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Abstract

The scanpath comparison framework based on string editing is re-
visited. The previous method of clustering based on k-means “pree-
valuation” is replaced by the mean shift algorithm followed by el-
liptical modeling via Principal Components Analysis. Ellipse in-
tersection determines cluster overlap, with fast nearest-neighbor
search provided by the kd-tree. Subsequent construction of Y -
matrices and parsing diagrams is fully automated, obviating prior
interactive steps. Empirical validation is performed via analysis of
eye movements collected during a variant of the Trail Making Test,
where participants were asked to visually connect alphanumeric tar-
gets (letters and numbers). The observed repetitive position simi-
larity index matches previously published results, providing ongo-
ing support for the scanpath theory (at least in this situation). Task
dependence of eye movements may be indicated by the global po-
sition index, which differs considerably from past results based on
free viewing.

CR Categories: H.1 [Information Systems]: Models and
Principles—User/Machine Systems. I.5 [Computing Methodolo-
gies]: Pattern Recognition—Clustering. J.4 [Computer Applica-
tions]: Social and Behavioral Sciences—Psychology.

Keywords: eye tracking, scanpath comparison

1 Introduction

Sequences of fixations, or scanpaths, have been used for com-
pelling visualizations of captured eye movements since the early
1970s [Noton and Stark 1971], but have as yet not been fully ex-
ploited for their quantitative potential. There is a pressing need
for quantitative scanpath comparison metrics. An easy to use com-
putational approach is sought that is analogous to statistical pack-
ages that quickly and easily generate tables of means and ANOVA
statistics from experimental data. We revisit Privitera and Stark’s
[2000] string editing approach, one that computes similarity (or
“distance”) between pairs of scanpaths along with statistical levels
of significance. The resulting metric is similar to Spearman’s rank-
order coefficient [Boslaugh and Watters 2008] but yields a value
S ∈ [0, 1] instead of S ∈ [−1, 1]. The novelty of our contribution is
two-fold. First, our algorithm improves upon Privitera and Stark’s
scanpath comparison by substituting k-means clustering with San-
tella and DeCarlo’s [2004] mean shift. The former generally re-
quires a priori knowledge of the number of clusters [Duda and Hart
1973] whereas mean shift in comparison is self-organizing, starting
with as many cluster means as there are fixations. Second, Principal
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Figure 1: A scanpath comparison Y -matrix and parsing diagram
are created for each of Ss and Sp sequence and position similarity
indices. Adapted from Privitera and Stark [2000].

Components Analysis is used to model elliptical cluster boundaries
that are in turn used to calculate overlap among clusters belonging
to different scanpaths (other approaches are possible, e.g., convex
hull, but ellipses lend themselves to straightforward boundary in-
tersection evaluation whereas convex hulls may not). A kd-tree
is used to spatially partition each scanpath’s clusters for efficient
nearest-neighbor queries used to determine cluster overlap, yield-
ing automatic cluster labeling for string-based comparison.

2 Background

Privitera and Stark’s [2000] scanpath comparison based on string
editing was one of the first methods to quantitatively compare not
only the loci of fixations Sp but also their order Ss (see Figure 1).
Defined by an optimization algorithm, string editing assigns unit
cost to three different character operations: deletion, insertion, and
substitution. Characters are then manipulated to transform one
string to another, and character manipulation costs are tabulated.
For example, with two comparison strings s1 = abcfeffgdc and
s2 = afbffdcdf , the total cost of the combination of deletions, in-
sertions, and substitutions in this case is 6 (see below). The total
cost is normalized to the length of the longer string, in this case
9, yielding a sequence similarity index between the two strings of
Ss = (1−6/9) = 0.33. A positional similarity index can be found
for the two strings by comparing the characters of the second string
to those of the first. Since all the characters of s2 are present in s1,
the two strings yield a loci similarity index of Sp = 1.

