artificially introduced noise.

each cell is wpc f

npc f
square. npc f is a user defined variable which controls the number of percentage-closer filter

samples. When sampling each cell, we randomly jitter the sample. As figure 5.3 illustrates, this jittering

effectively reduces banding artifacts at the cost of introducing noise.

5.3 Visibility Estimate Noise Reduction

The visibility buffer resulting from the light visibility estimate purposely trades off banding artifacts in favor

of noise. In the fourth step of our algorithm, we reduce noise in the visibility buffer by blurring the buffer.

Our blur filter is described by:

v =
1
bs

nblur
2∑

i=− nblur
2

nblur
2∑

j=− nblur
2

S(u + i, v + j) B(u, v, u + i, v + j)

Here nblur is the number of samples to be taken by the blur filter. u, v is the texel coordinate of the current

visibility buffer texel being blurred. S(s,t) is a function which samples the visibility texture at s, t. B is a

38

Figure 5.4: Left: Visibility buffer before blurring. Right: By blurring the visibility buffer we can effectively
hide noise artifacts.

binary function which maps to:

B(u, v, s, t) =


0 if ID(u, v) , ID(s, t)

1 if ID(u, v) = ID(s, t)

where ID(s, t) returns an unique integer assigned to each object in the scene. Finally, bs is the number of

samples where B returns true.

B is critical to correctly blurring the visibility buffer. In B’s absence, the buffer is uniformly blurred, which

results in shadows “bleeding” onto fully lit objects. To avoid this, B is used to restrict blur samples to texels

which lie on the same object as the texel at u, v. For complex objects, assigning a single ID to each object

may still lead to incorrect “bleeding” within the object. To avoid incorrect inter-object bleeding, a unique ID

can be assigned per bone, an ID assignment technique similar in spirit to Vlachos et al. [2001].

The result of the blur step is a new visibility buffer that is relatively noise free. Figure 5.4 illustrates the

visibility buffer before and after the blur step.

39

Figure 5.5: Left: Illumination from a point light source. Center: The visibility buffer. Right: By modulat-
ing the visibility buffer with illumination from a point light source, we produce the final shaded scene.

5.4 Final Compositing

In the final step of our algorithm, we render the scene from the camera’s viewpoint. In this step, we use the

center of the area light source as a point light source. For each pixel rendered from the camera, the pixel’s

corresponding visibility buffer texel, v, is sampled and multiplied by the irradiance due the point light source

with Equation 2.2. Figure 5.5 illustrates the result of modulating the visibility buffer with irradiance from the

point light source.

5.5 Results

In this section, we discuss our implementation of the penumbra volume mask filtering algorithm and provide

results for samples scenes. We implemented and tested the algorithm on an AMD Athlon 3200+ CPU with a

NVidia GeForce 6800 Ultra GPU utilizing NVidia’s 76.76 GNU/Linux OpenGL 2.0 drivers.

Our implementation of the algorithm is composed of six passes per light. Figure 5.6 illustrates the passes.

In our first pass, we store the scene’s depth from the light’s viewpoint. During this pass we enable front face

culling to simulate second-depth shadow mapping. In the second pass, we generate and render penumbra

volumes, storing their depth and the distance from the volumes’ silhouette edges to the center of the light

source.

In the third pass, we render from the camera. For each camera pixel we estimate the light’s visibility

using the shadow map, penumbra volume depth map, and penumbra volume silhouette edge distance map

generated in the first two passes. This visibility is stored in the red channel of the visibility buffer. In the

green channel of the visibility buffer, we store a unique ID for each object rendered. This ID is passed as

