EUROGRAPHICS 2007

Education Papers

Teaching Algorithms and Data Structures through Graphics

Andrew T. Duchowski and Timothy A. Davis

School of Computing, Clemson University, Clemson, SC, USA

Abstract

This paper presents experiences from a first-time implementation of a data structures and algorithms course based
on a specific computer graphics problem, namely surface reconstruction from unorganized points, as the teaching
medium. The course required sophomore students to implement the algorithm found in Hoppe et al.’s SIGGRAPH
’92 paper of the same title. This problem was chosen since the solution lends itself well to an exploration of data
structures and code modularization into distinct project phases and milestones, both of which are traditionally
taught in early CS courses. While the original course goals were accomplished, our experiences suggest potentials
for greater streamlining of these concepts, which are detailed herein.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Graphics Data Structures

and Data Types

1. Introduction

In recent years, enrollments in undergraduate computer sci-
ence programs have experienced decline. As a result, edu-
cators in the field have been seeking new ways to attract
new students, as well as retain those currently enrolled. One
method that has been used in various programs is problem-
based learning, which seeks to engage students in learning
targeted material through the development of solutions to
relevant and interesting problems. We must ask, however,
what kinds of problems are relevant and interesting to stu-
dents?

Our answer is computer graphics. To understand the pop-
ularity and proliferation of visual media in our culture, one
need only observe the explosive growth of ventures such
as YouTube. College students appear to be extremely inter-
ested in the visual entertainment industry, which includes
computer gaming, film, and television. We have capitalized
on this interest at [univ] through a new approach to un-
dergraduate computer science instruction, termed t€yvn (or
TEXNH), that uses problem-based learning with graphics.

Problems in computer graphics often lend themselves
well to teaching general concepts in computer science
for several reasons. First, graphics problems are complex
enough to provide a platform for teaching sophisticated top-
ics, while the solutions to these problems can be quickly
evaluated for correctness through visual feedback. We can

(© The Eurographics Association 2007.

also provide students with a level of artistic freedom, man-
ifested through image content, which is rarely available in
such courses otherwise.

The focus of this paper is to describe a new second-year
course in the Téyvn curriculum: Algorithms and Data Struc-
tures (CS3). In Section 2, we describe the t€yvn project
and experiences to date. Section 3 covers related work in
problem-based learning with graphics, while Sections 4 and
5 provide details for the organization of the course. Section
6 discusses specific suggestions for future offerings before
we conclude in Section 7.

2. t€)Yvn project overview

The name t€xvn is the Greek word for art and shares its
root with teyvoloyla, the Greek word for technology. As
such, the term reveals the close academic relationship the
two fields have held historically. A major goal of the T€xvn
project is to reunite these areas for more effective means of
teaching.

The inspiration for téxvn originated from our experiences
in the establishment of a new cross-disciplinary digital pro-
duction arts (DPA) program. This master’s level degree com-
bines elements of computer science, art, theater, and psy-
chology, among others. Graduates who have completed the
program pursue careers in the special effects industry for

Duchowski & Davis / Teaching Algorithms and Data Structures through Graphics

film, television, and gaming. Studios that have hired our stu-
dents include Rhythm & Hues, Industrial Light & Magic,
Pixar, Blue Sky, Electronic Arts, and Sony Imageworks.

The primary goal of the Téxvn project is to incorporate
graphics projects and research from DPA and computer sci-
ence in the undergraduate computer science curriculum. This
material takes the form of semester-long projects in required
courses leading to a B.A. in computer science. We believe
this approach to be an effective pedagogical method in teach-
ing general computer science concepts since it naturally
encompasses several education-theoretical techniques, in-
cluding: visual feedback, problem-based learning [DGAO1],
intentional learning [Mar97], constructivism [BA98], and
problem-based learning [CunO2]. Through this approach,
our goal is to improve understanding of key computer sci-
ence concepts, while engaging students through projects fo-
cused on a field of current interest. This approach provides
opportunities for students to explore new topics as they nat-
urally arise in large-scale graphics projects. Accordingly, the
instruction is problem-based, with projects ranging from tra-
ditional graphics problems, such as ray tracing, to cutting-
edge implementations from current research, as discussed
later in this paper.