For scanpaths from multiple viewers, similarity coefficients are
sorted and stored in a table, named the Y -matrix, having as many
rows and columns as the number of different sequences to be con-
sidered. Scanpath comparison values from the Y -matrix (which
typically contains large amounts of data) are condensed (averaged)
and reported in two tables, called Parsing Diagrams, one for each
of Sp and Ss indices. The Sp statistic gives the correlation between
two string sequences in terms of attentional loci (the order of fix-
ations is not considered in this measure). Sp values are generally
expected to be higher than the measure reporting on order of fixa-
tions, the Ss statistic. Each of the parsing diagrams reports several
correlation measures: Repetitive, Idiosyncratic, Local, and Global.
Repetitive values report an individual’s propensity to view a specific



image in the same way. Idiosyncratic values report on the within-
subject attentional scanning tendencies of individual subjects, i.e.,
these values report correlation between scanpaths made over differ-
ent pictures by the same subject. For example, these values should
be large if a person tends to exhibit a similar strategy when view-
ing a particular stimulus. Local indices report on between-subject
correlations of scanning patterns over similar stimuli, i.e., on dif-
ferent subjects’ scanpaths over the same picture. For example, in
reading studies, English readers would be expected to exhibit high
local indices due to the adopted left-to-right text scanning pattern.
Global measures report on the correlation between scanpaths made
by different subjects over different stimuli. Should these values be
highly correlated, this would suggest that stimulus images tend to
be viewed similarly by different people.

The string editing methodology has since been employed in sev-
eral studies where scanpath comparison was required. Josephson
and Holmes [2002] may have been the first to evaluate web page
design with Brandt and Stark’s [1997] technique. Their results
were mixed, however. Some individuals displayed scanpaths that
resembled each other over time. However, they also found many
instances in which the most similar sequences were from differ-
ent subjects rather than from the same subject. Their study was
descriptive in nature with no tests of significance. More recently,
Josephson and Holmes [2006] again used string editing to evalu-
ate on-screen television enhancements such as headline bars and
bottom-of-the-screen crawlers. Their study revealed that screen de-
sign impacted news story content recall. In both of their studies, the
viewing stimulus was partitioned into Region Of Interest a priori,
thus precluding the need for automatic cluster analysis.

With slightly differing objectives, Hembrooke et al. [2006] used
string editing to investigate the amalgamation of numerous scan-
paths into a single, representative scanpath. Since string editing es-
sentially defines a multiple sequence alignment algorithm, the final
alignment is a pattern constructed from similarities among multiple
input patterns. Therefore, one can apply this approach to the con-
struction of something resembling the “ideal observer”, or ”average
expert” over a given visual stimulus.

More recently, West et al.’s [2006] eyePatterns substituted Leven-
shtein similarity with the Needleman-Wunsch distance, increasing
flexibility through variable scoring parameters. However, finding
similarity and distance alignments are duals of each other where
“large distance” is “small similarity” [Waterman 1989].

The only other approaches aimed at scanpath comparison are either
limited in capability (Myers and Schoelles’s [2005] ProtoMatch
lacks the ability to perform cluster-type analyses), or take an en-
tirely different trajectory-based approach whose applicability to
scanpaths is as yet uncertain [Vlachos et al. 2002; Vlachos et al.
2004; Torstling 2007]. The use of typical distance functions for
measuring the similarities of trajectories recorded in Euclidean
space was dismissed by Vlachos et al. [2002] due to its sensitiv-
ity to outliers and intermediate points, time between regions, and
trajectory differences in unrelated areas.

3 Pairwise Scanpath Comparison

The present approach extends prior work [Duchowski et al. 2003;
Heminghous and Duchowski 2006] which followed Privitera and
Stark’s [2000] method closely. Strings for each scanpath are con-
structed by concatenating the characters from each successive clus-
ter of the scanpath. The Levenshtein similarity is computed by an
optimization algorithm that builds an n×m array (where n and m
are the string lengths) and finds the minimum cost to transform one

a f b f f d c d f
a 0 1 2 3 4 5 6 7 8
b 1 1 1 2 3 4 5 6 7
c 2 2 2 2 3 4 4 5 6
f 3 2 3 2 2 3 4 5 5
e 4 3 3 3 3 3 4 5 6
f 5 4 4 3 3 4 4 5 5
f 6 5 5 4 3 4 5 5 5
g 7 6 6 5 4 4 5 6 6
d 8 7 7 6 5 4 5 5 6
c 9 8 8 7 6 5 4 5 6

Figure 2: Example of Levenshtein distance calculation.

string into the other. The array A is defined as

A[i][j] = min

{
A[i− 1][j ] + 1
A[i ][j − 1] + 1
A[i− 1][j − 1] + c(i, j).

The first two terms in the minimization handle the costs of deletions
and insertions, and the last term handles substitutions, with

c(i, j) =

{
0, s1[i− 1] = s2[j − 1]
1, otherwise.