40

Step 1

Shadow Map

Step 2

Step 3

Depth24

Depth24

Penumbra Volume Edge Depth

Texture C
RGB Float16

Texture A

Texture B

Texture A
Depth24

Texture B
Depth24

Texture C
RGB Float16

Shadow Map Penumbra Volume Edge Depth

Texture D Texture E
Depth24RGB Float16

Object ID
Camera DepthVisibility Buffer /

Step 4a

Step 5

Step 4b
Texture F
RGB Float16

Texture D
RGB Float16

Buffer / Object ID
Visibility Buffer

Texture D
RGB Float16

Texture E

Visibility Buffer /
Object ID

Camera Depth

Depth24

Final Image

Texture D
RGB Float16

Texture F
RGB Float16

Visibility Buffer /
Object ID Buffer / Object ID

Temporary Visibility

Temporary Visibility

Frame
 Buffer

Figure 5.6: An illustration of the render textures used during the penumbra volume mask filtering algorithm.
Step 1 produces a standard depth shadow map (Texture A) while step 2 renders penumbra volumes to a depth
texture (Texture B) and silhouette edge depths to a floating point texture (Texture C). Step 3 uses the textures
created in the first 2 passes to estimate light visibility for camera visible pixels and stores the result into the
visibility buffer (Texture D). The fourth step first horizontally blurs the visibility buffer (Texture D), storing
the result in a temporary floating texture (Texture F) and then blurs this temporary texture vertically, storing
the result back into the visibility buffer (Texture D). In the fifth step the scene is rendered from the camera
into the framebuffer, where the visibility buffer is used to modulate the scene.

41

uniform data to the shader for each object. In the blue channel, we store a mask derived from the penumbra

volume mask and depth shadow map denoting whether or not the visibility buffer pixel should be blurred.

Also in the third pass, we render the depth of the scene from the camera’s viewpoint. This depth texture can

be reused across lights for fast z-culling [Morein 2000].

When sampling from the depth shadow map, we enable NVidia’s hardware accelerated percentage-closer

filtering. Enabling hardware accelerated filtering improves overall picture quality.

The fourth and fifth passes (step 4 in Section 5.3) blur the visibility buffer to remove noise. In the fourth

pass we blur the visibility buffer horizontally, storing the result in a temporary floating point texture. We

finish the blur in the fifth pass by blurring this temporary buffer vertically, storing the result back into the

visibility buffer. We break the blurring step into multiple passes to better take advantage of the GPU’s texture

cache.

In the final pass, we render the scene from the camera’s viewpoint, accounting for illumination from

the center of the light source. As each camera fragment is rendered, we modulate the fragment with its

corresponding sample from the visibility buffer. The result is the scene rendered with shadows.

Figure 5.7 illustrates a scene rendered with penumbra volume mask filtering. All texture maps are 512 ×

512 pixels with nblur = 12 and npc f = 7. The scene renders between 27 and 150 frames per second. This large

disparity is due to the use of the penumbra volume masks. If the camera’s viewport contains many fragments

which are masked by the penumbra volume mask, the frame rate decreases, since more fragments need to

be filtered. As fewer fragments are masked by the penumbra volume mask (such as when the camera zooms

out), the frame rate increases since fewer fragments require shadow processing.

Due to current hardware/driver restriction, texture memory usage in our implementation is inefficient. The

silhouette edge depth texture (Texture C) need only be composed of a single floating point channel, not three.

Likewise, the visibility buffers (Textures D and F) only need a single floating point channel. Object ID’s can

be stored in a single 8-bit channel while blur masks can be stored in a 1 bit stencil texture. Unfortunately,

the graphics driver used in our implementation does not support rendering to fully featured 1 and 2 channel

textures. Likewise, the current driver does not support rendering to 1-bit stencil textures. We expect these

issues will be addressed in future drivers.

Artifacts occur in our implementation due to our use of second-depth shadow mapping [Wang and Molnar

1994] . Second-depth shadow mapping removes depth aliasing artifacts by moving the artifacts from the

first-depth surface to the second-depth surface. Generally, these second-depth artifacts are hidden by the

illumination model. However, artifacts may still occur at the intersection of first- and second-depth surfaces.

42

Figure 5.7: Left: A sample scene with the radius of the light source set to 0.3. Right: The same scene
with the radius of the light source set to 1.0. As the relative distances between the occluder, receiver, and
light source increases, the penumbra region grows and the umbra region diminishes in a perceptually correct
manner.

These intersection artifacts are magnified by our implementation of penumbra volume mask filtering, due to

sampling from an area of the shadow map, rather than a single texel.

In the future, we would like to explore using mid-point depth shadows [Woo 1992]. Unfortunately, our

current hardware is not capable of efficiently implementing mid-point shadows with hardware accelerated

depth buffer filtering.

Like many other image-based shadowing techniques, our algorithm suffers from perspective aliasing.