The first course in the Téyvn curriculum is CS1 (first-year
course introducing computer science), in which we use a
semester-long project in image processing as the motivating
problem to teach required basics. The course culminates in
a final project involving the implementation of an image re-
coloring algorithm described by Matzko and Davis [MDO6].
All of these experiences provide a the basis for the problem
studied in the second course in the curriculum, CS2.

For CS2, students are required to implement a ray tracer,
a task previously reserved for our graduate-level advanced
graphics course. The ray tracer project provides an ideal
pedagogical platform for problem-based learning for several
reasons: it naturally covers a broad range of computer sci-
ence concepts; it provides visual feedback at all stages, al-
lowing program correctness to be determined immediately;
and it naturally leads to discussion and implementation of
an object-oriented paradigm. The course has been offered in
various forms several times with excellent results, in terms
of student engagement and images produced. Additional de-
tails are given by Davis et al. [DGMWO04].

The course discussed in this paper is the third course in
the curriculum.

3. Related work

By their second year in college, students typically have
been exposed to computer graphics in numerous formats.
Many recent educational approaches in this area have at-
tempted to teach various subject topics using image pro-
cessing. Several efforts have focused on allowing students
to explore image processing topics, due primarily to the

interesting nature of such projects and the computer sci-
ence concepts they reinforce. Such projects span a wide
range of students, from elementary school [MV05] to col-
lege [WNO5, AR98, Bur03, FP97, Hun03] and prove to be
engaging as students enjoy seeing visual results and solving
real-world problems.

As tools for teaching introductory computer science con-
cepts, image processing and rendering projects lend them-
selves well to encouraging students to learn two-dimensional
arrays and dynamic memory allocation [Bur03]. Addition-
ally, since a single image may contain hundreds of thou-
sands of pixels, students cannot rely on hard-coded solutions
and are thus forced to write generalized algorithms [MVO05].
Additionally, problem-based learning further emphasizes the
necessity of complex programming techniques, and using
computer graphics provides an effective problem-based for
teaching general computer science concepts [Cun02].

Previous work using techniques in rendering or image
processing has been performed, but on a limited scale only.
Past projects include those with ready-made GUI environ-
ments [AR98], code for function definitions [WNO5], and
pre-written functions [AR98, Bur03, FP97, Hun03] for vari-
ous image manipulations.

Our approach for CS3 under té€)vn is unique in at least
two ways. First, the problem is semester-long, and designed
to enforce all topics in the course. Second, the level of dif-
ficulty for this project far exceeds any of the problems we
have seen in the literature.

4. Course Content and Project Description

The course discussed in this paper is entitled CPSC 212, Al-
gorithms and Data Structures, otherwise known as CS3. It
focuses on abstract data types, measures of program running
time and time complexity, and algorithm analysis and design
techniques. Due to the nature of the course, it also introduces
object-oriented design and implementation (using C++).

The semester-long project in the course involved sur-
face reconstruction from unorganized points, as proposed by
Hoppe et al. [HDD*92]. This algorithm was chosen as a mo-
tivating problem for the course due to its robust use of data
structures and algorithms. Moreover, the algorithms em-
ployed showcase the need for their efficient design and im-
plementation; otherwise, processing the large data set would
require significantly long periods of computation.

In its simplest form, the goal of the project is to find a
surface that spans a given set of points, such as images pro-
duced by 3D scanners (e.g., laser range finders) [Hop94].
The problem can be expressed formally as follows: given
a list of 3D points X = {Xq,...,X,} € R3, generate a list of
triangles {Ay,...,A;} representing the simplical surface ap-
proximating the point-sampled object.