The array’s first row and column must be initialized with ascend-
ing integers ([0..m] and [0..n]) as a pre-processing step. Con-
tinuing with the previous example with s1 = abcfeffgdc and
s2 = afbffdcdf , the 10 × 9 array that would be generated is il-
lustrated in Figure 2. The cost to completely transform one string
into another is found at the bottom right most entry of the array. The
intermediate values provide the costs of partial transformations.

Following cluster labeling, scanpath comparison is implemented as
per Privitera and Stark [2000]. Levenshtein’s string similarity (for
scanpath strings obtained by concatenating cluster labels) gives the
pairwise sequential coefficient Ss. The positional coefficient Sp is
related to the number of labels shared between string pairs. Pair-
wise coefficients are stored in the Y -matrix, consisting of as many
rows and columns as the number of sequences being compared.

By clustering (many viewers’) aggregate fixations, the automatic
labeling scheme employed previously (e.g., by Heminghous and
Duchowski [2006]) marred the distinction of individuals’ scan-
paths and concealed cluster overlap. Instead of clustering fixation
points en masse, scanpaths are now clustered independently. Sub-
sequently, multiple viewers’ scanpaths, each defined as a sequence
of clusters (modeled by ellipses), are tested for cluster overlap. In-
tersecting ellipses are assigned identical character labels. The al-
gorithm’s computational efficiency is drawn from fast proximity
queries provided by the kd-tree spatial subdivision data structure.
The resultant cluster labeling leads to the computation of scanpath
similarity (e.g., via string editing comparison).

Clustering depends on detection of fixations within the raw gaze
point data stream. Timestamped fixations x = (x, y, t) are detected
via a variant of the position-variance approach [Anliker 1976]. This
technique defines a fixation by a centroid and variance indicating
spatiotemporal distribution. If the variance of a given gaze point is
above threshold, it is considered to be part of a saccade, otherwise
it is labeled a fixation. In the present implementation, a spatial de-
viation threshold of 30 pixels is used and the number of samples set
to 5 (implying a temporal threshold of 100 ms at a 50 Hz sampling
rate). The fixation analysis code is freely available on the web.1

1The position-variance fixation analysis code was originally made



(a) s1 with clockwise cluster winding (b) s2 with counter-clockwise cluster winding (c) scanpaths overlaid with overlapping clusters

Figure 3: Arbitrary scanpaths with overlapping clusters. The scanpath in (a) is wound in clockwise order. The scanpath in (b) is wound
counter-clockwise. Considered independently, the two scanpaths’ labels would be s1 = s2 = abc. When overlapped, as shown in (c),
and taking overlapping clusters into into account, the resulting labels are generated as s1 = abc and s2 = acd , indicating (spatial) cluster
overlap at two locations (note that temporal overlap is ignored—if it were not, clusters labeled a and c might not overlap if fixated at different
timestamps). Horizontal and vertical lines indicate spatial partitioning provided by the kd-tree.

4 Automatic Cluster Labeling

The key to string-based scanpath comparison is proper automatic
labeling of sequential clusters, ensuring that identical labels are as-
signed to overlapping clusters, as illustrated by the example given
in Figure 3.

Following Santella and DeCarlo [2004], clustering starts with a set
of n points: {xi | i ∈ 1 . . . n}, each with s(xi), a weighted mean of
nearby points, initially set to s(xi) = xi, ∀i. The first stage of the
clustering algorithm—the mean shift—is crucial, as it ordains the
robustness of the entire process. The process iterates by repeatedly
shifting each point’s s(xi) to a new location based on the kernel
function K:

s(xi) =

∑
j
K(xi − xj)xj∑
j
K(xi − xj)

,

where K is typically a multivariate zero-mean Gaussian with co-
variance σ2I. With fixations expressed as xi = (xi, yi, ti), the
following zero-mean spatiotemporal Gaussian can be used:

K([xi, ti]) = exp

(
x2

i + y2
i

σ2
s

+
t2i
σ2

t

)
(1)

where σs and σt determine local support of the kernel in both spa-
tial (dispersion) and temporal extent. If temporal overlap is of
no concern (e.g., regression eye movements, or refixations, do not
need to be distinguished), the temporal dimension can simply be
excluded by setting σt =∞.