While the percentage-closer filter and blur step aid in hiding this artifact, perspective aliasing can manifest

itself in the form of blocky, although soft, shadows. Any of the many techniques (for example, see Fernando

et al. [2001], Stamminger and Drettakis [2002], Aila and Laine [2004], Martin and Tan [2004], Wimmer

et al. [2004], and Arvo [2004]) designed to combat perspective aliasing can be combined with our technique

to reduce perspective aliasing.

5.6 Penumbra Volume Mask Filtering Summary

Like penumbra volume mapping, penumbra volume mask filtering produces perceptually correct shadows at

real-time frame rates by utilizing modern graphics hardware. Unlike PVM, penumbra volume mask filtering

does not suffer from visibility discontinuity and object overlap artifacts. However, single silhouette artifacts

43

(as described in 4.3) can occur. Additionally, penumbra volume construction occurs on the CPU. In the future,

we plan to explore using the GPU’s vertex processing engine to construct penumbra volumes “on-the-fly” on

the GPU.

Chapter 6

Conclusions

We have described two new methods to generate soft shadows, penumbra volume mapping and penumbra

volume mask filtering. The shadows generated by both methods are perceptually correct and can be evaluated

and displayed at real-time rates. With penumbra volume mapping, we introduced a soft shadow algorithm

that maps to few shader instructions. To overcome artifacts suffered by penumbra volume mapping, we

introduced penumbra volume mask filtering. We have also provided an overview of related existing soft

shadow algorithms. Likewise, we discussed the benefits and shortcomings of our proposed methods and

outlined points for continued research.

Bibliography

A, M., R, R., H, A., M, L. 2000. Efficient image-based methods for rendering
soft shadows. In SIGGRAPH ’00: Proceedings of the 27th Annual Conference on Computer Graphics and
Interactive Techniques. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 375–384.

A, T.  L, S. 2004. Alias-free shadow maps. In Proceedings of the EG Symposium on Rendering.
Springer Computer Science. Eurographics, Eurographics Association.

A-M̈, T. A, U. 2002. Approximate soft shadows on arbitrary surfaces using penumbra
wedges. In Rendering Techniques ’02 (Proceedings of the 13th EG Workshop on Rendering). Springer
Computer Science. Eurographics, Eurographics Association, 297–306.

ARB  . 2004. OpenGL Architecture Review Board. In OpenGL Extension Registry. SGI. URL:
http://oss.sgi.com/projects/ogl-sample/registry/ARB/depth texture.txt.

ARB  . 2004. OpenGL Architecture Review Board. In OpenGL Extension Registry. SGI. URL:
http://oss.sgi.com/projects/ogl-sample/registry/ARB/draw buffers.txt.

ARB . 2002. OpenGL Architecture Review Board. In OpenGL Extension Registry. SGI. URL:
http://oss.sgi.com/projects/ogl-sample/registry/ARB/shadow.txt.

ARB  . 2004. OpenGL Architecture Review Board. In OpenGL Extension Registry. SGI. URL:
http://oss.sgi.com/projects/ogl-sample/registry/ARB/texture float.txt.

A, J. 2004. Tiled shadow maps. In CGI ’04: Proceedings of the Computer Graphics International
(CGI’04). IEEE Computer Society, Washington, DC, USA, 240–247.

A, J., H, M.,  T̈, J. 2004. Approximate soft shadows using image-space flood-fill
algorithm. Computer Graphics Forum 23, 3, 271–280.

A, J.  W, J. 2004. Hardware accelerated soft shadows using penumbra quads. Journal of
WSCG 12, 1, 11–18.

A, U. A-M̈, T. 2003. A geometry-based soft shadow volume algorithm using graphics
hardware. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2003).

A, U.  A-M̈, T. 2004. Occlusion culling and z-fail for soft shadow volume algorithms.
The Visual Computer 20, 8-9, 601–612.

A, U., D, M., M, M.,  A-M̈, T. 2003. An optimized soft shadow
volume algorithm with real-time performance. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Workshop on Graphics Hardware. ACM Press.

B, B. G. 1975. A polyhedron representation for computer vision. In Proceedings of the AFIPS
National Conference. Vol. 44. 589–596.