The problem is conquered by dividing the approach into
four successive stages:

(© The Eurographics Association 2007.

Duchowski & Davis / Teaching Algorithms and Data Structures through Graphics

1. Phase I: Tangent Plane Estimation
For each data point x;, obtain a tangent plane Tp(x;)
represented by the plane’s origin o; and unit normal f;.
These are calculated via computation of the spatial mean
and Principal Components Analysis of a set of k points
of X nearest to x;, denoted as the point’s k-neighborhood
NDhd(x;).

2. Phase II: Consistent Tangent Plane Orientation
Given the set of tangent planes {Tp(xy),...,Tp(x,)} from
above, ensure that tangent planes “sufficiently close” to
each other are “consistently oriented.” For a pair of suf-
ficiently close tangent planes, represented by Tp(x;) =
(0;,1;) and Tp(x;) = (0;,1i;), they are consistently ori-
ented if ;-0 ; ~ +1, otherwise either A; or A; is flipped.

3. Phase III: Signed Distance Function
Once the tangent planes are consistently oriented, a
signed distance function f(p) is computed at each point p
situated at the vertex of a cube in a 3D lattice. The signed
distance function is defined as the distance between point
p and its projection z onto Tp(x;), i.e., f(p) = (p—o0;) - ;.

4. Phase IV: Contour Tracing
The last stage of the algorithm maps each cube’s per-
mutation of the signed distance function at the cube’s 8
vertices onto a particular triangle configuration, i.e., the
Marching Cubes algorithm [LC87]. The result is a list of
triangles approximating the object’s (simplical) surface.

5. Implementation: Data Structures and Algorithms

Each of the four phases of the algorithm relies on the clever
application of traditional data structures and algorithms.
Considering the above algorithm as the logical “interface”
to the problem, the algorithm’s phases are again described
below in terms of the solution’s “implementation.”

5.1. Phase I: Tangent Plane Estimation

Tangent plane estimation relies on efficient organization of
the input data set, or point “cloud” to facilitate collection
of the x; point’s k-neighborhood Nbhd(x;) (we arbitrarily
set k = 5). To do so, a kd-tree is constructed to allow effi-
cient nearest-neighbor (nn) and kth-nearest neighbor (k-nn)
queries. To construct the 3D kd-tree, we first introduced the
C++ class as a mechanism for representation of an Ab-
stract Data Type (ADT; the Point object in this case). Ini-
tially, only 2D points were discussed.

Although the kd-tree is considered to be an advanced data
structure used for spatial partitioning, it serves as a suitable
platform for discussion of more rudimentary algorithms on
which it is based, namely sorting. Sorting, in turn, moti-
vates the general comparison of asymptotic performance and
hence algorithm analysis, which are topics covered in the tra-
ditional version of the course.

Given a point’s k-neighborhood Nbhd(x;), calculation of
the tangent plane origin (centroid) and normal requires yet

(© The Eurographics Association 2007.

another fairly simple algorithm and quintessential ADT,
Principal Components Analysis (PCA) and the representa-
tion of a matrix. It is worth noting that at this point in their
experience, students are likely to have at least heard of eigen-
values and eigenvectors, but may not be quite comfortable
with their practical applications.

Results of the first phase are shown in Figure 1. Two data
sets were used: conics and mechpart containing 15887 and
4102 points, respectively. The conics object served as a good
example of a fairly voluminous data set, one demanding al-
gorithmic efficiency. The mechpart object was one originally
used by Hoppe et al. in their paper and provided good com-
parison to the project’s progress.

5.2. Phase II: Consistent Tangent Plane Orientation

The second phase of the algorithm serves to introduce graph
algorithms, most notably the (Euclidean) Minimum Span-
ning Tree (MST) and its traversal. Here, the featured ADT
is the binary (or Fibonacci) heap, acting as a priority queue
(or minheap). Since Prim’s MST algorithm relies on efficient
implementation of the minheap, algorithm analysis (and NP-
completeness) is discussed again at this stage.