Unlike k-means clustering used by Privitera and Stark [2000], the
mean shift eliminates the need for a priori estimation of the number
of clusters. The only existing user-adjustable parameters are σs and
σt, which can epistemically be set to match the extent of the foveal
dimension of the human retina (about 5◦ visual angle) and typical
expected fixation duration. In the present implementation, σs = 50
pixels (at a resolution of 1280 × 1024, the spatial extent is 1.5◦

visual angle) and σt = 500 ms.

available by LC Technologies. At the time of this writing, the
original fixfunc.c was still found on Andrew R. Freed’s web
pages: http://freedville.com/. The C++ interface and imple-
mentation ported from C by Mike Ashmore are currently available at:
http://andrewd.ces.clemson.edu/courses/cpsc412/fall08/.

4.1 Fitting Ellipses to Fixation Clusters

Cluster labeling relies on two initial steps inspired by Hoppe’s
[1994] surface reconstruction from unorganized points. In the first
step, Principal Components Analysis is performed to fit an axis-
aligned ellipse centered at the centroid ok = (c, d) of the kth clus-
ter. The centroid is then used to compute the covariance matrix C of
the fixations xi contained within the cluster. C is a symmetric, 2×2
positive semi-definite matrix C =

∑
i
(xi − ok)⊗ (xi − ok)

where ⊗ denotes the outer product vector operator.2 if λ1
k ≥ λ2

k

denote the eigenvalues of C, then the associated unit eigenvectors
v̂1

k, v̂2
k, are chosen as the cluster’s major and minor axes r, s, re-

spectively.

An ellipse is fit to the cluster by representing it by its quadratic
equation Ax2 + By2 + Cx + Dy + Exy + F = 0, with center
(c, d) and axes (r, s) of length r = ‖r‖ and s = ‖s‖ respectively,
with the coefficients obtained as:

A = s2M2 + r2N2

B = s2N2 + r2M2

C = −2c(s2M2 + r2N2)− 2MNd(s2 − r2)

D = −2d(s2N2 + r2M2)− 2MNc(s2 − r2)

E = 2MN(s2 − r2)

F = M2(s2c2 + r2d2) + N2(r2c2 + s2d2) +

2MNcd(s2 − r2)− r2s2,

with M = cos (θ), N = sin (θ) for an ellipse rotated about it
center by angle θ = tan−1 (ry/rx).

4.2 Constructing the kd-tree

In the second step, a kd-tree is constructed for each clustered scan-
path. The kd-tree is constructed by first sorting the clusters on their
centroid in each dimension (O(kn log n) and O(kn) storage). At
each tree level, the median division of the cluster set is accom-
plished in O(kn) time. The kd-tree construction algorithm given
in Algorithm 1 is widely available, e.g., see Weiss [2006].

2If a and b have components ai and bj respectively, then the matrix
a⊗ b has aibj as its ij-th entry.

http://www.eyegaze.com
http://freedville.com/
http://andrewd.ces.clemson.edu/courses/cpsc412/fall08/


t ree node kdt ree ( vector<c l u s t e r ∗> els , i n t depth )
{

i f ( e l s . empty ( ) ) return NULL;
else {

/ / ax is depends on depth , c y c l i n g through a l l v a l i d values
i n t ax is = depth % k ;

/ / s o r t po i n t l i s t and choose median as p i v o t element
s o r t ( e l s . begin ( ) , e l s . end ( ) , ClusterAxisCompare ( ax is ) ) ;
s e l e c t median from e ls ;

/ / c reate node and cons t ruc t subtrees
t ree node node ( l o c a t i o n = median ) ;
node . l e f t = kdt ree ( po in t s i n e l s before median , depth +1) ;
node . r i g h t = kdt ree ( po in t s i n e l s a f t e r median , depth +1) ;
return node ;

}
}

Algorithm. 1: Construction of a balanced kd-tree of n clusters.

4.3 Character Labeling

Once each scanpath is represented by a kd-tree of clusters (i.e.,
its clusters are arranged spatially for efficient nearest-neighbor
queries), the algorithm then labels all scanpaths iteratively, by se-
lecting labels for cluster pairs whose means are within σs and
whose ellipses intersect at 2+ points. For each pair of scanpaths:

1. For each cluster of the first scanpath, compare with every
cluster of the second. Iteratively find the kth nearest neigh-
bor (starting with k = 1) until no cluster intersections are
found.3 The nearest-neighbor search has been shown to run
in O(log n) average time per search.