B, B.  S, M. 1999. Real time shadows. In Creativity 1999, Creative Labs Inc. sponsored game
developer conferences. Los Angleles, California and Surrey, England.

B, S.  S, H.-P. 2001. Hardware-accelerated rendering of antialiased shadows with shadow maps.
In CGI ’01: Computer Graphics International 2001. IEEE Computer Society, Washington, DC, USA, 209–
214.

B, S.  S, H.-P. 2002. Single sample soft shadows using depth maps. In Proceedings of Graphics
Interface.

46

B, S.  S, H.-P. 2003. Shadow volumes on programmable graphics hardware. Computer Graphics
Forum (Proceedings of Eurographics ’03) 25, 3.

B, F. 2003. ShaderX2: Shader programming tips & tricks with directx 9. Wordware Publishing, Chapter
Soft Shadows, 559–579.

B, L. S.  B, N. 1984. Generating soft shadows with a depth buffer algorithm. IEEE Computer
Graphics and Applications 4, 10 (October), 5–24.

C, J. 2000. E-mail to private list. URL: http://developer.nvidia.com/attach/6832.

C, E.  D, F. 2003. Rendering fake soft shadows with smoothies. In EGRW ’03: Proceedings
of the 14th Eurographics workshop on Rendering. Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 208–218.

C, S. E. W, L. 1993. View interpolation for image synthesis. In SIGGRAPH ’93: Proceedings
of the 20th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York,
NY, USA, 279–288.

C, M. F., W, J.,  H, P. 1993. Radiosity and realistic image synthesis. Academic Press
Professional, Inc., San Diego, CA, USA.

C-O, D., C, Y., S, C. T.,  D, F. 2002. A survey of visibility for walkthrough
applications. IEEE Transaction on Visualization and Computer Graphics.

C, F. C. 1977. Shadow algorithms for computer graphics. In SIGGRAPH ’77: Proceedings of the 4th
annual conference on Computer graphics and interactive techniques. ACM Press, New York, NY, USA,
242–248.

D, S. 2003. ShaderX2: Shader programming tips & tricks with directx 9. Wordware Publishing, Chapter
Robust Object ID Shadows, 580–586.

D, A. T., C, N., M, H. 2004. Gaze-contingent displays: A review. CyberPsychology
& Behavior 7, 6, 621–634.

E, C. 2001. Interactive order-independant transparency. Tech. rep., NVIDIA Corporation. Available at:
http://developer.nvidia.com/.

E, C.  K, M. 2002. Practical and robust stenciled shadow volumes for hardware-accelerated
rendering. Tech. rep., NVIDIA Corporation. URL: http://developer.nvidia.com/.

EXT  . 2005. OpenGL Architecture Review Board. In OpenGL Extension Registry. SGI.
URL: http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer object.txt.

F, R. 2005. Percentage-closer soft shadows. In ACM SIGGRAPH 2005 Conference, Sketches and
Applications. ACM Press, New York, NY, USA.

F, R., F, S., B, K.,  G, D. P. 2001. Adaptive shadow maps. In SIGGRAPH
’01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM
Press, New York, NY, USA, 387–390.

G, B., S, P.-P. J., G, A., S, P.,  R, R. 1999. Interactive technical illustration.
In SI3D ’99: Proceedings of the 1999 Symposium on Interactive 3D Graphics. ACM Press, New York, NY,
USA, 31–38.

H, P.  A, K. 1990. The accumulation buffer: hardware support for high-quality rendering.
In SIGGRAPH ’90: Proceedings of the 17th Annual Conference on Computer Graphics and Interactive
Techniques. ACM Press, New York, NY, USA, 309–318.

47

H, E. 2001. Soft planar shadows using plateaus. Journal Graphics Tools 6, 1, 19–27.

H, J.-M., L, M., H, N.,  S, F. 2003. A survey of real-time soft shadows
algorithms. Computer Graphics Forum 22, 4 (December), 753–774. State-of-the-Art Reviews.

H, P. S. 1990. Adaptive radiosity textures for bidirectional ray tracing. In SIGGRAPH ’90: Proceedings
of the 17th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York,
NY, USA, 145–154.

H, P. S.  H, M. 1997. Simulating soft shadows with graphics hardware. Tech. Rep. CMU-CS-
97-104, Carnegie Mellon University. January.