Results from phase II are shown in Figure 2. Note that
this section of the course explored several options during
implementation: two forms of heap implementations (binary
and Fibonacci), as well as differing construction of the MST:
Euclidean MST or Reimannian graph. Furthermore, the con-
ics object posed an unexpected problem, namely it consisted
of several connected components (see Figure 2b), which the
original SIGGRAPH °92 never considered (justly so since it
operated under the assumption of manifold surfaces).

5.3. Phase III: Signed Distance Function

Calculation of the signed distance function once again relies
on the collection of the nearest neighbor, although this time
the neighbors of the tangent plane Tp(x;) are sought (the
same point-based kd-tree as before can be used if each point
maintains backpointers to the tangent plane originally de-
fined on it). Although this phase of the algorithm lacks a par-
ticularly foundational aspect, it serves as a way to introduce
some of C++’s perhaps more esoteric members of the Stan-
dard Template Library (STL). In particular, bitset<3>
is introduced to represent the cube’s 8 vertex indices, e.g.,
pilk] =b[k] 2 ¢;+A/2 : ¢;—A/2 where ¢; is the cube cen-
troid and b[k] is the bitset defined for k =0, 1,2, the x, y, and
z coordinates of the cube’s vertex (p;[k]) with A denoting the
cube width.

Another bitset<8> is used to represent the bit code
for the signed distance function evaluated at each cube ver-
tex, i.e., fbk] = f(p;) =07 1 : 0. A cube is considered valid
if there are more than O but less than 8 bits set in the £b[k]
bitset, i.e.,if (0 < fb.count ()) && (fb.count ()
< 8).

Duchowski & Davis / Teaching Algorithms and Data Structures through Graphics

(a) conics input data (15887 points), 3D kd-tree, tangent plane normals

(b) mechpart input data (4102 points), 3D kd-tree, tangent plane normals

Figure 1: Phase I: tangent plane estimation.

(a) conics tangent plane normals, EMST with Fibonacci heap, consistent normals

(b) conics EMST with binary heap components split with deleted edges of length p > 1.0), consistent normals

(c) mechpart tangent plane normals, Reimannian graph, consistent normals

Figure 2: Phase II: consistent tangent plane orientation.

(© The Eurographics Association 2007.

Duchowski & Davis / Teaching Algorithms and Data Structures through Graphics

(a) mechpart consistent plane normals, f(p) at cube vertices, resultant surface approximation.

Figure 3: Phase Il & IV: signed distance function & contour tracing.

5.4. Phase I'V: Contour Tracing

In the final phase of the algorithm, the isosurface is
extracted with the help of a lookup table. The STL
pair<int, int> is used to define an edge 3-tuple where
each of the three pairs denotes two cube vertex indices (or
edges). For each of the three edges so defined, the point of in-
tersection along each edge is calculated parametrically. The
normal for each resultant triangle is obtained before the tri-
angle is added to the list of triangles defining the simplical
surface approximation. At this point, the triangulated surface
for the point cloud has been created.

6. Formative Impressions

The surface reconstruction problem provides a fairly logical
and robust progression through a typical data structures and
algorithms textbook (we used Weiss’ 3rd edition [Wei06]),
and in this sense, the course was successful in teaching the
required material. At the same time, the amount of material
that is relevant to the problem’s solution can be overwhelm-
ing. Indeed, this was probably the greatest source of frus-
tration — which algorithms and data structures to select and
which to leave out. In any case, the problem must always
be a means for learning the target concepts, and not the end
goal itself.

Although no quantitative analysis was performed during
this first-run course, we offer qualitative “lessons learned”
from experiences gathered from its inauguration. Following
the structure of the problem in the previous sections, notes
and suggestions are offered for a more streamlined approach
to future instantiations of the class.

(© The Eurographics Association 2007.