2. Assign matching labels to overlapping clusters, only if either
or both of the clusters are as yet unlabeled.

Note that temporal overlap (σt) between clusters of different scan-
paths is ignored. While it makes sense to consider time when clus-
tering a particular scanpath’s fixations (intra-scanpath clustering),
it does not necessarily make sense to do so when labeling multi-
ple scanpaths’ clusters (inter-scanpath clustering). Fixation timing
is relative to the start of a given recording yet there is no guaran-
teed temporal synchronization of multiple scanpaths to any exter-
nal marker. As an example, consider two identical scanpaths, but
one shifted a fraction of a second in time (as if the viewer hesitated
slightly before performing an exact duplicate of a prior action). The
lack of temporal overlap would preclude high sequential correlation
between scanpaths. Reducing the dimensionality of inter-scanpath
cluster comparison by ignoring σt effectively eliminates clustering
mismatches due to a potential temporal shift between scanpaths.

For position similarity (Sp) computation, duplicate characters are
removed from the string representing a scanpath sequence.

4.4 Scanpath Visualization

Current scanpath visualization (see Figure 4) relies on transparency
to facilitate viewing multiple scanpaths (each rendered in a ran-
domly drawn color). Each scanpath is made up of the raw gaze
point sequence, detected fixation sequence, and sequence of clus-
tered fixations. Following cluster labeling, each cluster center is
annotated with its character label. In practice each scanpath cluster

3Back-of-the-envelope proof of correctness: if the nearest neighbor does
not intersect the given reference cluster, no others can since they are all
farther away.

Figure 4: Example scanpath visualization. Small circles connected
by thin lines denote raw gaze points. Large circles connected by
thick lines denote fixations. Fixation clusters are identified by large
squares (fixation centroids) and thick ellipses (fixation clusters).
Following cluster labeling, cluster centers are annotated with cap-
italized characters in alphabetic order starting with ‘A’.

label is indexed by an integer, but to facilitate visualization, the in-
teger is mapped sequentially to its ASCII representation, restricted
to the range of capitalized letters (65–90).

4.5 Random Scanpath Generation

To facilitate testing for statistical significance, random scanpaths
are generated by a simulator for comparison with actual scanpaths.
The simulator emulates an eye tracker operating at 50 Hz. Dur-
ing each iteration, a new gaze point is either created within close
proximity to the current fixation or a saccade is initiated. A new
saccade’s coordinates are determined according to a normal distri-
butionN (µ, σ′) with µ set to the screen center and σ′ set to a sixth
of the display width and height. Fixations are modeled by a Poisson
distribution with a mean of 1300 ms. New gaze points that are part
of a fixation are modeled by a normally distributed offset character-
ized byN (0, σ′′) with σ′′ set to 0.91 visual angle from the previous
location, or about 30 pixels. The choice of 30 pixels is not unusual;
it is actually more conservative than the typical choice of 50 pixels
in common dispersion-based (position-variance) fixation detection
algorithms.

5 Empirical Validation

An experimental paradigm was sought whose design would elicit
similar scanpaths from participants. A gaze-directed variant of the
Trail Making Test protocol [Bowie and Harvey 2006] was cho-
sen for this purpose as it asks participants to visually connect spe-
cific and easily identifiable targets (numbers and letters). The most
widely used version of the TMT comprises parts A and B. In part
A, the participant connects a series of numbers in numerical order,
followed by a series of letters in alphabetical order. In part B, the
participant connects an interleaved sequence of alternating num-
bers and letters, still in the same sequential order (see below). The
TMT is sensitive to a variety of neurological impairments and pro-
cesses, and is believed to measure the cognitive domains of process-
ing speed, sequencing, mental flexibility, and visual-motor skills.
Part A is generally presumed to be a test of visual search and motor
speed skills, whereas part B is considered to also be a test of higher
level cognitive skills.



(a) TMT-A (b) TMT-B

Figure 5: Stimulus images used for both training and trial of TMT
parts A and B, inverted for print reproduction; actual images used
red letters and numbers atop a black background.

In its normal invocation, the TMT’s main dependent variable of in-
terest is the total time to completion of both parts A and B. In its
present instantiation, the primary measure of interest is the scan-
path. Although the scanpath inherently encodes processing time in
its total duration, the main concern here is its spatial distribution
and ordering. The two parts of the test readily provide two im-
ages over which idiosyncratic similarity indices can be computed.
Repetitive scores are obtained by recording two scanpaths over a
single image. Local and global indices are gathered by having mul-
tiple participants perform the test.

Subjects. Six college students participated in the study (4 M, 2 F;
ages 18-27, median age 21). Results from the TMT protocol should
generally be stratified by age and education [Tombaugh 2004]; the
present sample represents one such age and education strata.