H, T. 1991. Real shadows, real time. Iris Universe 18, 28–31. Silicon Graphics, Inc.

H, W., B, S.,  S, H.-P. 2000. Soft shadow maps for linear lights. In Proceedings of the
Eurographics Workshop on Rendering Techniques 2000. Springer-Verlag, London, UK, 269–280.

H, M.  H, P. S. 1996. Fast soft shadows. In SIGGRAPH ’96: ACM SIGGRAPH 96 Visual
Proceedings: The Art and Interdisciplinary Programs of SIGGRAPH ’96. ACM Press, New York, NY,
USA, 145.

H, J.-C.  N, A. 1985. Algorithms for antialiased cast shadows. Computer and Graphics,
259–265.

H, H. H., G, A. A., C-R, S. H.,  T, W. B. 2002. Visual Cues for Perceiving
Distances from Objects to Surfaces. Presence: Teleoperators and Virtual Environments 11, 6, 652–664.

I, Y.-H., H, C.-Y.,  K, L.-S. 2005. A method to generate soft shadows using a layered depth image
and warping. IEEE Transactions on Visualization and Computer Graphics 11, 3, 265–272.

J, B., C, N. J., L, B. D.,  P, K. S. 2004. Boundary correct real-time soft
shadows. In Computer Graphics International. 232–239.

K, B. M, N. 1999. Shadow penumbras for complex objects by depth-dependent filtering of multi-
layer depth images. In Rendering Techniques ’99 (Proceedings of the 10th EG Workshop on Rendering).
Springer Computer Science. Eurographics, Eurographics Association, 205–220.

K, A. 1997. Instant Radiosity. In SIGGRAPH ’97: Proceedings of the 24th Annual Conference on
Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 49–56.

K, D., K, D., M, P.,  B̈, I. 1996. Illusory motion from shadows. Na-
ture 379, 6560, 31.

K, D., M, P.,  K, D. C. 1997. Moving cast shadows induce apparent motion in depth.
Perception 26, 171–192.

K, T.-Y.  N, U. 2001. Opacity shadow maps. In Proceedings of the 12th Eurographics Workshop
on Rendering Techniques. Springer-Verlag, London, UK, 177–182.

K, F.  D̈, J. 2003. Real-time soft shadows using a single light sample. 11, 2, 255–262.

K, T.  K, A. 2004. Illumination in the presence of weak singularities. In Monte Carlo and
Quasi-Monte Carlo Methods, D. Talay and H. Niederreiter, Eds. Springer-Verlag, Berlin.

L, S. 2005. Split-plane shadow volumes. In HWWS ’05: Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS conference on Graphics hardware. ACM Press, New York, NY, USA, 23–32.

48

L, E. 2002. The mechanics of robust stencil shadows. Gamasutra. URL:
http://www.gamasutra.com/features/20021011/lengyel 01.htm.

L. 1490. Codex Urbinas.

L, D.  R, A. 1998. Image-based rendering for non-diffuse synthetic scenes. In Rendering
Techniques ’98, Proceedings of the Eurographics Workshop on Rendering. 301–314.

L, B., W, J., G, N. K., M, D. 2004. CC shadow volumes. In Proceedings of the
2nd EG Symposium on Rendering. Springer Computer Science. Eurographics, Eurographics Association.

L, T.  V, E. 2000. Deep shadow maps. In SIGGRAPH ’00: Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 385–392.

M, P., K, D. C.,  K, D. 1998. The perception of cast shadows. Trends in Cognitive
Sciences 2, 8, 288–295.

M, T.  T, T.-S. 2004. Anti-aliasing and continuity with trapezoidal shadow maps. In Proceedings
of the EG Symposium on Rendering. Springer Computer Science. Eurographics, Eurographics Association.

M, N. 1996. Hierarchical rendering of trees from precomputed multi-layer z-buffers. In Proceedings of the
eurographics workshop on Rendering techniques ’96. Springer-Verlag, London, UK, 165–174.

MC, M. D. 2000. Shadow volume reconstruction from depth maps. ACM Trans. Graph. 19, 1, 1–26.