6.1. Phase I: Tangent Plane Estimation

Phase I was the most involved and time-consuming segment
of the course, consuming 8 of the 16 weeks for students to
complete. Consequently, the remaining three phases were in-
appropriately compressed. In future instantiations, a more
balanced approach would be beneficial.

Reasons for the extended duration of the first phase are
numerous. This phase was split into four milestones:

1. 2D point C++ class (with centroid calculation)

2. 2D matrix C++ class (with PCA implementation)
3. 2D kd-tree C++ class (with nn and k-nn queries)
4. 3D extensions

Emphasis was placed on 2D implementations for ease of vi-
sualization and discussion, e.g., it is much easier to manu-
ally draw concepts of point cloud centroid, eigenvectors, and
kd-tree. It was not clear, however, that students appreciated
these explanations of the underlying mathematical concepts.
Possibilities for future offerings of the course are either sim-
ply omitting the 2D representations in the interest of time
compression, or reformulating the entire problem in 2D.

Beyond the 2D/3D distinction, a substantial amount of
time was spent on several coding “niceties” and conve-
niences, which may only be convenient to experienced pro-
grammers. Two examples stand out: computation of the
“running mean” and implementation of the 2D matrix class
using templates. Both could have been replaced with simpler
solutions that avoid unnecessary complexity.

Because the first phase of the semester-long project in-
volved sorting (a requirement for kd-tree implementation),
several lectures were devoted to discussion of algorithm

Duchowski & Davis / Teaching Algorithms and Data Structures through Graphics

analysis and sorting. While these lectures are definitely inte-
gral to the material presented in the course, it may be more
conducive to learning if this discussion is left to a time pe-
riod following completion of the first phase, when students
can be more focused on theory.

Additional time could be saved if teaching of the Principal
Components Analysis were avoided. Students were eventu-
ally given code to compute and sort the eigenvalues (Jacobi
matrix rotation from Numerical Recipes [PTVF92]). Actu-
ally, this portion of the project provides an opportunity for
gaining experience in importing “foreign” code into one’s
own project.

6.2. Phase II: Consistent Tangent Plane Orientation

Challenges in phase II were rooted in the selection of ap-
propriate data structures for generating a minimum spanning
tree. Prim’s algorithm was chosen over Kruskal’s, requiring
a choice of appropriate data structure for a heap to provide
functionality of a priority queue (instead of one supporting
the union/find algorithm required by Kruskal’s). Implemen-
tation of the heap was problematic due to several potential
choices (a “list” heap based on C++’s 1ist container, the
Fibonacci heap, and the binary heap). A better approach
would be to concentrate on one choice (i.e., the binary heap)
without exploring alternatives. Actual implementation of the
binary heap was further complicated by additional require-
ments.

Additionally, construction of the graph for MST creation
could be performed in one of two ways, by either imple-
menting the complete graph (for Euclidean MST) or the
Reimannian graph. The mechpart object, for example, ap-
peared to be better processed with the use of the Reiman-
nian graph (where edges are added to the graph only if they
are in each other’s nearest neighborhoods, i.e., they are “suf-
ficiently close”—interpreted as edge distance being smaller
than the radius of the k-nn neighborhood). Implementation
of the EMST, on the other hand, is considerably simpler due
to the creation of a complete graph (all edges added without
a need to test for their inclusion).

In summary, problems encountered during this phase of
the project stemmed from an excessive number of potential
choices for implementation. Specifically, choices were avail-
able for MST algorithm, heap implementation, and graph
creation. Interestingly, the two data sets chosen appeared to
require two differing graph constructions (complete graph
for conics, Reimannian graph for mechpart). While this may
provide additional class discussion possibilities, it prevented
“rapid prototyping” of code on a smaller data set.

6.3. Phase III: Signed Distance Function

Evaluation of the signed distance function required traversal
along a uniform 3D grid within the point cloud’s bounding

box. At each grid cell (voxel), eight cube vertices were cal-
culated as mentioned above, and the signed distance function
f(p) is evaluated for the tangent plane closest to the cube
vertex.