Stimulus. Two images were used as stimulus, with numbers and
letters distributed pseudo-randomly (numbers on top, see Figure 5).

Procedure. Each session started with a short, 5-point calibration
sequence. During the first half of the session (TMT-A portion),
participants were asked to fixate the sequence of numerals followed
by the sequence letters, i.e., 1-2-3-4-5-A-B-C-D-E. The first image
was viewed twice, once during training, then again during the trial.
During the second half of the session, participants were asked to fix-
ate the sequence of numerals interleaved with the sequence letters,
i.e., 1-A-2-B-3-C-4-D-5-E. The second image was again viewed
twice, once during training, then again during the trial. Participants
were asked to view the sequences as quickly as possible but while
doing so to dwell over each number or letter for a fraction of a sec-
ond (they were aware of the underlying fixation algorithm).

Apparatus. A Tobii ET-1750 video-based corneal reflection
(binocular) eye tracker was used for real-time gaze coordinate mea-
surement (and recording). The eye tracker operates at a sampling
rate of 50 Hz with an accuracy typically better than 0.3◦ over a
±20◦ horizontal and vertical range [Tobii Technology AB 2003].
The eye tracker’s 17′′ LCD monitor was set to 1280 × 1024 res-
olution and the stimulus display was maximized to cover the en-
tire screen (save for its title bar at the top of the screen). The eye
tracking server ran on a dual 2.0 GHz AMD Opteron 246 PC (2
G RAM) running Windows XP. The client display application ran
on a 2.2 GHz AMD Opteron 148 Sun Ultra 20 running the Cen-
tOS operating system. The client/server PCs were connected via 1
Gb Ethernet (connected via a switch on the same subnet). Partici-
pants sat at a viewing distance of about 50 cm from the monitor, the
tracker video camera’s focal length.

(a) spatial clustering (b) spatiotemporal clustering

Figure 6: The importance of spatiotemporal clustering. The scan-
path in (a) is clustered spatially—notice that the viewer’s second
fixation over the numeral 5 (a waypoint fixation on the path to nu-
meral 1) is clustered with fixations made later in time, following
fixation of numeral 4. The resulting scanpath incorrectly suggests
a saccade from the numeral 4 to the letter A. The scanpath in (b) is
clustered spatiotemporally, correctly distinguishing fixations atop
numeral 5 as two distinct clusters (in time).

Experimental Design. Since each of two images was viewed
twice in succession, the study follows a basic AABB stimulus pre-
sentation order. Note that this differs from the traditional TMT se-
quence wherein different images are presented for training and trial,
e.g., ABCD. In our case, the same image was used for both training
and trial because part of the evaluation criteria required repetitive
viewing, i.e., same subject viewing the same image more than once.
All participants performed the TMT-A portion before performing
the TMT-B portion of the test. No counterbalancing was imposed
because unlike traditional application of the TMT, we were not con-
cerned with traditional performance metrics (time to completion).

5.1 Pilot Testing

Pilot testing revealed the importance of both spatial and temporal
support during mean-shift fixation clustering. By setting σt = ∞
in Equation (1), local support of the kernel K in time is lost. This
implies that a cluster created at an initial fixation will cluster any
fixations made in the vicinity at any later time. This situation is
illustrated in Figure 6 where a saccade to the numeral 5 is missed
because of an earlier fixation made in its proximity.

An individual’s scanpaths over the TMT-A images (e.g., Figure 7)
allow evaluation of R and I indices and facilitate visualization (mul-
tiple scanpaths are difficult to decipher as their number increases).
As expected, higher similarity indices are gathered from repeti-
tive scanpaths than from idiosyncratic ones. Assuming that the
Ss and Sp indices are analogous to Spearman’s rank-order coef-
ficient, 0.9 ≤ S ≤ 1 would suggest very strong correlation (prob-
ably unlikely for Sp due to various factors, e.g., eye tracker error),
0.7 ≤ S ≤ 0.9 suggests strong correlation (probably more likely
for Sp than Ss), and 0.5 ≤ S ≤ 0.7 suggests moderate correlation
(probably more likely for R and L indices than for I and G).