MG, M., H, J. F., E, K., K, M.,  E, C. 2003. Fast, practical and robust shadows.
Tech. rep., NVIDIA Corporation, Austin, TX. November. Available at: http://developer.nvidia.com/.

M̈, T.  H, E. 1999. Real-time rendering. A. K. Peters, Ltd., Natick, MA, USA.

M, J. S., B, D. R., D, D. L., M, C. J. 1997. InfiniteReality: a real-time graphics sys-
tem. In SIGGRAPH ’97: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive
Techniques. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 293–302.

M, S. 2000. ATI radeon – HyperZ technology. In SIGGRAPH/Eurographics Graphics Hardware Work-
shop 2000, Hot3D Proceedings.

M, K.  K, T. L. 1994. Texture mapping as an alternative for meshing during walkthrough
animation. In Fifth Eurographics Workshop on Rendering. 375–388.

N, R.  B, M. L. 2004. Perception of scene layout from optical contact, shadows and motion.
Perception 33, 11, 1305–1318.

P, S., S, P.,  S, B. 1998. Single sample soft shadows. Tech. Rep. UUCS-98-019, University
of Utah. Oct.

R, W. T., S, D. H.,  C, R. L. 1987. Rendering antialiased shadows with depth maps.
In SIGGRAPH ’87: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques. ACM Press, New York, NY, USA, 283–291.

R, R. J. 2004. OpenGL(R) Shading Language. Addison Wesley Longman Publishing Co., Inc., Redwood
City, CA, USA.

S, M., K, C.,  W, R., F, J.,  H, P. 1992. Fast shadows and lighting
effects using texture mapping. In SIGGRAPH ’92: Proceedings of the 19th Annual Conference on Computer
Graphics and Interactive Techniques. ACM Press, New York, NY, USA, 249–252.

49

S, J., G, S., H, L.,  S, R. 1998. Layered depth images. In SIGGRAPH ’98: Proceedings
of the 25th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York,
NY, USA, 231–242.

S-A, J.-F., P, E.,  P, P. 2005. Soft shadows from extended light sources with penumbra
deep shadow maps. In Graphics Interface 2005. 105–112.

S, M.  D, G. 2002. Perspective shadow maps. In SIGGRAPH ’02: Proceedings of the
29th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, NY,
USA, 557–562.

V P, A. 2004. Global Diffuse Illumination for Image Sequences. Ph.D. thesis, Clemson Univeristy,
Department of Computer Science, Clemson, SC 29634.

V, A., G, D.,  M, J. L. 2001. Game Programming Gems 2. Charles River Media,
Chapter Self-Shadowing Characters, 421–423.

W, Y.  M, S. 1994. Second-depth shadow mapping. Tech. Rep. TR94-019, University of North
Caronlina.

W, L. 1990. Footprint evaluation for volume rendering. In SIGGRAPH ’90: Proceedings of the 17th
Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, NY, USA,
367–376.

W, L. 1978. Casting curved shadows on curved surfaces. In SIGGRAPH ’78: Proceedings of the 5th
Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, NY, USA,
270–274.

W, M., S, D.,  P, W. 2004. Light space perspective shadow maps. In Proceedings
of the EG Symposium on Rendering. Springer Computer Science. Eurographics, Eurographics Association.

W, A. 1992. Graphics gems III. Academic Press Professional, Inc., San Diego, CA, USA, Chapter VII.1:
The shadow depth map revisited, 338–342.

W, A., P, P.,  F, A. 1990. A survey of shadow algorithms. IEEE Comput. Graph. Appl. 10, 6,
13–32.

W, C.  H, C. 2003. Penumbra maps: Approximate soft shadows in real-time. In EGRW ’03:
Proceedings of the 14th Eurographics workshop on Rendering. Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 202–207.

Y, Z., T, M.,  D, J. 2002. Soft shadow maps for area light by area approximation. In Pacific
Conference on Computer Graphics and Applications. 442–443.

Z, H. 1998. Forward shadow mapping. In Rendering Techniques ’98 (Proceedings of the 9th EG Workshop
on Rendering). Springer Computer Science. Eurographics, Eurographics Association, 131–138.

Z, R. 2003. ShaderX2: Shader programming tips & tricks with directx 9. Wordware Publishing, Chapter
Reverse Extruded Shadow Volumes, 587–593.