There is nothing particularly difficult about this phase
of the project beyond the three nested for loops required
to cover the volume of space occupied by the point cloud.
At this stage of implementation, one can simply cover in-
teresting or useful code structures such as the C++ STL’s
bitset< k > as discussed.

In practice, however, at this point in the semester (about
the tenth week, with another six remaining) students were
already inundated with material. Consequently, instruction
of the class migrated to code dissection, as well as movement
into the lab where the form of pedagogy transformed from
lecture to hands-on help.

6.4. Phase IV: Contour Tracing

The final phase of the project required execution of the
Marching Cubes algorithm with assembly of triangles from
plane/cube intersections as suggested by the signed distance
function. At this stage of the course, however, many students
had fallen behind, disallowing the deeper concepts expressed
by the algorithm to be discussed. Some of the more persis-
tent students were able to accomplish this final step, with
additional help.

7. Conclusion and Recommendations

This first attempt at teaching data structures and algorithms
from a graphics point of view had its moments of success,
but also several problems; however, the fault lies in the exe-
cution of the approach and not its intent. The given problem
is suitable for problem-based learning, particularly because
it touches upon such a large number of rudimentary tech-
niques. A major point to remember is to stay focused on a
set of approaches that teach the target material through the
solution of the problem at hand.

Below are point-form recommendations for restructuring
the class to streamline the related topics.

1. Phase I: Tangent Plane Estimation

e C++intro: aPoint class to represent the point cloud
C++ matrix class (no templates)
Principal Components Analysis: code integration
(provide code to calculate the PCA)

e Kkd-tree construction and nn and k-nn queries

2. Theoretical Interlude

e Algorithm analysis
e Sorting comparisons

3. Phase II: Consistent Tangent Plane Orientation

e Binary heap

(© The Eurographics Association 2007.

Duchowski & Davis / Teaching Algorithms and Data Structures through Graphics

e Prim’s algorithm
e Graph ADT
e EMST construction and traversal

4. Phase III: Signed Distance Function
e C++ bitset

5. Phase IV: Contour Tracing
e Triangle ADT

The above outline for the course is still “front-heavy” mean-
ing that the bulk of time is likely to be spent in the
first two phases. However, deciding on specific approaches
(e.g., binary heap, Prim’s, complete graph) without digress-
ing to consider alternative (e.g., Fibonacci heap, Kruskal’s,
Reimannian graph) should streamline the course and limit
the potential for “information overload.”

A key issue that needs to be determined is whether any
time should be spent on 2D variants of the implementation
(e.g., 2D kd-tree). Instruction is easier in two dimensions but
it is somewhat time-consuming and may divert the student’s
attention from the given, inherently three-dimensional, prob-
lem at hand. A potentially interesting alternative may be to
re-work the original problem of surface reconstruction into
its two-dimensional equivalent (curve reconstruction). This
approach may lead to a more interactive pedagogical style
if students could experiment with a real-time application
wherein they could click to create their own 2D data sets
and run their programs to generate the curves.

In informal discussion with the students, one remarked
that even though the project may have been too demand-
ing, she said that everyone in the class knows data struc-
tures and C++ programming extremely well. Further, stu-
dents suggested that they would be more engaged by per-
forming laser scans on objects they would like to work with,
such as a character’s face (or even their own!).

References

[AR98] ASTRACHAN O., RODGER S. H.: Animation,
visualization, and interaction in CS 1 assignments. In
SIGCSE ’98: Proceedings of the twenty-ninth SIGCSE
technical symposium on Computer Science education
(New York, NY, USA, 1998), ACM Press, pp. 317-321.

[BA98] BEN-ARI M.: Constructivism in computer sci-
ence education. In SIGCSE ’98: Proceedings of the
twenty-ninth SIGCSE technical symposium on Computer
Science education (New York, NY, USA, 1998), ACM
Press, pp. 257-261.