5.2 Aggregate Results

Figures 8(a) and 8(b) summarize the aggregate analysis. To tabu-
late the parsing diagrams from the Y -matrix created from the 24
scanpaths of all six participants (four scanpaths per individual over
the AABB stimulus sequence), only the lower diagonal entries of
the 24 × 24 matrix were used (due to matrix symmetry and ex-
clusion of diagonal entries which hold trivial self-similarity values
of 1.0). The 276 lower diagonal entries of the matrix consisted of
12 repetitive, 120 local, 120 global, and 24 idiosyncratic pairings.
The degrees of freedom in the F statistics are double these amounts,



(a) repetitive evaluation (b) idiosyncratic evaluation

Figure 7: An individual’s scanpaths over the TMT stimuli. Two
scanpaths in (a) recorded over the same image generate repeti-
tive indices Ss = 0.61 and Sp = 0.79. The scanpath labels
are s1 = abcdefaghijkllm and s2 = nbecefaghkijollllp, which
are pruned of duplicate entries, yielding s1 = abcdefghijklm and
s2 = nbecfaghkijolp that are used to compute Sp. Comparing s1

captured over the image used in TMT-A and the scanpath s3 cap-
tured over the image used in TMT-B and shown in (b), generates
idiosyncratic indices Ss = 0.12 and Sp = 0.36. The scanpath
labels are unchanged for s1 and s3 = nopqaarstbhdulvl , with its
pruned version s3 = nopqarstbhdulv used for computation of Sp.

reflecting comparison of similarly indexed entries in the random Y -
matrix.

To gauge statistical significance of the parsing diagram aggregates,
random scanpaths were generated, one for each of the actual scan-
paths and of the same duration. A dual random Y -matrix was gen-
erated, with as many rows as actual scanpaths and as many columns
as random scanpaths (in this instance the number of actual and ran-
dom scanpaths equaled, although as few as a single random scan-
path can be used for this comparison). Each entry of the random
Y -matrix thus contained a pairwise similarity value between an ac-
tual scanpath and a random scanpath, mirroring the organization of
the actual Y -matrix entries. This organization of the data allowed
repeated-measures one-way ANOVA between actual and random
similarity measures, with the Y -matrix entry serving as fixed fac-
tor (and pairwise comparison used as the random factor [Baron and
Li 2007]). The F-statistic reported by ANOVA is therefore an in-
dicator of variance between actual-actual scanpath similarity and
actual-random similarity. The null hypothesis inherent in ANOVA
assumes no difference between the similarity means.

For example, given the 12 actual repetitive Y -matrix entries (i.e.,
from the two viewings of each of the two images by each of the
six participants), 12 random repetitive Y -matrix entries were also
generated, comparing each of the repetitive scanpaths to a ran-
dom scanpath. One-way ANOVA of repetitive similarity suggests a
highly significant main effect of the type of comparison (actual-
actual versus actual-random) for both position (F(1,22) = 98.2,
p < 0.01) and sequence (F(1,22) = 34.6, p < 0.01) similarities.4

5.3 Segregate Results

Aggregate statistics tend to obscure processes that may be related
to individual behaviors or stimuli. To probe further, visualization
and generation of similarity statistics of selected scanpaths is per-
formed. For example, to examine the claim that part B of the Trail
Making Test protocol is a test of higher level cognitive skills, repet-
itive scanpaths can be compared over each of the TMT-A and TMT-
B pairs of images. Because part A of the test relies mainly on visual
search and should therefore be easier to execute (fewer errant sac-
cades), a reasonable expectation would be that repetitive (and local)
scores should be higher for this portion of the test. Parsing diagrams

4Assuming sphericity as computed by the statistical package R.

SS DS
SI→ Repetitive Local

0.65
F(1,22) = 98.2, p < 0.01

0.47
F(1,238) = 848.2, p < 0.01

DI→ Idiosyncratic Global
0.44

F(1,46) = 165.4, p < 0.01

0.44
F(1,238) = 884.0, p < 0.01

Random
Sp 0.06

(a) position similarity

SS DS
SI→ Repetitive Local

0.35
F(1,22) = 34.6, p < 0.01

0.23
F(1,238) = 148.5, p < 0.01

DI→ Idiosyncratic Global
0.18

F(1,46) = 52.1, p < 0.01

0.17
F(1,238) = 221.0, p < 0.01

Random
Ss 0.08

(b) sequence similarity

Figure 8: Parsing diagrams for all data.
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(a) scanpaths over TMT-A images

SS DS
R L

0.60 0.44
I G

— —
Ra

Sp —

SS DS
← SI→ R L

0.36 0.22
← DI→ I G

— —
Ra

Ss —

(b) scanpaths over TMT-B images

Figure 9: Parsing diagrams from 12 scanpaths made by all six
participants (two scanpaths per individual over each of the AA and
BB portions of the AABB stimulus sequence). Comparison with
random scanpaths are omitted for brevity.

for TMT-A and TMT-B are given in Figures 9(a) and 9(b). Visual-
izations of the scanpaths are given in Figures 10(a) and 10(b).