[Bur03] BURGER K. R.: Teaching two-dimensional ar-
ray concepts in Java with image processing examples. In
SIGCSE ’03: Proceedings of the 34th SIGCSE technical
symposium on Computer Science education (New York,
NY, USA, 2003), ACM Press, pp. 205-209.

(© The Eurographics Association 2007.

[Cun02] CUNNINGHAM S.: Graphical problem solving
and visual communication in the beginning computer
graphics course. In SIGCSE ’02: Proceedings of the 33rd
SIGCSE technical symposium on Computer Science edu-
cation (New York, NY, USA, 2002), ACM Press, pp. 181—
185.

[DGAO1] DucH B., GRON S., ALLEN D.: The power of
problem-based learning. Stylus Publishing, LLC, Ster-
ling, VA, 2001.

[DGMWO04] Davis T., GEIST R., MATZKO S., WEST-
ALL J.: téyvn: afirst step. In SIGCSE "04: Proceedings of
the 35th SIGCSE technical symposium on Computer Sci-
ence education (New York, NY, USA, 2004), ACM Press,
pp- 125-129.

[FP97] FELL H. J., PROULX V. K.: Exploring Martian
planetary images: C++ exercises for CS1. In SIGCSE ’97:
Proceedings of the twenty-eighth SIGCSE technical sym-
posium on Computer Science education (New York, NY,
USA, 1997), ACM Press, pp. 30-34.

[HDD*92] HopPPE H., DEROSE T., DUCHAMP T., McC-
DONALD J., STUETZLE W.: Surfrace Reconstruction
from Unorganized Points. In Computer Graphics (SIG-
GRAPH ’92) (New York, NY, 1992), ACM, pp. 71-78.

[Hop94] HoOPPE H.: Surface Reconstruction from Unor-
ganized Points. PhD thesis, University of Washington,
Seattle, wA, 1994.

[Hun03] HUNT K.: Using image processing to teach CS1
and CS2. SIGCSE Bull. 35, 4 (2003), 86-89.

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes:
A high resolution 3d surface construction algorithm. In
SIGGRAPH ’87: Proceedings of the 14th annual confer-
ence on Computer graphics and interactive techniques
(New York, NY, USA, 1987), ACM Press, pp. 163—169.

[Mar97] MARTINEZ M.: Designing intentional learning
environments. In SIGDOC ’97: Proceedings of the 15th
annual international conference on Computer Documen-
tation (New York, NY, USA, 1997), ACM Press, pp. 173—
180.

[MD06] MATZKO S., DAVIS T.: Using graphics research
to teach freshman computer science. In SIGGRAPH ’06:
ACM SIGGRAPH 2006 Educators program (New York,
NY, USA, 2006), ACM Press, p. 9.

[MV05] MCANDREW A., VENABLES A.: A “secondary”
look at digital image processing. In SIGCSE ’05:
Proceedings of the 36th SIGCSE technical symposium
on Computer Science education (New York, NY, USA,
2005), ACM Press, pp. 337-341.

[PTVF92] PRESS W. H., TEUKOLSKY S. A., VETTER-
LING W. T., FLANNERY B. P.: Numerical Recipes in C:
The Art of Scientific Computing, 2nd ed. Cambridge Uni-
versity Press, Cambridge, 1992.

[Wei06] WEISS M. A.: Data Structures and Algorithm

Duchowski & Davis / Teaching Algorithms and Data Structures through Graphics

Analysis in C++, 3rd ed. Pearson Education (Addison-
Wesley), Boston, MA, 2006.

[WNO5] WICENTOWSKI R., NEWHALL T.: Using im-
age processing projects to teach csl topics. In SIGCSE
’05: Proceedings of the 36th SIGCSE technical sympo-
sium on Computer Science education (New York, NY,
USA, 2005), ACM Press, pp. 287-291.

(© The Eurographics Association 2007.