6 Discussion

Aggregate analysis of the six participants’ scanpaths shows posi-
tion indices are generally higher than sequence indices, as expected.
Repetitive indices show the highest correlations. This is not surpris-
ing given the task stipulated by the Trail Making Test protocol.

Lower Sp and Ss statistics for the TMT-B portion of the proto-
col (particularly the repetitive values) seem to support the notion
of increased cognitive difficulty presented by this task. This may
be the first gaze-based evidence supporting this characterization of



(a) Repetitive scanpaths (labeled) over TMT-A

(b) Repetitive scanpaths (labels omitted) over TMT-B

Figure 10: Repetitive scanpaths over TMT-A (a) and TMT-B (b)
images (two scanpaths per individual over the each of the AA and
BB portions of the AABB stimulus sequence).

the TMT, but it is tenuous since comparison of performance and
process measures distilled from scanpaths do not agree with this
observation. Specifically, repeated measures ANOVA only shows a
marginally significant main effect of trial replicate on time to com-
pletion (F(3,15) = 3.38, p < 0.05), as measured by scanpath dura-
tion length, with mean time to completion tending to decrease from
TMT-A to TMT-B (see Figure 11). Pairwise t-tests (with Bonfer-
roni correction) show no significant difference in time to comple-
tion between trials. Decreasing time to completion does not support
increased cognitive difficulty, rather, it may be indicative of a learn-
ing effect, which is likely as task order was not counterbalanced.
Indeed, process measures suggest a learning effect as fixation dura-
tions decrease significantly across trials (F(3,15) = 6.93, p < 0.01),
whereas the number of fixations do not (F(3,15) = 2.19, p = 0.13,
n.s.). Pairwise t-tests show a significant difference in fixation du-
rations during the first A and last B trials (no other significantly
different pairings were found).

It is interesting to note how the aggregate similarity indices given in
Figure 8 compare with those previously published. The R value for
our six viewers (0.65) is remarkably close to Privitera and Stark’s
[2000] seven viewers (0.64). This finding, as in the previous work,
suggests that the strings for repetitive viewing have loci that are
about 65 percent within fixational or foveal range. Our results
therefore provide continuing support for the scanpath theory (the
substance of which states that a top-down internal cognitive model
drives eye movements). The key difference between the present
and prior results is that the task in the present case was quite well
defined whereas in prior work it was not (no particular task was as-
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Figure 11: Performance and process measures across trials.

signed). Task dependence of eye movements may be indicated by
the Global position index. In the present case, all different subjects
looking at all different stimuli had an Sp value of 0.44 whereas the
same index in the previous study was only 0.28.

6.1 Limitations of the Approach

A shortcoming of the given framework is the lack of significance
testing between different groups of scanpaths, e.g., testing for sig-
nificance between similarity of scanpaths made during the TMT-
A and TMT-B portions of the experiment (Figure 9). Feusner and
Lukoff [2008] suggest computation of the d∗ = dbetween−dwithin

statistic, where dbetween is the average distance between scanpaths
in different groups and dwithin is the average distance between
scanpaths in the same group. To include this computation within
the present framework would likely require construction of addi-
tional between-group and within-group Y -matrices.

7 Conclusion

Mean shift fixation clustering and subsequent elliptical modeling
via Principal Components Analysis enables automation of the string
editing approach to scanpath comparison. Construction of a kd-tree
facilitates efficient lookup of k nearest cluster neighbors. The com-
bination of these algorithms removes prior reliance on preevalua-
tion and human intervention (interaction). The resulting analysis
of multiple scanpaths is computationally efficient, providing output



in the form of parsing diagrams, yielding quantitative measures of
scanpath position and sequence similarity. These similarity indices
can be used to gain insight into visual processes supporting tradi-
tional performance metrics of speed and accuracy.

Scanpath comparison metrics validated empirically by a variant of
the Trail Making Test show that position indices should generally be
more highly correlated than sequential indices. In particular, given
a well-defined visual task, scanpath comparison can be expected to
yield moderately correlated repetitive and global position indices.
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